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1 Introduction

In this paper, we address the problem of multi-objective generalized semi-infinite programming
(MGSIP). The MGSIP can be formulated as follows:

(MGSIP) : inf φ(x) := (φ1(x), . . . , φp(x))

s.t. x ∈ 𝟋 :=
{
x ∈ Rn | ψ(x, y) ≥ 0, for all y ∈ Σ(x)

}
,

where the index set is defined as:

Σ(x) :=
{
y ∈ Rm | νi(x, y) ≤ 0, for all i ∈ I

}
,

where the appearing functions φj : Rn → R as j ∈ J := {1, . . . , p} and ψ, νi : Rn ×
Rm → R as i ∈ I := {1, . . . , q} are assumed to be locally Lipschitz. Additionally, the set-
valued mapping x 7→ Σ(x) is uniformly bounded, meaning that for each x0 ∈ 𝟋 there exists
a neighborhood U of x0 such that the set

⋃
x∈U Σ(x) is bounded. This assumption implies

that the mapping x 7→ Σ(x) is compact-valued and upper semi-continuous at each x0 ∈ 𝟋
(see Proposition 2.5.21 in [5]). We recall the definition of upper semi-continuity of set-valued
mapping in Section 2. Throughout the paper, these assumptions are consistently maintained.
In the case where the functions φj , ψ, and νi as (i, j) ∈ I × J are regular or convex on
their domains, the MGSIP is referred to as regular or convex MGSIP, respectively. Smooth
generalized semi-infinite programming (GSIP) is a special case of MGSIP when p = 1 and all
the functions involved are smooth. GSIP has found applications in various fields such as design
problems, robot maneuverability problems, reverse Chebyshev approximation problems, and
robust optimization (see [11, 14]). Previousworks have studied first-order optimality conditions
of the smooth GSIPs [28, 29, 30, 32].

When p = 1 and the appearing functions are convex (resp. locally Lipschiz), the MGSIP
coincides with convex GSIP (resp. nonsmooth GSIP), which have been analyzed in [16] (resp.
[18]). For the case where the functions φ and ψ are differences of convex functions, the MGSIP
reduces to DC GSIP for which constraint qualifications and optimality conditions have been
presented in [15] (resp. [3, 12, 18, 27]).

Motivated by the above, it is both useful and interesting to study optimality conditions
for MGSIPs with p > 1. While necessary first-order conditions have been addressed for the
continuously differentiable case in [31], our current knowledge indicates that no efforts have
been made to address the non-smooth case. Therefore, the primary objective of this paper
is to fill this gap. Specifically, we introduce a constraint qualification and present optimality
conditions for properly efficient solutions of non-smooth regular MGSIPs.

We organize the paper as follows. In the next section, we provide the necessary notations
and preliminaries that will be used throughout the paper. Section 3 is devoted to investigat-
ing first-order necessary optimality conditions for non-smooth regular MGISPs. In Section 4,
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we provide several applications of the derived results to convex MGSIP. Finally, Section 5
concludes this paper.

2 Preliminaries

This section presents introductory material on convex analysis and non-smooth analysis, which
are widely used in the subsequent discussions. For further details and additional resources,
we recommend the following books written by Rockafellar and Wets [24], Hiriart-Urruty and
Lemarechal [13], and Clarke [6].

Given a nonempty set Y ⊆ Rn, the notations Y , conv(Y ), and cone(Y ) represent the
closure of Y , the convex hull of Y , and the convex cone generated by Y (including the origin),
respectively. The zero vector in Rn is denoted by 0n, and the standard inner product of x and y
∈ Rn is denoted by 〈x, y〉. Let us define:

Y ⊙ :=
{
x ∈ Rn | 〈x, y〉 ≤ 0, ∀y ∈ Y

}
,

Y ⊖ :=
{
x ∈ Rn | 〈x, y〉 < 0, ∀y ∈ Y

}
.

The validity of the following equalities can be easily verified:

Y ⊙ =
(
conv(Y )

)⊙
, and Y ⊖ =

(
conv(Y )

)⊖
.

Furthermore, it is evident that if Y ⊖ 6= ∅, then Y ⊖ = Y ⊙.

Theorem 1. [13, 24] Let Y ⊆ Rn be a compact set. Then,

i. conv(Y ) is compact.

ii. cone(Y ) is closed, provided that 0n /∈ conv(Y ).

Theorem 2. [13, 24] Let {Yℓ | ℓ ∈ L} be an arbitrary collection of nonempty convex sets in
Rn and let Y = conv

( ⋃
ℓ∈L

Yℓ

)
. Then, every non-zero vector in Y can be expressed as a convex

combination of n+ 1 or fewer linearly independent vectors, each belonging to a different Yℓ.

Let f : Rn → R be a locally Lipschitz function and x̂ ∈ Rn. The generalized Clarke
directional derivative of f at x̂ in the direction d ∈ Rn is defined by

f◦(x̂; d) := lim sup
y→x̂, t↓0

f(y + td)− f(y)

t
,

and the Clarke subdifferential of f at x̂ is defined as:

∂cf(x̂) := {ξ ∈ Rn | f◦(x̂; d) ≥ 〈ξ, d〉, ∀d ∈ Rn}.
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We say that f is regular at x̂ if

f◦(x̂; d) = f ′(x̂, d), ∀d ∈ Rn,

where f ′(x̂, d) denotes the classical directional derivative of f at x̂ in the direction d, i.e.,

f ′(x̂, d) := lim
t→0+

f(x̂+ td)− f(x̂)

t
.

