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1 Introduction

In this paper, we address the problem of multi-objective generalized semi-infinite programming (MGSIP).
The MGSIP can be formulated as follows:

(MGSIP) : inf  p(z) := (p1(z),.. ., pp(x))
st. x€F = {x eR™| ¢Y(z,y) >0, forall ye€ E(x)},

where the index set is defined as:
S(x):={y € R™ | v(z,y) <0, forall iel},

where the appearing functions ¢; : R” — Rasj € J := {1,...,p}and ¢,v; : R” x R™ — R
asi € I := {1,...,q} are assumed to be locally Lipschitz. Additionally, the set-valued mapping
x +— X(z) is uniformly bounded, meaning that for each xy € F there exists a neighborhood U of
o such that the set | J, ., X(z) is bounded. This assumption implies that the mapping = — X () is
compact-valued and upper semi-continuous at each xy € F (see Proposition 2.5.21 in [5]). We recall
the definition of upper semi-continuity of set-valued mapping in Section 2. Throughout the paper, these
assumptions are consistently maintained. In the case where the functions ¢;, v, and v; as (i,5) €
I x J are regular or convex on their domains, the MGSIP is referred to as regular or convex MGSIP,
respectively. Smooth generalized semi-infinite programming (GSIP) is a special case of MGSIP when
p = 1 and all the functions involved are smooth. GSIP has found applications in various fields such
as design problems, robot maneuverability problems, reverse Chebyshev approximation problems, and
robust optimization (see [11, 14]). Previous works have studied first-order optimality conditions of the
smooth GSIPs [28, 29, 30, 32].

When p = 1 and the appearing functions are convex (resp. locally Lipschiz), the MGSIP coincides
with convex GSIP (resp. nonsmooth GSIP), which have been analyzed in [16] (resp. [18]). For the case
where the functions ¢ and v are differences of convex functions, the MGSIP reduces to DC GSIP for
which constraint qualifications and optimality conditions have been presented in [15] (resp. [3, 12, 18,
270).

Motivated by the above, it is both useful and interesting to study optimality conditions for MGSIPs
with p > 1. While necessary first-order conditions have been addressed for the continuously differ-
entiable case in [31], our current knowledge indicates that no efforts have been made to address the
non-smooth case. Therefore, the primary objective of this paper is to fill this gap. Specifically, we
introduce a constraint qualification and present optimality conditions for properly efficient solutions of
non-smooth regular MGSIPs.

We organize the paper as follows. In the next section, we provide the necessary notations and prelim-
inaries that will be used throughout the paper. Section 3 is devoted to investigating first-order necessary
optimality conditions for non-smooth regular MGISPs. In Section 4, we provide several applications of
the derived results to convex MGSIP. Finally, Section 5 concludes this paper.

2 Preliminaries

This section presents introductory material on convex analysis and non-smooth analysis, which are
widely used in the subsequent discussions. For further details and additional resources, we recommend
the following books written by Rockafellar and Wets [24], Hiriart-Urruty and Lemarechal [13], and
Clarke [6].

Given a nonempty set Y C R™, the notations Y, conv(Y'), and cone(Y) represent the closure of Y,
the convex hull of Y, and the convex cone generated by Y (including the origin), respectively. The zero
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vector in R™ is denoted by 0,,, and the standard inner product of z and y € R" is denoted by (z, y). Let
us define:

YO :={z eR"|(z,y) <0, VyeY},

YO :={zeR"|(z,y) <0, VyeY}.
The validity of the following equalities can be easily verified:

YO = (COTL’U(Y))Q, and Y© = (conv(Y))e

Furthermore, it is evident that if Y© # (J, then Y© = Y ©.
Theorem 1. [13,24] Let Y C R”™ be a compact set. Then,
i. conv(Y) is compact.
ii. cone(Y') is closed, provided that 0,, ¢ conv(Y).

