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Abstract. Fractional programming is a significant nonlinear planning
tool within operation research. It finds applications in diverse domains
such as resource allocation, transportation, production programming,
performance evaluation, and finance. In practical scenarios, uncer-
tainties often make it challenging to determine precise coefficients for
mathematical models. Consequently, utilizing indefinite coefficients
instead of definite ones is recommended in such cases. Grey systems
theory, along with probability theory, randomness, fuzzy logic, and
rough sets, is an approach that addresses uncertainty. In this study,
we address the problem of linear fractional programming with grey
coefficients in the objective function. To tackle this problem, a novel
approach based on the variable change technique proposed by Charnes
and Cooper, along with the convex combination of intervals, is em-
ployed. The article presents an algorithm that determines the solution
to the grey fractional programming problem using grey numbers,
thus capturing the uncertainty inherent in the objective function. To
demonstrate the effectiveness of the proposed method, an example
is solved using the suggested approach. The result is compared with
solutions obtained using the whitening method, employing Hu and
Wong’s technique and the Center and Greyness Degree Ranking
method. The comparison confirms the superiority of the proposed
method over the whitening method, thus it suggests that adopting the
grey system approach is preferable in such situations.
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1 Introduction

The fractional programming problem (FPP) is a significant nonlinear planning tool widely used
in operation research. While linear programming problems (LPP) are insufficient to explain
many real-world models, the linear fractional programming problem (LFPP) emerged as a
branch of nonlinear programming in the 1960s. LFPP is particularly suitable for optimizing
the efficiency of various activities, such as maximizing company profit per unit cost of man-
power, minimizing production cost per unit of product, or maximizing dietary calories per unit
cost. For more details, refer to [6, 9, 34]. Due to its practical application, LFPP has attracted
considerable attention from researchers [2, 3, 5, 8, 23, 36], who have proposed different meth-
ods to solve LFPP. Charnes and Cooper [5] introduced a variable change-based method. Bitran
and Novaes [3] presented an approach that updates the objective function and solves a sequence
of LPPs to tackle LFPP. Das and Mandal [12] employed various solving methods based on the
simplex method for LFPP.

In real-life scenarios, precise decision-making is often hindered by incomplete or inaccurate
information. In such cases, dealing with uncertainty using theories like fuzzy set theory (FST)
and grey system theory (GST) can be beneficial for expressing imprecise coefficients. It is cru-
cial to identify the uncertainty in the problem and apply these theories accordingly, considering
their specific characteristics in handling real data uncertainties. FST was first introduced by
Professor Zadeh [38]. Recently, researchers have shown interest in solving fuzzy linear frac-
tional programming problems (FLFPPs) [4, 7, 13, 14, 15, 16, 25, 29, 31]. Chinnadurai and
Muthokumar [8] proposed a fuzzy mathematical programming approach to solve the FLFPP.
Das et al. [15] developed an algorithm based on the multi-objective FPP for FLFPP. Srini-
vasan [35] investigated the FLFPP with fuzzy number coefficients and proposed an algorithm
utilizing ranking methods. However, when there is a scarcity of experts or limited experience,
making it difficult to obtain membership functions or gather sufficient data, FST may not apply
to solve FPPs with imprecise coefficients. In such cases, Deng introduced GST in 1982 [16].
The GST focuses on studying small samples and systems with limited information, where some
information is known while others are unknown. With its development, GST has become a dis-
tinct scientific branch encompassing systems analysis, modeling, prediction, decision-making,
control, and optimization techniques. The GST finds practical applications in solving real-
world problems in various fields, including social sciences, and engineering (e.g., metallurgy,
petroleum, chemical industry, electronics, lighting industries, energy sources, transportation,
pharmaceuticals, health and health).

The application of GST has resulted in significant economic and social benefits in society,
highlighting its wide-ranging utility, particularly in situations where available information is
incomplete or collected data is imprecise [22]. Currently, existing methods for tackling the
grey linear fractional programming problem (GLFPP) primarily rely on converting the grey
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parameters into exact ones via a whitening process, thereby transforming the problem into an
FPPwith precise parameters. However, thesemethods only yield exact solutions for the GLFPP.
Therefore, in this study, we propose a direct approach to address the uncertainty inherent in real-
world problems by leveraging the advantages of GST. In this method, the solution to the GLFPP
is expressed as grey numbers (GN), allowing for the representation of uncertainty within the
objective function, and subsequently reflected in the final result.

