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Abstract. This paper aims to demonstrate the flexibility of mathemat-
ical models in analyzing carbon dioxide emissions and account for
memory effects. The use of real data amplifies the importance of this
study. This research focuses on developing a mathematical model uti-
lizing fractional-order differential equations to represent carbon dioxide
emissions stemming from the energy sector. By comparing simulation
results with real-world data, it is determined that the fractional model
exhibits superior accuracy when contrasted with the classical model.
Additionally, an optimal control strategy is proposed to minimize
the levels of carbon dioxide, CO2, and associated implementation
costs. The fractional optimal control problem is addressed through the
utilization of an iterative algorithm, and the effectiveness of the model
is verified by presenting comparative results.
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1 Introduction

In recent decades, economic growth and associated increases in industrial production across
the world have led to an increase in energy consumption, with burning fossil fuels supplying
around 80% of the world’s energy [6]. When fossil fuels are burned, they release large amounts
of carbon dioxide, a greenhouse gas, into the air. The Intergovernmental Panel on Climate
Change (IPCC) has found that emissions from fossil fuels are the dominant cause of global
warming. In 2018, 89% of global CO2 emissions came from fossil fuels and industry [9]. To
decreaseCO2 emissions from the energy source, variousmethods can be used, including energy
efficiency, the help of renewable energy, fuel switching, and themore efficient use and recycling
of materials [12]. In recent years, mathematical modeling has become a valuable tool to study
the effect of different factors on the dynamics of atmospheric carbon dioxide gas, and appraise
strategies to control. In most cases, differential equations of the integer order have been used
to construct such models. L. Han et al. introduced a carbon absorption-emission model with
a delay in [8], which was based on carbon emission and absorption. In [7], a mathematical
model was explored for carbon emissions and optimizing process parameters in laser welding
cells. Several nonlinear dynamical models are proposed to derive the optimal strategies for
mitigating carbon dioxide emission in [16, 17]. The integer-order derivatives and integrals
have local properties, meaning that the next state is not influenced by the current and previous
state. The integer-order mathematical models cannot describe natural phenomena precisely.

Fractional calculus is an extension of classical calculus which introduces derivatives and
integrals of fractional order. Fractional derivatives have non-local properties, meaning that the
next state depends on the current state and all previous states. This is the main excellence of
fractional derivatives over classical derivatives. Fractional calculus is currently utilized as a
significant means for studying dynamic systems. Baleanu et al. explored two generalized frac-
tional models with a real case study in [4, 5]. In [10], a comparison analysis was made between
different operators in fractional dynamical systems. Srivastava et al. analyzed a biological
population model with carrying capacity using fractional-order calculations in [14]. In [13],
a computational analysis of a fractional model for the dynamics of carbon dioxide gas in the
atmosphere was conducted.

For further research, refer to [2, 3, 15], and the accompanying references.

In light of this notable advantage, we weremotivated to extend themodel studied in [17] to a
novel fractional model involving the Caputo derivatives. We aim to demonstrate that fractional
mathematical models have greater flexibility to analyze carbon dioxide emissions and account
for memory effects. The use of real data adds importance to this study. To the best of our
knowelege, this is the first work that employs a non-local derivative operator in modeling the
CO2 emissions from the energy sector and its optimal control treatment.
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2 Fractional Model

In this section, we propose a fractional mathematical model for the carbon dioxide emissions
from the energy sector. The original version of this model is a system of nonlinear ordinary
differential equations as presented in [17]. However, this model does not consider the effect of
previous states in the current states ofCO2 emissions. One way to overcome this drawback is to
replace the integer-order derivatives in themodel with non-integer-order derivatives. Therefore,
we replace the ordinary derivative with the Caputo fractional derivative operator. Thus, the new
model is described by the following system:

c
0D

ν
t C(t) = −α (C − C0) + µ1N + µ2 (1− η2)E,

c
0D

ν
t N (t) = rN

(
1− N

L

)
+ κ1NE + κ2N

2E − θ (C − C0)N,

c
0D

ν
t E (t) = (1− η1)

γNE
K+N − γ0E

2,

C (0) ≥ C0, N (0) ≥ 0, E (0) ≥ 0,

(1)

where c
0D

ν
t is the Caputo fractional derivative of order 0 < ν ≤ 1 and is defined for an arbitrary

function Φ(t) as follows [11]:

c
0D

ν
t Φ(t) =

1

Γ(1− ν)

∫ t

0
(t− τ)−νΦ

′
(τ)dτ.