Theorem 2. [13, 24] Let {Y; | ¢ € L} be an arbitrary collection of nonempty convex sets in R™ and

lety = conv( U Yg). Then, every non-zero vector in ) can be expressed as a convex combination of

el
n + 1 or fewer linearly independent vectors, each belonging to a different Y.

Let f : R®™ — R be a locally Lipschitz function and & € R™. The generalized Clarke directional
derivative of f at Z in the direction d € R" is defined by

(3 d) = Timsup fly+td) — fly)
y—@, t10 t
and the Clarke subdifferential of f at & is defined as:
Of(#) :={§ e R" | f°(#;d) = (£, d), VdeR"}.
We say that f is regular at & if
f°(&;d) = f'(2,d), VvdeR",
where f’(&, d) denotes the classical directional derivative of f at Z in the direction d, i.e.,

Fland) = tim L&) = F@)

t—0+ t

It is known from [6] that the Clarke sub-differential of a locally Lipschitz function at each point is
always a non-empty convex compact set. Moreover, if the function f(-) is continuously differentiable at
Z,then 0°f(2) = {V f(Z)}, where V f (&) denotes the gradient of f at ). If the function f(-) is convex,
then 0°f (&) = 0f (&), where 0f (%) denotes the sub-differential of f at & in the convex analysis sense:

Of (@) :={£ e R" | fly) = f(&) 2 (§,y—2), VyeR"}

A locally Lipshitz function f : R™ — R is called Clarke-convex (denoted C-convex) at & € R™ if
for each £ € 9°f(&) the following inequality holds:

fly) — f(@&) > £,y — 1), VYyeR"™

The properties and applications of C'-convex functions in non-smooth optimization can be found
in [17]. Hereafter, we will use the following important relations for two locally Lipschitz functions
f17 f2 :R" = R:
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fi(@;d) =max{(¢,d) | ¢ € 0°fi(2)}, i€{l,2},
9°(max{f1, f2})(&) C conv(9° f1(&) U d° fo (%)), @
8C(a1f1 -+ Oégfg)(l%) - alacfl(i) + agacfg(f), VOél,OzQ e R.

Furthermore, if f1, fo are regular at & and 1, ao are non-negative, then a f1 + aw fo is also regular
at z, and equality holds in the above inequalities. For a locally Lipschitz function ¢ : R x R™ — R
and a point (,9) € R™ x R™, let 9g¢)(Z, §) and 9y (%, §) denote the partial Clarke sub-differential of
(-, -) at (&, 9), which are defined as 0°¢(+, §)(Z) and 0°¢ (&, -) (), respectively.

Theorem 3. [6] If ¢ : R™ x R™ — R is regular at (&, ), then
OP(2,9) € Oov(2,9) X Oy (&, 9)-
LetY C R®and 2 € Y be given. The Clarke tangent cone of Y at & is defined as:
Iy (#) = {u € R" | d§ (#u) = 0},

where dy (z) = infycy || —y/| is distance function related to Y. It is worth noting that I'y- (&) is always
a closed convex cone. The Clarke normal cone of Y at Z is defined by

Ny (&) := (ry(gz))Q.

Theorem 4. [6] Let Y C R™ and ¢ be a locally Lipschitz function from R™ to R. Suppose that ¢ attains
its minimum on Y at , then
0, € 0°(&) + Ny (Z).

We require the following definition, which is extensively used in this paper.
Definition 1. For a set-valued mapping F' : R" = R™, and a point & € R™ with F(z) # 0:
« F is said to be inner semi-continuous at (Z, §) in
gph(F) := {(u,v) € R" x R™ | v € F(u)},

if for every sequence z; — & as k — oo with F'(zy) # () for k € N, there exists a sequence
yr € F(zk) as k € N converging to §.

» F said to satisfy the Lipschitz-like property (or Aubin property) around the point (Z, §) € gph(F)
if there exist neighborhoods U of & and V' of ¢, and a constant « > 0 such that

F(x)NV C F(u) + k|lz —u|B, forall z,ue U,

where B denotes the closed unit ball of R™.