It is known from [6] that the Clarke sub-differential of a locally Lipschitz function at each
point is always a non-empty convex compact set. Moreover, if the function f(·) is continuously
differentiable at x̂, then ∂cf(x̂) = {∇f(x̂)}, where ∇f(x̂) denotes the gradient of f at x̂). If
the function f(·) is convex, then ∂cf(x̂) = ∂f(x̂), where ∂f(x̂) denotes the sub-differential of
f at x̂ in the convex analysis sense:

∂f(x̂) := {ξ ∈ Rn | f(y)− f(x̂) ≥ 〈ξ, y − x̂〉, ∀y ∈ Rn}.

A locally Lipshitz function f : Rn → R is called Clarke-convex (denoted C-convex) at
x̂ ∈ Rn if for each ξ ∈ ∂cf(x̂) the following inequality holds:

f(y)− f(x̂) ≥ 〈ξ, y − x̂〉, ∀y ∈ Rn.

The properties and applications of C-convex functions in non-smooth optimization can be
found in [17]. Hereafter, we will use the following important relations for two locally Lipschitz
functions f1, f2 : Rn → R:

f◦i (x̂; d) = max{〈ζ, d〉 | ζ ∈ ∂cfi(x̂)}, i ∈ {1, 2},

∂c
(
max{f1, f2}

)
(x̂) ⊆ conv

(
∂cf1(x̂) ∪ ∂cf2(x̂)

)
, (1)

∂c
(
α1f1 + α2f2

)
(x̂) ⊆ α1∂

cf1(x̂) + α2∂
cf2(x̂), ∀α1, α2 ∈ R.

Furthermore, if f1, f2 are regular at x̂ and α1, α2 are non-negative, then α1f1 + α2f2 is
also regular at x̂, and equality holds in the above inequalities. For a locally Lipschitz function
ψ : Rn×Rm → R and a point (x̂, ŷ) ∈ Rn×Rm, let ∂cxψ(x̂, ŷ) and ∂cyψ(x̂, ŷ) denote the partial
Clarke sub-differential of ψ(·, ·) at (x̂, ŷ), which are defined as ∂cψ(·, ŷ)(x̂) and ∂cψ(x̂, ·)(ŷ),
respectively.

Theorem 3. [6] If ψ : Rn × Rm → R is regular at (x̂, ŷ), then

∂cψ(x̂, ŷ) ⊆ ∂cxψ(x̂, ŷ)× ∂cyψ(x̂, ŷ).

Let Y ⊂ Rn and x̂ ∈ Y be given. The Clarke tangent cone of Y at x̂ is defined as:

ΓY (x̂) := {u ∈ Rn | d◦Y (x̂;u) = 0},

where dY (x) = infy∈Y ‖x− y‖ is distance function related to Y . It is worth noting that ΓY (x̂)

is always a closed convex cone. The Clarke normal cone of Y at x̂ is defined by

NY (x̂) :=
(
ΓY (x̂)

)⊙
.
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Theorem 4. [6] Let Y ⊂ Rn and φ be a locally Lipschitz function from Rn to R. Suppose that
φ attains its minimum on Y at x̂, then

0n ∈ ∂cφ(x̂) +NY (x̂).

We require the following definition, which is extensively used in this paper.

Definition 1. For a set-valued mapping F : Rn ⇒ Rm, and a point x̂ ∈ Rn with F (x̂) 6= ∅:

• F is said to be inner semi-continuous at (x̂, ŷ) in

gph(F ) := {(u, v) ∈ Rn × Rm | v ∈ F (u)},

if for every sequence xk → x̂ as k → ∞ with F (xk) 6= ∅ for k ∈ N, there exists a
sequence yk ∈ F (xk) as k ∈ N converging to ŷ.

• F said to satisfy the Lipschitz-like property (or Aubin property) around the point (x̂, ŷ) ∈
gph(F ) if there exist neighborhoods U of x̂ and V of ŷ, and a constant κ ≥ 0 such that

F (x) ∩ V ⊂ F (u) + κ‖x− u‖B, for all x, u ∈ U,

where B denotes the closed unit ball of Rm.

• F is said to be upper semi-continuous (u.s.c) at x̂ if for every sequence xk → x̂ as k → ∞
and for every open set V ⊆ Rm with F (x̂) ⊆ V , there exists a positive number κ such
that F (xk) ⊆ V for all k ≥ κ.

3 Necessary Optimality Conditions

In this section, we recall our standing assumptions made throughout the paper:

• The appearing functions φj , ψ, and νi for (i, j) ∈ I×J are locally Lipschitz and regular
on Rn.

• The index set I is finite.

• The set-valued mapping x 7→ Σ(x) is uniformly bounded.

We now provide the following definition, which is taken from [9].