Moreover, when ν = 1, the model becomes an integer model. In this model, C(t), N(t), and
E(t) represent atmospheric CO2 concentration, human population, and energy use at time t,
respectively. All parameters in the model are non-negative. The descriptions of the parameters
given as follow:

• C0 denotes pre-industrial CO2 concentration, α is the removal rate of atmospheric CO2

by the sinks of CO2.

• µ1 represents the emission rate coefficients of CO2 from non-energy sectors, µ2 is the
emission rate coefficients of CO2 from energy sectors.

• η2 denotes the efficiency of mitigation options to curtail the CO2 emission rate per unit
of energy use.

• r denotes the intrinsic growth rate, L is the carrying capacity of the population.

• κ1 is the growth rate coefficients of population, κ2 is carrying capacity of population due
to energy use.

• θ is the mortality rate coefficient of the population due to the adverse impacts posed by
enhanced CO2 levels.
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• γ denotes the growth rate of energy use, γ0 is the depletion rate of energy use, K is
half-saturation constant. η1 denotes the efficiency of mitigation options to cut down the
energy consumption rate through increasing energy efficiency and bringing the behav-
ioral changes in people.

3 Optimal Control

Reducing atmosphericCO2 levels can be achieved by decreasing the rate at which it is produced
during energy generation and limiting the increase in energy consumption. The most effective
methods for loweringCO2 levels haveminimal costs for mitigation. Optimal control theory can
be used to develop these strategies and minimize implementation costs. In this section, we use
optimal controllers based on Pontryagin’s Minimum Principle (PMP) to stabilize the behavior
of the fractional-order system described by (1). To achieve this, we assume that the parameters
η1 and η2 are Lebesgue measurable functions of time on the interval [0, tf ]. Therefore, model
(1) is rewritten as follows:

c
0D

ν
t C(t) = −α (C − C0) + µ1N + µ2 (1− η2(t))E,

c
0D

ν
t N (t) = rN

(
1− N

L

)
+ κ1NE + κ2N

2E − θ (C − C0)N,

c
0D

ν
t E (t) = (1− η1(t))

γNE
K+N − γ0E

2,

C (0) ≥ C0, N (0) ≥ 0, E (0) ≥ 0

(2)

We consider the state system (2) of fractional differential equations, where the set of ad-
missible control functions are given by

Ω = {(η1(t), η2(t)) ∈ (L∞(0, tf ))
2 : 0 ≤ η1(t) ≤ η1max, 0 ≤ η2(t) ≤ η2max}.

The objective is to minimize both the level of CO2 and the cost of implementing mitigation
options by minimizing the following objective functional:

I =

∫ tf

0
(w1C(t) + w2η

2
1(t) + w3η

2
2(t))dt, (3)

where the constants w1, w2 and w3 are weighting coefficients.
We consider the optimal control problem of finding (C∗(·), N∗(·), E∗(·)) associated with

an admissible control pair (η∗1(·), η∗2(·)) ∈ Ω on the time interval [0, tf ], which satisfies (2) and
minimizes the cost functional (3). To address this problem, we use a kind of the PMP in the
fractional order state as proposed in [1]. We define the Hamiltonian function as below:

H = w1C(t) + w2η
2
1(t) + w3η

2
2(t)
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+ ρ1(t)
(
− α(C − C0) + µ1N + µ2(1− η2(t))E

)
+ ρ2(t)

(
rN(1− N

L
) + κ1NE + κ2N

2E − θ(C − C0)N
)

+ ρ3(t)
(
(1− η1(t))

γNE

K +N
− γ0E

2
)
,

where ρi(t) (i = 1, 2, 3) are the co-state variables. The optimality conditions are obtained from
the following conditions:

∂H

∂η1
= 0,

∂H

∂η2
= 0.