» F'issaid to be upper semi-continuous (u.s.c) at & if for every sequence xx — = as k — oo and for
every open set V' C R with F'(&) C V, there exists a positive number  such that F'(z;) CV
forall k > k.

3 Necessary Optimality Conditions

In this section, we recall our standing assumptions made throughout the paper:

* The appearing functions ¢;, 1, and v; for (7, j) € I x J are locally Lipschitz and regular on R”.
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* The index set [ is finite.
¢ The set-valued mapping 2 — X(z) is uniformly bounded.

We now provide the following definition, which is taken from [9].

Definition 2. A feasible point £ € F is called a properly efficient solution to MGSIP if there exist
positive scalars y; > 0 for j € J such that

p p
> viei(d) <> i), Yz eF.
j=1 j=1

For & € F, we define the index set of active constraints and the lower-level problem at & as follows:

Yo(#) :={y € B(2) [ (2,y) = 0},

min  (Z,y), subjectto y € X(%). 2)

Furthermore, the set (which may be empty) of active inequalities of Problem (2) at each § € X(&) is
denoted by Iy (Z, 9):
Ip(z,9):={i eI |v(&,9) =0}
Associated with the lower-level problem (2) is its optimal value function
inf {$(z,y) |y € S(@)}, if5(2) £,
w(x) = 3)
+00, if ¥(z) = 0.

The Lagrangian of the lower-level problem is defined as:

q

Lz, y,a) ==Yz, y) + Zaiyi(a:,y),

i=1

where @ = (a1,...,04) € R7and o; > 0 forall ¢ € I. It is well known from [6] that for § € ¥¢(Z),
the corresponding set of Karush-Kuhn-Tucker (KKT in brief) multipliers, denoted by K (&, ):

K(2,7) = {a ERY| 0, € DL(2,§,0), awi(d,§) =0, Vie I},
is nonempty if the following constraint qualification (CQ1) holds:
(p,0m) € Y @0wi(#,9)
i€lo(@,9) — o; =0, Viely(z ).
a; 20, Vielo(,9)

Remark 1. If all the lower-level constraint functions v; for ¢ € I are continuously differentiable, we
can decompose the full derivative into the partial derivatives as follows:

vyi(j"a:g) = va:l/l(j?y) X Vyl/i(jjv?))a Vi GIO(-%J)L
In this case, the constraint CQ1 is equivalent to the following implication:

> aVyi(d§) =0n, i >0 = a; =0, Vi€ I(&,7).

i€lo(2,9)

By applying the Gordan alternative theorem (see [4]), we conclude that the above implication is equiv-
alent to Cottle constraint qualification for the lower-level problem (2) at ¢, which can be expressed as:

{z ER™ | (2, V,ui(#,9)) <0, ic Io(i",:g)} £ .
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Remark 2. Due to the continuity of functions v; for ¢ € I, the upper semi-continuity of the mapping %,
and [1, Proposition 1.7], we can conclude that the set-valued mapping X(-) is compact-valued and the
optimal valued function p(-) is lower semi-continuous at &. As a result, the infimum in (3) is attained.

Theorem 5. In addition to the standing assumptions, let us suppose that the set-valued mapping ¥¢(-)
is inner semi-continuous at (&, ) for some & € F and § € X¢(Z). If CQ1 holds at (&, §), then we get:

ocu@)c |J 9589, 0).
Q€K (#,)

Proof. Firstly, according to [20, Corollary 4.43] and under the assumption of satisfying CQ1, we can
deduce that the set-valued mapping X(-) is Lipschitz-like around (&, §). Therefore, [21, Theorem 5.2)]
implies that the marginal function y(+) is locally Lipschitz (not necessarily regular) around Z, and hence,
the left side of the above inclusion is meaningful.