Definition 2. A feasible point x̂ ∈ 𝟋 is called a properly efficient solution to MGSIP if there
exist positive scalars γj > 0 for j ∈ J such that

p∑
j=1

γjφj(x̂) ≤
p∑

j=1

γjφjx), ∀x ∈ 𝟋.
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For x̂ ∈ 𝟋, we define the index set of active constraints and the lower-level problem at x̂
as follows:

Σ0(x̂) := {y ∈ Σ(x̂) | ψ(x̂, y) = 0},
min ψ(x̂, y), subject to y ∈ Σ(x̂).

(2)

Furthermore, the set (which may be empty) of active inequalities of Problem (2) at each ŷ ∈
Σ(x̂) is denoted by I0(x̂, ŷ):

I0(x̂, ŷ) := {i ∈ I | νi(x̂, ŷ) = 0}.

Associated with the lower-level problem (2) is its optimal value function

µ(x) :=


inf
{
ψ(x, y) | y ∈ Σ(x)

}
, if Σ(x) 6= ∅,

+∞, if Σ(x) = ∅.

(3)

The Lagrangian of the lower-level problem is defined as:

L(x, y, α) := ψ(x, y) +

q∑
i=1

αiνi(x, y),

where α := (α1, . . . , αq) ∈ Rq and αi ≥ 0 for all i ∈ I . It is well known from [6] that for
ŷ ∈ Σ0(x̂), the corresponding set of Karush-Kuhn-Tucker (KKT in brief) multipliers, denoted
byK(x̂, ŷ):

K(x̂, ŷ) :=
{
α ∈ Rq | 0m ∈ ∂cyL(x̂, ŷ, α), αiνi(x̂, ŷ) = 0, ∀ i ∈ I

}
,

is nonempty if the following constraint qualification (CQ1) holds:

(ρ, 0m) ∈
∑

i∈I0(x̂,ŷ)

αi∂
cνi(x̂, ŷ)

αi ≥ 0, ∀i ∈ I0(x̂, ŷ)

 =⇒ αi = 0, ∀i ∈ I0(x̂, ŷ).

Remark 1. If all the lower-level constraint functions νi for i ∈ I are continuously differen-
tiable, we can decompose the full derivative into the partial derivatives as follows:

∇νi(x̂, ŷ) = ∇xνi(x̂, ŷ)×∇yνi(x̂, ŷ), ∀i ∈ I0(x̂, ŷ),

In this case, the constraint CQ1 is equivalent to the following implication:∑
i∈I0(x̂,ŷ)

αi∇yνi(x̂, ŷ) = 0n, αi ≥ 0 =⇒ αi = 0, ∀ i ∈ I0(x̂, ŷ).



In
Pr
es
s

Hojatifard, A. A., Kanzi, N., Farahmand Rad, Sh. 7

By applying the Gordan alternative theorem (see [4]), we conclude that the above implication
is equivalent to Cottle constraint qualification for the lower-level problem (2) at ŷ, which can
be expressed as: {

z ∈ Rm | 〈z,∇yνi(x̂, ŷ)〉 < 0, i ∈ I0(x̂, ŷ)
}
6= ∅.

Remark 2. Due to the continuity of functions νi for i ∈ I , the upper semi-continuity of the
mapping Σ, and [1, Proposition 1.7], we can conclude that the set-valued mapping Σ(·) is
compact-valued and the optimal valued function µ(·) is lower semi-continuous at x̂. As a result,
the infimum in (3) is attained.

Theorem 5. In addition to the standing assumptions, let us suppose that the set-valued mapping
Σ0(·) is inner semi-continuous at (x̂, ŷ) for some x̂ ∈ 𝟋 and ŷ ∈ Σ0(x̂). If CQ1 holds at (x̂, ŷ),
then we get:

∂cµ(x̂) ⊆
⋃

α∈K(x̂,ŷ)

∂cxL(x̂, ŷ, α).

Proof. Firstly, according to [20, Corollary 4.43] and under the assumption of satisfying CQ1,
we can deduce that the set-valued mapping Σ(·) is Lipschitz-like around (x̂, ŷ). Therefore,
[21, Theorem 5.2)] implies that the marginal function µ(·) is locally Lipschitz (not necessarily
regular) around x̂, and hence, the left side of the above inclusion is meaningful.

Secondly, by utilizing the inner semi-continuity of Σ0(·) and the satisfaction of CQ1 at
(x̂, ŷ), we can conclude from [22, Theorem 8] the following upper estimate of the Clarke sub-
differential of the value function µ(·) at x̂:

∂cµ(x̂) ⊆
⋃

(α1,...,αq)

{
u ∈ Rn | (u, 0m) ∈ ∂cψ(x̂, ŷ) +

q∑
i=1

αi∂
cνi(x̂, ŷ),

αiνi(x̂, ŷ) = 0, αi ≥ 0 ∀ i ∈ I
}
.

Since the functions ψ and νis for i ∈ I are assumed to be regular, the above inclusion
implies that

∂cµ(x̂) ⊆
⋃

α:=(α1,...,αq)

{
u ∈ Rn | (u, 0m) ∈ ∂cL(x̂, ŷ, α), αiνi(x̂, ŷ) = 0, ∀ i ∈ I

}
. (4)

Finally, we can establish the following inclusion based on the regularity of L and Theorem
3:

∂cL(x̂, ŷ, α) ⊆ ∂cxL(x̂, ŷ, α)× ∂cyL(x̂, ŷ, α).