Hence, we have

η1 =
ρ3
2w2

γNE

K +N
, η2 =

ρ1
2w3

µ2E, (4)

on interior of set Ω, where the adjoint variables satisfy

c
0D

ν
t ρ1(t) = −∂H

∂C
= −w1 + ρ1α+ θρ2N,

c
0D

ν
t ρ2(t) = −∂H

∂N

= −ρ1µ1 − ρ2
(
r(1− 2N

L
) + κ1E + 2κ2NE − θ(C − C0)

)
− ρ3(1− η1)γKE

(K +N)2
,

c
0D

ν
t ρ3(t) = −∂H

∂E
= −ρ1µ2(1− η2)− ρ2(κ1N + 2κ2N

2)− ρ3
(
(1− η1)

γN

K +N
− 2γ0E

)
,

ρ1(tf ) = ρ2(tf ) = ρ3(tf ) = 0.

Then, we have the following boundary value problem for optimal treatment:

c
0D

ν
t C(t) = −α (C − C0) + µ1N + µ2 (1− η2)E,

c
0D

ν
t N (t) = rN

(
1− N

L

)
+ κ1NE + κ2N

2E − θ (C − C0)N,

c
0D

ν
t E (t) = (1− η1)

γ NE
K+N − γ0E

2,

c
0D

ν
t ρ1(t) = −∂H

∂C = −w1 + ρ1α+ θρ2N,

c
0D

ν
t ρ2(t) = −∂H

∂N = −ρ1µ1 − ρ2
(
r(1− 2N

L ) + κ1E + 2κ2NE

−θ(C − C0)
)
− ρ3(1− η1)γKE

(K +N)2
,

c
0D

ν
t ρ3(t) = −∂H

∂E = −ρ1µ2(1− η2)− ρ2(κ1N + 2κ2N
2)

−ρ3
(
(1− η1)

γN
K+N − 2γ0E

)
,

ρ1(tf ) = ρ2(tf ) = ρ3(tf ) = 0,

C (0) ≥ C0, N (0) ≥ 0, E (0) ≥ 0,

(5)

where η1(t) and η2(t) are given by (4). In turn, the optimality conditions PMP establish that
the optimal controls η1(t) and η2(t) are defined by:
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η∗1(t) = max{min
( ρ3
2w2

γNE

K +N
, η1max

)
, 0},

η∗2(t) = max{min
( ρ1
2w3

µ2E, η2max
)
, 0}.

4 Simulation Results and Discussion

In this section, the effects of fractional operators on the behavior of the controlled system for
the relationship between the human population, energy use, and atmospheric carbon dioxide are
investigated. To do so, we apply the numerical algorithm expressed in the following to solve
the coupled system (5).

4.1 Numerical algorithm

In this part, we develop the fractional version of fourth order Runge- Kutta (RK4) algorithm
for the coupled system (5), as follows:

Algorithm 1
• Step1. Set the initial values for the control functions η∗1(t) and η∗2(t).
• Step2. Use the current values of control functions and apply the forward fractional RK4
method for the control system and obtain the original variables.

• Step3. Apply the backward fractional RK4 method to compute the adjoint variables using
the current values of the original variables and control functions.

• Step4. Update the value of control functions.
• Step5. If the updated values of the original variables, adjoint variables and control functions
are not close enough to their previous values, go to Step 2.

4.2 Simulation results

The simulation results in this study are based on the real data of atmosphericCO2 concentration
and global energy use are selected based on NOAA and World in Data for the period 1960 to
2021. Therefore, the real data of the year 1960 is set as the initial conditions:

C(0) = 316, N(0) = 3.032, and E(0) = 40.5889.