Secondly, by utilizing the inner semi-continuity of ¥o(-) and the satisfaction of CQ1 at (&, §), we
can conclude from [22, Theorem 8] the following upper estimate of the Clarke sub-differential of the
value function p(-) at &:

q
ou@) < | {ueR(w00) €09 + > @it wi(a, ),
=1

(au1,y...,0q)

O(il/i(i‘,g) =0, ;>0 Vie I}
Since the functions ¢ and v;s for ¢ € I are assumed to be regular, the above inclusion implies that

ou@c Y {u eR" | (u,0,) € O°L(2, 9, @), auvi(d,§) =0, Vi€ 1}. )

a:=(a1,...,0q)
Finally, we can establish the following inclusion based on the regularity of £ and Theorem 3:
0°L(2, 9, ) C 9;L(2,9, ) x 0, L(%, 9, ).

Thus, from (u, 0,,,) € 0°L(%, 9, o) and ;v (&, 9) = 0 (i € I), we can conclude that

u € 05L(2, 9, )

Om € 058(2,9, ) —ue |J 05L&90).

= «a € K(%,9) a€K(2,3)

Otﬂq(i‘,g) = 0, Viel

Therefore, the above relation and (4) imply that
ou(@) | J{ose@g.0) lae K@= | 952 5.0)
a Q€K (2,7)

as required. O O

The following example illustrates that the inner semi-continuity assumption of the set-valued map-
ping o(+) in Theorem 5 can be held at certain points, such as (Z,y), while it can be invalid at other
points, such as (Z, 9).

Example 1. Let us consider the following functions:

1/)(9573/) :min{2_y1>2+y172_y212+y2}3
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vi(z,y) = (y1 —21)* + (y2 — 22)° — L.

This results in the set f = [—1,1] x [~1, 1]. Choosing & = (1,1) and & = (1, %), we have:

So(%) = {y € R? | (&, y) = ,(y1—1)2+(y2—7 <1} ={(2,
205% :{y€R2|¢(‘%7y): ) (y1_1)2+(y2_1 §1}2{271)7(172)}
Considering Z: Since ¥o(Z) is singleton, we can conclude that ¥ is inner semi-continuous at (£, §)

Wlth g - ( ’ 2)
Considering Z: Put ") = (1,2) and §® = (2, 1). Since there exists a sequence

11
{(1’ 1- %)}kzl’
converging to & as k — oo, and

1

So((1- ) = {@1-p) - @1 £,

we can conclude that the mapping (- ) is not inner semi-continuous at (, (1)). Similarly, the sequence
{(1 = £,1)},—, demonstrates that $o(-) is not inner semi-continuous at (&, 7(?), as

1 1
So((1- 1, 1) = {1 - 7.2} = (1,2) #5.
The first-order optimality condition for regular MGSIP is stated as follows:

Theorem 6. In addition to under the standing assumptions, let & be a properly efficient solution of
regular (MGSIP) and CQ1 holds at (&, ) for some § € ¥o(&). If the set-valued mapping ¥¢(-) is inner
semi-continuous at (2, 7), then there exist non-negative scalars \; > O as j € J, and a'¥) € K(2,9)
and By > 0for ¢ =1,...,n + 1, such that the following system holds:

n+1
OGZ)\a%i Zﬁgac (2,79, a9),
j=1
(5)

n+1

i +§_:ﬂe—1

Proof. Since 7 is a properly efficient solution of MGSIP, we can find some «; > 0 for j € J such that
& is a minimizer of 337, v;;(x) on F .
Case 1: If (&) = 0, then we consider the following function:

p p
U(zr) := max { Z’ngoj(x) - nyjgoj(fc), —u(a:)}.
j=1 j=1
If z* ¢ F, there exist some y* € X(z*) with v;(2*,y*) < 0, and hence —p(x*) > 0. Therefore,
T(xz*) > 0.
p
If x* € F, there exists Z V05 (x Z v;%5(Z) > 0 due to the proper efficiency of z, and so
j=1

U(z*) > 0. Hence, we have

U(z) >0, VzeR", and U(3)=
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This means that Z is a global minimizer of ¥(-), and therefore, 0,, € 9°¥ (%) by Theorem 4. By using
(7) and Theorem 5, we obtain:

(')C\I/(fc)gconv<— U 05L(z, Ua(Z%%) )a

€K (2,9)
which implies
P
0, € conv( - U 0.L(2,9, ) U 8C(Z'yj<pj) (;%))
a€K(2,7) j=1

Based on the above inclusion, Theorem 2, and the convexity of the Clarke subdifferential, there exist

some non-negative scalars 7o, . . . , 7,41 and some vectors a1, ... a1 in K (Z, ) such that
n+1
0, € TOQC(ZVJ%) ZTgﬁ
n+1

To—‘y-ZTg =1,
=1

1e.,
n+1
0, € 2707]8 ©; (& ZT@S &, 79,9,
j=1
(6)
n+1
To + Z 70 = 1.
r=1
Our assertion is that
n+1
A= Zﬂm +ZT¢ # 0.
n+1 »
Indeed, if 79 = 0, then A = Z 0 =1 according to (6). If 79 # 0, then ZTo’yj > 0 due to the
=1 j=1

positivity of y; as j € J, resulting in A # 0. By defining

Py %, jeJ, and Byi= %, (=1,...,n+1,
we can deduce from (6) that
P n+1
On € > Aj0°p;(2) Zﬂ48° (&5, al),

Jj=1
n+1

i +§:5£—1

Case 2: If (2) > 0, then Z is an interior point of / because of the lower semi-continuity of s(-).
Therefore, based on Theorem 4, we can conclude that

0, € 0° (Z’yj%) Z%aﬂpj

j=1
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which can be expressed in the form (5) by setting

i
p )

>
=1

The proof is complete. O

Aj = jedJ, and B, =0, £=1,...,n+1.

The following example illustrates that the assumption of inner semi-continuity of the set-valued
function Yy (-) cannot be neglected in Theorem 6.

Example 2. Consider the problem MGSIP with the following data:

p(r) = —z1 — 22
Y(x,y) =min{2 —y1,2 +y1,2 — y2,2 + Y2},
vi(z,y) = (y1 —21)* + (y2 — 22)° — L.

Since F = [—1, 1] x [—1, 1], the unique optimal solution of the problem is & = (1, 1). As demon-
strated in Example 1,

So(2) = {9, 9P}, 9 =(1,2), 9@ =(2,1), Io(z,9"Y) = Io(2,9?) = {1}.

The set-valued mapping X(-) is evidently uniformly bounded, and CQI is satisfied at (i, (")) and
(&,9@). A brief calculation shows that

K(#,§") = {} , and 9°L(z, 9V, %) = {(0,-1)}.

Thus, it is evident that there are no scalars A\! and 3* as stated in Theorem 6 satisfying (5). Similarly, it
shows that (5) is not valid at §/(*).

Note that, as demonstrated in Example 1, the set-valued mapping Yo (-) is not inner semi-continuous
at (&,9™") and (2, 9).

It is worth mentioning that Theorem 6 has a very restrictive assumption, which is the inner semi-
continuity of the set-valued mapping ¢ (-) at the point (&, §). Several conditions can ensure this inner
semi-continuity, some of which are as follows:

1. 3o(&) = {§} is a singleton, while the map 3y may be multi-valued at any point other than  (see
[7D-

2. The lower-level constraint functions v;(z, y), where i € I, are weakly analytic according to Klatte
and Kummer (see [2]).

3. The lower-level objective function ¥ (z, y) is strictly convex with respect to y for every = € f
(see [8, 23]).

The proof of Theorem 6 relies on the upper estimate of 9¢u (%), as presented in Theorem 5, and this
estimate is based on the inner semi-continuity of X (-) at (&, ¢). It is worth mentioning that there are
special cases where can calculate 9°u(2) without requiring the inner semi-continuity of X¢(+) at (Z, §).