Thus, from (u, 0m) ∈ ∂cL(x̂, ŷ, α) and αiνi(x̂, ŷ) = 0 (i ∈ I), we can conclude that
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

u ∈ ∂cxL(x̂, ŷ, α)

0m ∈ ∂cyL(x̂, ŷ, α)

αiνi(x̂, ŷ) = 0, ∀i ∈ I

 =⇒ α ∈ K(x̂, ŷ)


=⇒ u ∈

⋃
α∈K(x̂,ŷ)

∂cxL(x̂, ŷ, α).

Therefore, the above relation and (4) imply that

∂cµ(x̂) ⊆
⋃
α

{
∂cxL(x̂, ŷ, α) | α ∈ K(x̂, ŷ)

}
=

⋃
α∈K(x̂,ŷ)

∂cxL(x̂, ŷ, α),

as required.

The following example illustrates that the inner semi-continuity assumption of the set-
valued mapping Σ0(·) in Theorem 5 can be held at certain points, such as (x̂, ŷ), while it can
be invalid at other points, such as (x̃, ỹ).

Example 1. Let us consider the following functions:

ψ(x, y) = min {2− y1, 2 + y1, 2− y2, 2 + y2} ,

ν1(x, y) = (y1 − x1)
2 + (y2 − x2)

2 − 1.

This results in the set 𝟋 = [−1, 1]× [−1, 1]. Choosing x̂ = (1, 1) and x̃ = (1, 12), we have:

Σ0(x̃) =
{
y ∈ R2 | ψ(x̃, y) = 0, (y1 − 1)2 + (y2 −

1

2
)2 ≤ 1

}
= {(2, 1

2
)},

Σ0(x̂) =
{
y ∈ R2 | ψ(x̂, y) = 0, (y1 − 1)2 + (y2 − 1)2 ≤ 1

}
= {(2, 1), (1, 2)}.

Considering x̃: Since Σ0(x̃) is singleton, we can conclude thatΣ0 is inner semi-continuous
at (x̃, ỹ) with ỹ = (2, 12).

Considering x̂: Put ŷ(1) = (1, 2) and ŷ(2) = (2, 1). Since there exists a sequence{
(1, 1− 1

k
)
}∞
k=1

,

converging to x̂ as k → ∞, and

Σ0

(
(1, 1− 1

k
)
)
=
{
(2, 1− 1

k
)
}
→ (2, 1) 6= ŷ(1),

we can conclude that the mappingΣ0(·) is not inner semi-continuous at (x̂, ŷ(1)). Similarly, the
sequence

{
(1− 1

k , 1)
}∞
k=1

demonstrates that Σ0(·) is not inner semi-continuous at (x̂, ŷ(2)), as

Σ0

(
(1− 1

k
, 1)
)
=
{
(1− 1

k
, 2)
}
→ (1, 2) 6= ŷ(2).

The first-order optimality condition for regular MGSIP is stated as follows:
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Theorem 6. In addition to under the standing assumptions, let x̂ be a properly efficient solution
of regular (MGSIP) and CQ1 holds at (x̂, ŷ) for some ŷ ∈ Σ0(x̂). If the set-valued mapping
Σ0(·) is inner semi-continuous at (x̂, ŷ), then there exist non-negative scalars λj ≥ 0 as j ∈ J ,
and α(ℓ) ∈ K(x̂, ŷ) and βℓ ≥ 0 for ℓ = 1, . . . , n+ 1, such that the following system holds:

0n ∈
p∑

j=1

λj∂
cφj(x̂)−

n+1∑
ℓ=1

βℓ∂
c
x L(x̂, ŷ, α(ℓ)),

p∑
j=1

λj +
n+1∑
ℓ=1

βℓ = 1.

(5)

Proof. Since x̂ is a properly efficient solution of MGSIP, we can find some γj > 0 for j ∈ J

such that x̂ is a minimizer of
∑p

j=1 γjφj(x) on 𝟋.
Case 1: If µ(x̂) = 0, then we consider the following function:

Ψ(x) := max
{ p∑

j=1

γjφj(x)−
p∑

j=1

γjφj(x̂), −µ(x)
}
.

If x∗ /∈ 𝟋, there exist some y∗ ∈ Σ(x∗) with νi(x∗, y∗) < 0, and hence −µ(x∗) > 0.
Therefore, Ψ(x∗) > 0.

If x∗ ∈ 𝟋, there exists
p∑

j=1

γjφj(x
∗)−

p∑
j=1

γjφj(x̂) ≥ 0 due to the proper efficiency of x̂,

and so Ψ(x∗) ≥ 0. Hence, we have

Ψ(x) ≥ 0, ∀x ∈ Rn, and Ψ(x̂) = 0.