This paper is organized as follows: The second section presents an overview of GST and
relevant concepts essential to comprehend the paper. The third section introduces the FPP in
general and outlines Charnes and Cooper’s method for solving them. In the fourth section, the
GLFPP is introduced. The fifth section presents the proposed solution method for the GLFPP
and the corresponding algorithm. Furthermore, the sixth section, demonstrates the effectiveness
of the proposed method by solving an example using it, and the obtained results are compared
with those derived from solving the problem using the whitening method. Finally, the seventh
section provides the conclusion of the paper.

2 Grey Systems Theory

The GST is widely recognized as a significant scientific advancement in utilizing uncertain
information. This theory offers a novel approach for investigating problems characterized by
limited data and restricted information, resulting in high levels of inaccuracy. A grey system
refers to a system that encompasses uncertain information. Numerous researchers have been
drawn to the exploration of GST [10, 20, 28, 27, 26, 31, 32, 30, 33].

Definition 1. GN denotes an interval number with known upper and lower bounds, but its
location within these bounds remains uncertain [1]. Grey numbers find diverse applications in
various mathematical disciplines [19, 18, 21, 37].

Definition 2. The whitened GN⊗x ∈ [x, x̄] is denoted by the symbol⊗x̃ and can be computed
as follows:

⊗x̃ = αx+ (1− α)x, α ∈ [0, 1] , (1)

where α represents the weight employed for whitening the GN. When α = 1
2 , equal weight is

assigned to the lower and upper values of the interval, resulting in the whitened average with
equal weight [24].

Definition 3. For any IGN ⊗x ∈ [x, x], the center, ⊗x̂ and width, ⊗x′ are defined as
follows[18].

⊗x̂ =
x+ x

2
, ⊗x′ =

x− x

2
. (2)
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Definition 4. The relationships between interval grey numbers (IGN), pertaining to two GN
⊗x1 ∈ [x1, x1] and ⊗x2 ∈ [x2, x̄2], can be expressed through the following concepts [24]:

⊗ x1 +⊗x2 = [x1 + x2, x̄1 + x̄2] ,

⊗ x1 −⊗x2 = ⊗x1 + (−⊗ x2) = [x1 − x̄2, x̄1 − x2] , (3)

⊗ x1 ×⊗x2 = [min {x1x2, x̄1x̄2, x̄1x2, x1x̄2} ,max {x1x2, x̄1x̄2, x̄1x2, x1x̄2}] ,
⊗x1
⊗x2

= ⊗x1 ×⊗x2
−1 =

[
min

{
x1
x2

,
x1
x̄2

,
x̄1
x2

,
x̄1
x̄2

}
,max

{
x1
x2

,
x1
x̄2

,
x̄1
x2

,
x̄1
x̄2

}]
,

0 /∈ [x2, x̄2] .

2.1 Grey numbers ranking

The ranking of GN holds significant importance in decision-making and the practical applica-
tions of GST. Darvishi et al. [11] conducted a detailed comparison of GN. Several methods
have been proposed for ranking IGN, in the meantime.

2.1.1 Hu and Wang approach

Hu and Wang identified the limitations of existing methods for comparing IGN and introduced
a new order relationship as follows [17].
Let ⊗x = [x, x̄] and ⊗y =

[
y, ȳ

]
represent two IGN, with centers ⊗x̂ and⊗ŷ and widths ⊗x′

and ⊗y′, respectively. In this case, the order relationship based on the method proposed by Hu
and Wang can be expressed as follows:

1.⊗ x≤G ⊗ y ⇔

1)⊗ x̂ ̸= ⊗ŷ ⇒ ⊗x̂ < ⊗ŷ,

2)⊗ x̂ = ⊗ŷ ⇒ ⊗x′ ≥ ⊗y′,

2.⊗ x<G ⊗ y ⇔ (⊗x≤G ⊗ y, ⊗x ̸=G ⊗ y) .