1. If all the functions ¢ (z,y) and v;(x,y), where ¢ € I, are continuously differentiable, and the
Cottle constraint qualification is satisfied at (&, §), then according to [10], we have:

8°u(@) C conv({vxﬁ(;i",y, Q) |y € So(2), a € K(, y)}>.
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2. If all the functions ¢ (x,y) and v;(x,y), where i € I, are convex, and the Farkas-Minkowski
property holds at (&, §) in sense of [16], then u(+) is a convex function, and we have (see [16]):

on(@) < J{o.20.v.0) |0 € K@)}

3. All the functions v (z,y) and v;(x, y), where i € I, are D.C. (difference of convex functions),
and the closed qualification condition defined in [15] holds at (&, 3), then the Mordukhovich
subdifferential of y1(-) at #, denoted by 0™ (%), is estimated as follows (see [15]):

M@ |J aYe(iy ).

a€K(Z,y)

In the following, we will introduce another class of problems where 0°u (%) can be estimated without
the inner semi-continuity of 3¢(-). We will introduce another constraint qualification.

Definition 3. We say that MGSIP satisfies CQ2 at (Z, §) € A ifthe cone ( U Ovi(Z,79) ) is closed

i€lo(2,9)
and

c s © LN
U ow(@) STa@9), )
€10 (2,79)
where,

A={(z,y) eR"xR™ |z e F and ye S(2)} = | J ({x}xZ(m)).
zeF

Observe that CQ2 was initially introduced in [13] in the context of convex optimization problems.
It was later extended to the framework of convex semi-infinite programming problems (SIP) in [19] and
extensively studied for non-convex SIPs in [17].

Remark 3. The inclusion (7) is referred to as the Abadie constraint qualification. CQ2, also known
as the basic constraint qualification, is equivalent to the following inclusion (refer to [17] for proof and
more details).

Na(Z,9) Ccone( U 8614;%@)

i€lo(2,9)

Theorem 7. Under the standing assumptions, let us assume that the regular MGSIP satisfies CQ2 at
(Z, ) for some § € 3o(&). If u(-) is a C-convex function, then

oru@ c |J  05L(E.9, ).

aeK(&,9)

Proof. Let& € 9°u(&) be arbitrarily chosen. Due to the C-convexity assumption of y(-), the definition
of u(-), and § € Xo(Z), we have

wlx) <p(z,y), Va € F, Yy € X(x),

which implies
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Wﬂ%y) - <§,$> > ’(/)(i‘,@) - <£’£> ) Vz € r, vy € E(J})

This means that (£, §) is a minimizer of ¥ (z,y) — (£, ) on A, and thus

Ontm € 80('(/}(15??/) - <€,l‘> )(JAT,Q) + NA(£7@)

From this, the CQ2 assumption, and Remark 3, we obtain

(£,0,,) € OY(&, +cone( U v (2,9 )

i€Io(2,9)

Thus, we can find non-negative numbers ~y; > 0 (for i € Iy(Z, ¥)), such that

(§,0m) € 0°V(E,9)+ Y 70vi(E,0).

i€lo(2,9)

By defining «; := ~; fori € Iy(Z,4) and o; := 0 fori € I\ Iy(&,9), and introducing o :=
(ou,...,aq) € R?, we can conclude from regularity of functions ¢ and v; for ¢ € I, and the inclu-
sion mentioned above that

(& 0m) € 0°L(2,9,a) € OLL(L, 9, o) x 0,L(%,7, )
aiyi(‘%ag) = 07 Vi € Iv

This implies that
xi € U 05L(2, 9, «).

a€eK(&,7)

Since £ was chosen as arbitrary from 0°u (%), we have

oru@)c | 958, 9,q),

€K (2,9)

and the proof is complete. O

Note that providing sufficient conditions for C-convexity of x(-) is an important and separate re-
search topic that may be of interest to researchers.