The estimated values   of the model parameters are as follows:

α = 0.01621, C0 = 280, µ1 = 0.1025, µ2 = 0.02698, r = 0.0265, L = 11,
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κ1 = 1.178× 10−5, κ2 = 1.2× 10−6, θ = 2.2183× 10−7, γ = 0.08595,

K = 3.2, γ0 = 0.0002575, η1 = 0.1, η2 = 0.1, η1max = 0.3, η2max = 0.5,

and

w1 = 1, w2 = 100, w3 = 100.

To demonstrate the efficiency of the new fractional model, the numerical results of carbon
dioxide concentration and global energy use have been compared with the real data in Figure
1. In this figure, the diagrams of carbon dioxide concentration and energy use are plotted for
the different values of the fractional order and the classic integer-order, and they are compared
with the real data. This validation shows that the accuracy of new fractional system is better
than the classic system. Moreover, with the increase of time, decreasing the fractional deriva-
tive order leads to more efficient numerical solutions, which converge towards the real data.
Additionally, the difference between the accuracy of the fractional model and the classic model
is more significant with the passage of time.

In this study, we will examine the efficiency of mitigation optimal control strategy on future
CO2 levels. To achieve this, we compare the atmosphericCO2 concentration for controlled and
uncontrolled conditions for the values of ν = 0.7 and ν = 1, in Figure 2. The initial conditions
are based on the year 2017 set to C(0) = 406.55, E(0) = 153.5956 and N(0) = 7.511.
The results show that applying the control strategy results leads in a significant reduction of
atmospheric CO2 concentration. In addition, the effect of this control scheme on the fractional
system is more successful than the classical system. Furthermore, the future CO2 level on the
fractional model is investigated in Figure 3 for various fractional order values. As can be seen
in this figure, the efficiency of the controls increases by moving away from the integer-order
and reducing the fractional orders. In addition, the concentration of CO2 grows up with the
increase of fractional orders and tends uniformly to the integer-order trajectory.
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Figure 1: Comparison between the numerical solutions of carbon dioxide, and energy use based on the classic and
fractional order models with real data.
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Figure 2: Numerical solutions of atmospheric CO2, with uncontrolled and controlled conditions for classic and
fractional order models.
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Figure 3: Numerical solutions of atmospheric CO2, fractional model with mitigation strategies for the control of
future CO2 for various fractional order values.
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5 Conclusion

This paper introduces a fractional mathematical model for carbon dioxide emissions and inves-
tigates the stability of the fractional-order system using optimal controllers based on Pontrya-
gin’s Minimum Principle. The fractional optimal control problem is solved using a forward-
backward sweep iterative algorithm. Simulation results indicate that the fractional model pro-
vides a better approximation compared to the classic integer-order model.

Declarations

Availability of supporting data
All data generated or analyzed during this study are included in this published paper.

Funding
No funds, grants, or other support was received for conducting this study.

Competing interests
The authors have no competing interests to declare that are relevant to the content of this paper.

Authors’ contributions
The main manuscript text is written collectively by the authors.

References

[1] Agrawal, O.P., Defterli, O., Baleanu, D. (2016). “Fractional optimal control problems with several
state and control variables”, Journal of Vibration and Control, 16, 1967-1976.

[2] Akhavan Ghassabzadeh, F., Tohidi, E., Singh, H., Shateyi, S. (2021). “RBF collocation approach
to calculate numerically the solution of the nonlinear system of qFDEs”, Journal of King Saud
University - Science, 33(2), 101288.

[3] Bagherpoorfard, M., Akhavan Ghassabzade, F. (2023). “Analysis and optimal control of a frac-
tional MSD model”, Iranian Journal of Numerical Analysis and Optimization, 13(3), 481-499.

[4] Baleanu, D., Akhavan Ghassabzade, F., Nieto, J.J., Jajarmi, A. (2022). “On a new and generalized
fractional model for a real Cholera outbreak”, Alexandria Engineering Journal, 61, 9175-9186.