This means that x̂ is a global minimizer of Ψ(·), and therefore, 0n ∈ ∂cΨ(x̂) by Theorem 4.
By using (7) and Theorem 5, we obtain:

∂cΨ(x̂) ⊆ conv

(
−

⋃
α∈K(x̂,ŷ)

∂cxL(x̂, ŷ, α) ∪ ∂c
( p∑

j=1

γjφj

)
(x̂)

)
,

which implies

0n ∈ conv

(
−

⋃
α∈K(x̂,ŷ)

∂cxL(x̂, ŷ, α) ∪ ∂c
( p∑

j=1

γjφj

)
(x̂)

)
.

Based on the above inclusion, Theorem 2, and the convexity of the Clarke subdifferential, there
exist some non-negative scalars τ0, . . . , τn+1 and some vectors α(1), . . . , α(n+1) in K(x̂, ŷ)

such that
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

0n ∈ τ0∂
c
( p∑

j=1

γjφj

)
(x̂)−

n+1∑
ℓ=1

τℓL(x̂, ŷ, α
(ℓ)),

τ0 +
n+1∑
ℓ=1

τℓ = 1,

i.e., 

0n ∈
p∑

j=1

τ0γj∂
cφj(x̂)−

n+1∑
ℓ=1

τℓL(x̂, ŷ, α
(ℓ)),

τ0 +

n+1∑
ℓ=1

τℓ = 1.

(6)

Our assertion is that

A :=

p∑
j=1

τ0γj +
n+1∑
ℓ=1

τℓ 6= 0.

Indeed, if τ0 = 0, then A =
n+1∑
ℓ=1

τ (ℓ) = 1 according to (6). If τ0 6= 0, then
p∑

j=1

τ0γj > 0 due to

the positivity of γj as j ∈ J , resulting in A 6= 0. By defining

λj :=
τ0γj
A

, j ∈ J, and βℓ :=
τℓ
A
, ℓ = 1, . . . , n+ 1,

we can deduce from (6) that

0n ∈
p∑

j=1

λj∂
cφj(x̂)−

n+1∑
ℓ=1

βℓ∂
c
x L(x̂, ŷ, α(ℓ)),

p∑
j=1

λj +
n+1∑
ℓ=1

βℓ = 1.

Case 2: If µ(x̂) > 0, then x̂ is an interior point of 𝟋 because of the lower semi-continuity of
µ(·). Therefore, based on Theorem 4, we can conclude that

0n ∈ ∂c
( p∑

j=1

γjφj

)
(x̂) =

p∑
j=1

γj∂
cφj(x̂),

which can be expressed in the form (5) by setting

λj :=
γj
p∑

j=1

γj

, j ∈ J, and βℓ = 0, ℓ = 1, . . . , n+ 1.

The proof is complete.
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The following example illustrates that the assumption of inner semi-continuity of the set-
valued function Σ0(·) cannot be neglected in Theorem 6.

Example 2. Consider the problem MGSIP with the following data:

φ(x) = −x1 − x2

ψ(x, y) = min {2− y1, 2 + y1, 2− y2, 2 + y2} ,

ν1(x, y) = (y1 − x1)
2 + (y2 − x2)

2 − 1.

Since 𝟋 = [−1, 1]× [−1, 1], the unique optimal solution of the problem is x̂ = (1, 1). As
demonstrated in Example 1,

Σ0(x̂) =
{
ŷ(1), ŷ(2)

}
, ŷ(1) = (1, 2), ŷ(2) = (2, 1), I0(x̂, ŷ

(1)) = I0(x̂, ŷ
(2)) = {1}.

The set-valued mapping Σ(·) is evidently uniformly bounded, and CQ1 is satisfied at (x̂, ŷ(1))
and (x̂, ŷ(2)). A brief calculation shows that

K(x̂, ŷ(1)) =

{
1

2

}
, and ∂cxL(x̂, ŷ

(1),
1

2
) = {(0,−1)}.

Thus, it is evident that there are no scalars λ1 and β1 as stated in Theorem 6 satisfying (5).
Similarly, it shows that (5) is not valid at ŷ(2).

Note that, as demonstrated in Example 1, the set-valued mapping Σ0(·) is not inner semi-
continuous at (x̂, ŷ(1)) and (x̂, ŷ(2)).

It is worth mentioning that Theorem 6 has a very restrictive assumption, which is the inner
semi-continuity of the set-valued mapping Σ0(·) at the point (x̂, ŷ). Several conditions can
ensure this inner semi-continuity, some of which are as follows:

1. Σ0(x̂) = {ŷ} is a singleton, while the map Σ0 may be multi-valued at any point other
than x̂ (see [7]).

2. The lower-level constraint functions νi(x, y), where i ∈ I , are weakly analytic according
to Klatte and Kummer (see [2]).

3. The lower-level objective function ψ(x, y) is strictly convex with respect to y for every
x ∈ 𝟋 (see [8, 23]).

The proof of Theorem 6 relies on the upper estimate of ∂cµ(x̂), as presented in Theo-
rem 5, and this estimate is based on the inner semi-continuity of Σ0(·) at (x̂, ŷ). It is worth
mentioning that there are special cases where can calculate ∂cµ(x̂) without requiring the inner
semi-continuity of Σ0(·) at (x̂, ŷ).
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1. If all the functions ψ(x, y) and νi(x, y), where i ∈ I , are continuously differentiable, and
the Cottle constraint qualification is satisfied at (x̂, ŷ), then according to [10], we have:

∂cµ(x̂) ⊆ conv

({
∇xL(x̂, y, α) | y ∈ Σ0(x̂), α ∈ K(x̂, y)

})
.