Theorem 8. Under the standing assumptions, let & be a properly efficient solution of regular MGSIP,
and assume that CQ2 holds at (Z, §) for some § € Xo(&). If u(-) is a C-convex function, then there
exist A\; > 0 for j € J, as well as al® e K(Z,g)and By > 0for¢ =1,...,n+ 1, such that

n+1

p
On € > Aj0°0;(E) Zmaf (2,4, a"),

j=1
» n+1
Z AL
Proof. Employing Theorem 7 and the following proof of Theorem 6, we obtain the desired result. [

To illustrate the significance of Theorem 8, we provide an example.
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Example 3. Consider the problem (MGSIP) with the following data:

e1(x) = |z, pa(x) = 2%,
¢(xay) zx—2y,
Vl(xvy):|x|+y+|y‘? Vg(l’,y):.’ll, 1/3(.’11‘,y)=.’1}2+3y,

Since the above functions are linear or convex, they are regular and C-convex. Furthermore, £ = 0 is
an optimal solution to the problem, and we have:

A = {0} x (—00,0],
Yo(@)={yeR_|0-2y=0}={0} = §=0,
Io(02) = {1,2},

0°v1(02) = [-1,1] x [0, 2], 0°va(02) = {(1,0)}.

Consequently,
Np(02) =R x [0, +00) = cone (acuo(og) U 8%2(02)),

and thus, the problem satisfies the CQ2 at (Z, ¢). Since

3

£(x7y,a) =T - 2y + ZaiVi(xay)a
i=1

we have
05L(Z,9,a) = {1} + ar[-1,1] + ao{1} + a3{0}
Oy L(w,y, ) = {=2} + 1[0, 2] + a2 {0} + a3{3}.

1 1
Thus, oV := (1,0,0) € K(&,7), and with \; := oL Ao =0, by := 3> We have
2
0€ M[=1L1]+ X0} = B ({1} + [~ 1, 1]) = D \;0%; (&) — f1058(2, §,aV),
j=1

AM+X+ 6 =1

4 Application to Convex MGSIP

The Slater constraint qualification plays a significant role in the analysis of convex optimization prob-
lems (refer to [13]). In the context of convex GSIPs, researchers have considered two types of Slater
constraint qualifications (see e.g., [26, 28].

Definition 4. For a convex MGSIP, we define the following:

(a) The problem satisfies the first Slater constraint qualification (FSCQ) at (£, §) € A if there exists
y* € 3(Z) such that
vi(Z,y*) <0, forall i€ Iy(z,9).

(b) The problem satisfies the second Slater constraint qualification (SSCQ) at (&, ) € A if there
exists (z*,y*) € A such that

vi(z*,y*) <0, forall i€ Iy(z,7).
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The following two theorems establish the relationships between these Slater constraint qualifications
and CQ1 and CQ2.

Theorem 9. For convex (MGSIP), CQ1 holds at (&, ) € A if FSCQ is satisfied at there.

Proof. Since FSCQ holds at (Z, ), there exists a vector y* € X(&) such that v;(Z,y*) < 0 for all
i € In(Z, 7). Thus,

<£zay*_g> Sl/i(i',y*)_yi(i',@) <O7 VZGIO(:%7Q)) gi anyi(‘%a?)' (8)
=0

Now, suppose that
> Biovi(#,9), and B; >0, Vi€ Io(#,9).
i€lo(2,9)
This inclusion, along with Theorem 3 concludes that
(0m)€0( > Bow) @) Co.( > Bow) @) xo,( D Bow)(@9),
i€lo(Z,79) 1€1o(Z,7) i€10(2,9)

and so,

Omedy( D Biowi)(@9) = GIZ( Bid,vi(i, 7).
i€lo(Z,y

i€lo(2,9) 9)

Hence, for each i € Iy(%,9), we can find §; € 9,v;(&, ) such that

Y Bi&i=0n = > Biléd—y")=(Omd—y")=0.

i€lo(2.9) i€lo(2,9)

Owing to above equality, 3; > 0 foralli € Iy(Z,y), and (8), we conclude that 8; = 0 foralli € I(Z, 9).
Therefore, CQ1 holds at (%, ). O

Theorem 10. For convex (MGSIP), CQ2 holds at (Z, ) € A if SSCQ holds at there.