In
Pr
es
s

10 Mathematical Modeling and Optimal Control ...

[5] Baleanu, D., Arshad, S., Jajarmi, A., Shokat, W., Akhavan Ghassabzade, F., Wali, M. (2023).
“Dynamical behaviours and stability analysis of a generalized fractional model with a real case
study”, Journal of Advanced Research, 48, 157-173.

[6] BP Statistical Review of World Energy, (2019), 68th Edition, London: BP. https:
//www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/
energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf.
Accessed 14 March 2020.

[7] Ge, W., Li, H., Wen, X., Li, Ch., Cao, H., Xing, B. (2023). “Mathematical modelling of carbon
emissions and process parameters optimisation for laser welding cell”, International Journal of
Production Research, 61, 15, 5009-5028.

[8] Han, L., Sui, H., Ding, Y. (2022). “Mathematical modeling and stability analysis of a delayed car-
bon absorption-emission model associated with China’s adjustment of industrial structure”, Math-
ematics, 10(17), 3089.

[9] IEA. (2019). “Global energy & CO2 status report 2019”, https://www.iea.org/reports/
global-energy-co2-status-report-2019/emissions, Accessed 14 March, 2020.

[10] Khan, Q., Suen, A., Khan, H., Kumam, P. (2023). “Comparative analysis of fractional dynamical
systems with various operators”, AIMS Mathematics, 8(6), 13943-13983.

[11] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J. (2006). “Theory and applications of fractional differ-
ential equations”, Elsevier Science, BV, Amsterdam.

[12] Lin, B., Zhu, J. (2019). “The role of renewable energy technological innovation on climate change:
Empirical evidence from China”, Science of the Total Environment, 659, 1505-1512.

[13] Prakash, D.V, Sarvesh, D., Devendra, K., Jagdev, S. (2021). “A computational study of fractional
model of atmospheric dynamics of carbon dioxide gas”, Chaos Solitons Fractals, 142, 110375.

[14] Srivastava, H.M., Dubey, V.P., Kumar, R., Singh, J., Kumar, D., Baleanu, D. (2020). “An efficient
computational approach for a fractional-order biological population model with carrying capacity”,
Chaos, Solitons and Fractals, 138, 109880.

[15] Traore, A., Sene, N. (2020). “Model of economic growth in the context of fractional derivative”,
Alexandria Engineering Journal, 59(6), 4843-4850.

[16] Verma, M., Misra, A.K. (2018). “Optimal control of anthropogenic carbon dioxide emissions
through technological options: a modeling study”, Computational and Applied Mathematics, 37,
605-626.

[17] Verma, M., Verma, A.K., Misra, A.K. (2021). “Mathematical modeling and optimal control of
carbon dioxide emissions from energy sector”, Environment Development and Sustainability, 23,
13919-13944.

https ://www.bp.com/conte nt/dam/bp/busin ess-sites /en/globa l/corpo rate/pdfs/energ y-econo mics/stati stica l-revie w/bp-stats-revie w-2019-full-repor t.pdf
https ://www.bp.com/conte nt/dam/bp/busin ess-sites /en/globa l/corpo rate/pdfs/energ y-econo mics/stati stica l-revie w/bp-stats-revie w-2019-full-repor t.pdf
https ://www.bp.com/conte nt/dam/bp/busin ess-sites /en/globa l/corpo rate/pdfs/energ y-econo mics/stati stica l-revie w/bp-stats-revie w-2019-full-repor t.pdf
https ://www.iea.org/repor ts/globa l-energ y-co2-status-repor t-2019/emiss ions
https ://www.iea.org/repor ts/globa l-energ y-co2-status-repor t-2019/emiss ions

	Mathematical Modeling and Optimal Control of Carbon Dioxide Emissionsto.44em.
	Fahimeh Akhavan Ghassabzade1*, Mina Bagherpoorfard2 