2. If all the functions ψ(x, y) and νi(x, y), where i ∈ I , are convex, and the Farkas-
Minkowski property holds at (x̂, ŷ) in sense of [16], then µ(·) is a convex function, and
we have (see [16]):

∂µ(x̂) ⊆
⋃{

∂xL(x̂, y, α) | α ∈ K(x̂, y)
}
.

3. All the functions ψ(x, y) and νi(x, y), where i ∈ I , are D.C. (difference of convex func-
tions), and the closed qualification condition defined in [15] holds at (x̂, ŷ), then the
Mordukhovich subdifferential of µ(·) at x̂, denoted by ∂Mµ(x̂), is estimated as follows
(see [15]):

∂Mµ(x̂) ⊆
⋃

α∈K(x̂,y)

∂Mx L(x̂, y, α).

In the following, we will introduce another class of problems where ∂cµ(x̂) can be estimated
without the inner semi-continuity of Σ0(·). We will introduce another constraint qualification.

Definition 3. We say that MGSIP satisfies CQ2 at (x̂, ŷ) ∈ Λ if the cone
( ⋃

i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
)

is closed and ( ⋃
i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
)⊙

⊆ ΓΛ(x̂, ŷ), (7)

where,

Λ :=
{
(x, y) ∈ Rn × Rm | x ∈ 𝟋 and y ∈ Σ(x)

}
=
⋃
x∈𝟋

(
{x} × Σ(x)

)
.

Observe that CQ2 was initially introduced in [13] in the context of convex optimization
problems. It was later extended to the framework of convex semi-infinite programming prob-
lems (SIP) in [19] and extensively studied for non-convex SIPs in [17].

Remark 3. The inclusion (7) is referred to as the Abadie constraint qualification. CQ2, also
known as the basic constraint qualification, is equivalent to the following inclusion (refer to
[17] for proof and more details).

NΛ(x̂, ŷ) ⊆ cone
( ⋃

i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
)
.
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Theorem 7. Under the standing assumptions, let us assume that the regular MGSIP satisfies
CQ2 at (x̂, ŷ) for some ŷ ∈ Σ0(x̂). If µ(·) is a C-convex function, then

∂cµ(x̂) ⊆
⋃

α∈K(x̂,ŷ)

∂cxL(x̂, ŷ, α).

Proof. Let ξ ∈ ∂cµ(x̂) be arbitrarily chosen. Due to the C-convexity assumption of µ(·), the
definition of µ(·), and ŷ ∈ Σ0(x̂), we have

µ(x) ≤ ψ(x, y), ∀x ∈ 𝟋, ∀y ∈ Σ(x),

µ(x̂) = 0 = ψ(x̂, ŷ),

µ(x)− µ(x̂) ≥ 〈ξ, x− x̂〉 , ∀x ∈ Rn,

which implies

ψ(x, y)− ψ(x̂, ŷ) ≥ 〈ξ, x〉 − 〈ξ, x̂〉 , ∀x ∈ 𝟋, ∀y ∈ Σ(x) =⇒

ψ(x, y)− 〈ξ, x〉 ≥ ψ(x̂, ŷ)− 〈ξ, x̂〉 , ∀x ∈ 𝟋, ∀y ∈ Σ(x).

This means that (x̂, ŷ) is a minimizer of ψ(x, y)− 〈ξ, x〉 on Λ, and thus

0n+m ∈ ∂c
(
ψ(x, y)− 〈ξ, x〉

)
(x̂, ŷ) +NΛ(x̂, ŷ).

From this, the CQ2 assumption, and Remark 3, we obtain

(ξ, 0m) ∈ ∂ψ(x̂, ŷ) + cone
( ⋃

i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
)
.

Thus, we can find non-negative numbers γi ≥ 0 (for i ∈ I0(x̂, ŷ)), such that

(ξ, 0m) ∈ ∂cψ(x̂, ŷ) +
∑

i∈I0(x̂,ŷ)

γi∂
cνi(x̂, ŷ).

By defining αi := γi for i ∈ I0(x̂, ŷ) and αi := 0 for i ∈ I \ I0(x̂, ŷ), and introducing
α := (α1, . . . , αq) ∈ Rq, we can conclude from regularity of functions ψ and νi for i ∈ I , and
the inclusion mentioned above that

(ξ, 0m) ∈ ∂cL(x̂, ŷ, α) ⊆ ∂cxL(x̂, ŷ, α)× ∂cyL(x̂, ŷ, α)

αiνi(x̂, ŷ) = 0, ∀i ∈ I,

This implies that
xi ∈

⋃
α∈K(x̂,ŷ)

∂cxL(x̂, ŷ, α).
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Since ξ was chosen as arbitrary from ∂cµ(x̂), we have

∂cµ(x̂) ⊆
⋃

α∈K(x̂,ŷ)

∂cxL(x̂, ŷ, α),

and the proof is complete.