Proof. Since SSCQ holds at (&, ), there exists a vector (z*,y*) € A such that v;(z*,y*) < 0 for all
i € In(Z,y). From this and the definition of convex subdifferential, we obtain

<<ia (‘T*?y*) - (i"g» S Vi(x*7y*) - Vl(i‘>y) < 07 Vi€ IO(£)Q)7 Ci S ayi(:fj7g)7

T
and thus
(" — 2,y —9) € ( U 8Cui(§:,;ﬁ))e — ( U 8014(:2,1)))@ # 0.
i€lo(2,9) i€lo(2,9)

From this and o
(conv(} U 8cyi(§:,gj))> z( U A 8CV¢(£,Q))67

we deduce that

<conv( U Ovi(,9) ))6 #0 = Opim # conv( U acui(fc,g})).

i€lo(2,9) i€lo(2,9)
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The above relation, Theorem 1, and the compactness of U O°v;(Z,9) imply that

ieIO(i’w?})
cone( U 8cyi(:iz,y)) is closed.
i€lo(2,9)
S
On the other hand, let w € ( U (“)Cz/i(iyy)) be arbitrarily given. Thus, (w,(;) < 0 for all
i€lo(2,9)
i € Ip(2,9) and ; € Ov;(&,y). Therefore,
W((2,9)w) = max  (w,G) <0, Vie (),

Ci €0V (2,9)
and thus, for each ¢ € Iy(&, ) there exists d; > 0 such that
vi((&,9) + tw) — v3(2,9) <0, Vte(0,8).
——
=0
Hence, v; ((2,9) + tw) < 0 forall i € Io(&,§) and t € (0,5) where 6 := min{d; | i € Io(&,§)}. This

Y
S|
means (Z,9) +tw € A forall ¢ € (0,0), sow € I'a(&,9). Since w € ( U 861/1-(95,3])) was

i€lo(2,9)
arbitrary chosen, we have proved that

(U on@n) cra@.
i€lo(2,9)

Consequently,

o > A A © T /2 ~\ A A
(U ow@n) =( U ow@n) STad) =Tal@9),
i€10(%,9) i€lo(%,9)
where the final equality holds due to the closedness of 'y (&, §). The above inclusion and the closedness
of cone( U 0°v;(#, gj)) conclude that CQ2 holds at (&, ), as required. O
i€Io(2,9)

The theorem presented below is an immediate consequence of Theorem 6, and Theorems 8-10, and
the fact that for convex MGSIPs, the value function yu(-) is convex refer to [16] for further details).

Theorem 11. Assuming the standing assumptions, let & be a properly efficient solution of a convex
MGSIP, and suppose that one of following statements is true:

e FSCQ holds at (Z, §) and the set-valued mapping ¥¢(+) is inner semi-continuous at (Z, ).
e SSCQ holds at (, §).

Then, there exist some \; > 0 for j € J, as well as a®) ¢ K(&,9)and By > 0forl =1,...,n+1,

such that
n+1

P
00 € N0p;(#) — Y B0 L(#,5, "),
j=1 /=1

P n+1

N+ B=1.
0

=1

Jj=1

Finally, we note that the theorem above represents a generalization of first-order optimality condi-
tions for smooth convex GSIPs, proved in [25, 28].
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5 Conclusion

This paper is focused on the analysis of non-smooth multi-objective generalized semi-infinite program-
ming problems (MGSIP), where all functions involved are assumed to be locally Lipschitz. The proper-
ties of the value function of MGSIP have been investigated, and a Mangasarian-Fromovitz type constraint
qualification for MGSIP has been introduced in terms of Clarke subdifferential. An upper bound for the
subdifferential of the value function of MGSIP has been derived, and optimality conditions have been
established for a properly efficient solution of MGSIP.
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