Note that providing sufficient conditions for C-convexity of µ(·) is an important and sepa-
rate research topic that may be of interest to researchers.

Theorem 8. Under the standing assumptions, let x̂ be a properly efficient solution of regular
MGSIP, and assume that CQ2 holds at (x̂, ŷ) for some ŷ ∈ Σ0(x̂). If µ(·) is a C-convex
function, then there exist λj ≥ 0 for j ∈ J , as well as α(ℓ) ∈ K(x̂, ŷ) and βℓ ≥ 0 for
ℓ = 1, . . . , n+ 1, such that

0n ∈
p∑

j=1

λj∂
cφj(x̂)−

n+1∑
ℓ=1

βℓ∂
c
x L(x̂, ŷ, α(ℓ)),

p∑
j=1

λj +
n+1∑
ℓ=1

βℓ = 1.

Proof. Employing Theorem 7 and the following proof of Theorem 6, we obtain the desired
result.

To illustrate the significance of Theorem 8, we provide an example.

Example 3. Consider the problem (MGSIP) with the following data:

φ1(x) = |x|, φ2(x) = x2,

ψ(x, y) = x− 2y,

ν1(x, y) = |x|+ y + |y|, ν2(x, y) = x, ν3(x, y) = x2 + 3y,

Since the above functions are linear or convex, they are regular and C-convex. Furthermore,
x̂ = 0 is an optimal solution to the problem, and we have:

Λ = {0} × (−∞, 0],

Σ0(x̂) = {y ∈ R− | 0− 2y = 0} = {0} =⇒ ŷ = 0,

I0(02) = {1, 2},

∂cν1(02) = [−1, 1]× [0, 2], ∂cν2(02) =
{
(1, 0)

}
.

Consequently,

NΛ(02) = R× [0,+∞) = cone
(
∂cν0(02) ∪ ∂cν2(02)

)
,
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and thus, the problem satisfies the CQ2 at (x̂, ŷ). Since

L(x, y, α) = x− 2y +

3∑
i=1

αiνi(x, y),

we have 
∂cxL(x̂, ŷ, α) = {1}+ α1[−1, 1] + α2{1}+ α3{0}

∂cyL(x, y, α) = {−2}+ α1[0, 2] + α2{0}+ α3{3}.

Thus, α(1) := (1, 0, 0) ∈ K(x̂, ŷ), and with λ1 :=
1

2
, λ2 := 0, b1 :=

1

2
, we have


0 ∈ λ1[−1, 1] + λ2{0} − β1

(
{1}+ [−1, 1]

)
=

2∑
j=1

λj∂
cφj(x̂)− β1∂

c
xL(x̂, ŷ, α

(1)),

λ1 + λ2 + β1 = 1.

4 Application to Convex MGSIP

The Slater constraint qualification plays a significant role in the analysis of convex optimization
problems (refer to [13]). In the context of convex GSIPs, researchers have considered two types
of Slater constraint qualifications (see e.g., [26, 28].

Definition 4. For a convex MGSIP, we define the following:

(a) The problem satisfies the first Slater constraint qualification (FSCQ) at (x̂, ŷ) ∈ Λ if
there exists y∗ ∈ Σ(x̂) such that

νi(x̂, y
∗) < 0, for all i ∈ I0(x̂, ŷ).

(b) The problem satisfies the second Slater constraint qualification (SSCQ) at (x̂, ŷ) ∈ Λ if
there exists (x∗, y∗) ∈ Λ such that

νi(x
∗, y∗) < 0, for all i ∈ I0(x̂, ŷ).

The following two theorems establish the relationships between these Slater constraint qual-
ifications and CQ1 and CQ2.

Theorem 9. For convex (MGSIP), CQ1 holds at (x̂, ŷ) ∈ Λ if FSCQ is satisfied at there.
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Proof. Since FSCQ holds at (x̂, ŷ), there exists a vector y∗ ∈ Σ(x̂) such that νi(x̂, y∗) < 0 for
all i ∈ I0(x̂, ŷ). Thus,

〈ξi, y∗ − ŷ〉 ≤ νi(x̂, y
∗)− νi(x̂, ŷ)︸ ︷︷ ︸

=0

< 0, ∀i ∈ I0(x̂, ŷ), ξi ∈ ∂yνi(x̂, ŷ). (8)

Now, suppose that

(ρ, 0m) ∈
∑

i∈I0(x̂,ŷ)

βi∂νi(x̂, ŷ), and βi ≥ 0, ∀i ∈ I0(x̂, ŷ).

This inclusion, along with Theorem 3 concludes that

(ρ, 0m) ∈ ∂
( ∑

i∈I0(x̂,ŷ)

βi∂νi

)
(x̂, ŷ) ⊆ ∂x

( ∑
i∈I0(x̂,ŷ)

βi∂νi

)
(x̂, ŷ)× ∂y

( ∑
i∈I0(x̂,ŷ)

βi∂νi

)
(x̂, ŷ),

and so,
0m ∈ ∂y

( ∑
i∈I0(x̂,ŷ)

βi∂νi

)
(x̂, ŷ) =

∑
i∈I0(x̂,ŷ)

βi∂yνi(x̂, ŷ).

Hence, for each i ∈ I0(x̂, ŷ), we can find ξi ∈ ∂yνi(x̂, ŷ) such that∑
i∈I0(x̂,ŷ)

βiξi = 0m =⇒
∑

i∈I0(x̂,ŷ)

βi〈ξi, ŷ − y∗〉 = 〈0m, ŷ − y∗〉 = 0.

Owing to above equality, βi ≥ 0 for all i ∈ I0(x̂, ŷ), and (8), we conclude that βi = 0 for all
i ∈ I0(x̂, ŷ). Therefore, CQ1 holds at (x̂, ŷ).

Theorem 10. For convex (MGSIP), CQ2 holds at (x̂, ŷ) ∈ Λ if SSCQ holds at there.

Proof. Since SSCQ holds at (x̂, ŷ), there exists a vector (x∗, y∗) ∈ Λ such that νi(x∗, y∗) < 0

for all i ∈ I0(x̂, ŷ). From this and the definition of convex subdifferential, we obtain

〈ζi, (x∗, y∗)− (x̂, ŷ)〉 ≤ νi(x
∗, y∗)− νi(x̂, ŷ)︸ ︷︷ ︸

=0

< 0, ∀i ∈ I0(x̂, ŷ), ζi ∈ ∂νi(x̂, ŷ),

and thus

(x∗ − x̂, y∗ − ŷ) ∈
( ⋃

i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
)⊖

=⇒
( ⋃

i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
)⊖

6= ∅.

From this and (
conv

( ⋃
i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
))⊖

=
( ⋃

i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
)⊖
,

we deduce that
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(
conv

( ⋃
i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
))⊖

6= ∅ =⇒ 0n+m 6= conv
( ⋃

i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
)
.

The above relation, Theorem 1, and the compactness of
⋃

i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ) imply that

cone
( ⋃

i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
)
is closed.

On the other hand, let w ∈
( ⋃

i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
)⊖

be arbitrarily given. Thus, 〈w, ζi〉 < 0 for

all i ∈ I0(x̂, ŷ) and ζi ∈ ∂νi(x̂, ŷ). Therefore,

ν0
(
(x̂, ŷ);w

)
= max

ζi∈∂νi(x̂,ŷ)
〈w, ζi〉 < 0, ∀i ∈ I0(x̂, ŷ),

and thus, for each i ∈ I0(x̂, ŷ) there exists δi > 0 such that

νi
(
(x̂, ŷ) + tw

)
− νi(x̂, ŷ)︸ ︷︷ ︸

=0

< 0, ∀t ∈ (0, δi).

Hence, νi
(
(x̂, ŷ) + tw

)
< 0 for all i ∈ I0(x̂, ŷ) and t ∈ (0, δ) where δ := min{δi | i ∈

I0(x̂, ŷ)}. This means (x̂, ŷ) + tw ∈ Λ for all t ∈ (0, δ), so w ∈ ΓΛ(x̂, ŷ). Since w ∈( ⋃
i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
)⊖

was arbitrary chosen, we have proved that

( ⋃
i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
)⊖

⊆ ΓΛ(x̂, ŷ).

Consequently,( ⋃
i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
)⊙

=
( ⋃

i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
)⊖

⊆ ΓΛ(x̂, ŷ) = ΓΛ(x̂, ŷ),

where the final equality holds due to the closedness of ΓΛ(x̂, ŷ). The above inclusion and the
closedness of cone

( ⋃
i∈I0(x̂,ŷ)

∂cνi(x̂, ŷ)
)
conclude that CQ2 holds at (x̂, ŷ), as required.

The theorem presented below is an immediate consequence of Theorem 6, and Theorems
8-10, and the fact that for convex MGSIPs, the value function µ(·) is convex refer to [16] for
further details).

Theorem 11. Assuming the standing assumptions, let x̂ be a properly efficient solution of a
convex MGSIP, and suppose that one of following statements is true:

• FSCQ holds at (x̂, ŷ) and the set-valued mapping Σ0(·) is inner semi-continuous at (x̂, ŷ).

• SSCQ holds at (x̂, ŷ).
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Then, there exist some λj ≥ 0 for j ∈ J , as well as α(ℓ) ∈ K(x̂, ŷ) and βℓ ≥ 0 for ℓ =

1, . . . , n+ 1, such that

0n ∈
p∑

j=1

λj∂φj(x̂)−
n+1∑
ℓ=1

βℓ∂xL(x̂, ŷ, α
(ℓ)),

p∑
j=1

λj +
n+1∑
ℓ=1

βℓ = 1.

Finally, we note that the theorem above represents a generalization of first-order optimality
conditions for smooth convex GSIPs, proved in [25, 28].

5 Conclusion

This paper is focused on the analysis of non-smooth multi-objective generalized semi-infinite
programming problems (MGSIP), where all functions involved are assumed to be locally
Lipschitz. The properties of the value function of MGSIP have been investigated, and a
Mangasarian-Fromovitz type constraint qualification for MGSIP has been introduced in terms
of Clarke subdifferential. An upper bound for the subdifferential of the value function of
MGSIP has been derived, and optimality conditions have been established for a properly ef-
ficient solution of MGSIP.
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