The center and width of IGN are regarded as the expected value and uncertainty of the
parameters, respectively. Consequently, when the centers of IGN are equal, the widths of IGN
are employed for comparison.

Example 1. Compare IGN ⊗x = [−3,−1] and ⊗y = [2, 4] using Hu and Wang’s ranking
method. By calculating the centers of the given IGN, we obtain:

⊗ŷ = 3, ⊗x̂ = −2.

According to the first case, we have

⊗x̂ = −2 < ⊗ŷ = 3 ⇒ ⊗x = [−3,−1]≤G ⊗ y = [2, 4] .
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Example 2. Compare IGN⊗x = [1, 5] and⊗y = [2, 4] using Hu and Wang’s ranking method.
By calculating the centers and widths of the given IGN, we have:

⊗ ŷ = 3, ⊗x̂ = 3,

⊗ y′ = 1, ⊗x′ = 2.

According to the second case, we can obtain

⊗x̂ = 3 = ⊗ŷ = 3 , ⊗x′ = 2 ≥ ⊗ y′ = 1 ⇒ ⊗x = [1, 5]≤G ⊗ y = [2, 4] .

2.1.2 Center and degree of greyness of grey numbers approach

Definition 5. [20] The length of IGN ⊗x ∈ [x, x̄] is defined as:

µ (⊗x) = |x̄− x| . (4)

Definition 6. [20] With IGN background(Ω), the degree of greyness g0(⊗x) is introduced as
follows.

g0(⊗x) =
µ(⊗x)

µ(Ω)
.

Definition 7. [20] For IGN⊗x1, ⊗x2, we define their ranking based on the Center and degree
of greyness is defined as follows:

⊗x̂1 < ⊗x̂2 ⇒ ⊗x1<G ⊗ x2,

⊗x̂1 = ⊗x̂2 ⇒


if g0 (⊗x1) = g0 (⊗x2) ⇒ ⊗x1=G ⊗ x2

if g0 (⊗x1) < g0 (⊗x2) ⇒ ⊗x1>G ⊗ x2

if g0 (⊗x1) > g0 (⊗x2) ⇒ ⊗x1<G ⊗ x2

(5)

Example 3. Let us assume that the IGNs ⊗x1 = [−4,−2] , ⊗x2 = [1, 7] , ⊗x3 = [1, 5]

belong to the field Ω ∈ [−5, 20].
Calculate the measures of field Ω, ⊗x1, ⊗x2, ⊗x3 and

µ (Ω) = 25, µ (⊗x1) = 2, µ (⊗x2) = 6, µ (⊗x3) = 12,

respectively. The centers and the degrees of greyness of these three GN are as follows:

⊗ x̂1 = −3, ⊗x̂2 = 4, ⊗x̂3 = 4,

g0(⊗x1) =
µ(⊗x1)

µ(Ω)
=

2

25
= 0.08, g0(⊗x2) =

µ(⊗x2)

µ(Ω)
=

6

25
= 0.24,
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< g0(⊗x3) =
µ(⊗x3)

µ(Ω)
=

12

25
= 0.48.

The first mode:
⊗x̂1 = −3 < ⊗x̂2 = 4 ⇒ ⊗x1<G ⊗ x2.

The second mode:
⊗x̂2 = 4 = ⊗x̂3 = 4,

therefore,
g0(⊗x2) = 0.24 < g0(⊗x3)0.48 ⇒ ⊗x2>G ⊗ x3.

3 Fractional Programming Problem

The FPP is a topic extensively studied in operations research. It serves as a modeling tool for
real-world problems in various fields, such as business, economics, engineering, economics,
etc. In an FPP, the objective function is a ratio of two functions, typically nonlinear that needs
to be optimized. This ratio often represents the efficiency of a system.

Min(Max) W (x) =
f(x)

g(x)

s.t.

g (x) > 0,

x ∈ S = {x ∈ S0 ⊂ Rn : hj (x) ≤ 0, j = 1, . . . ,m} .

In [36], Stancu-Minassian conducted a thorough investigation into deficit planning, its ap-
plications, solution methods, and related issues. The LFPP is a special case of FPP. The general
form of an LFPP problem can be expressed as follows:

Min W (x) =
a1x1 + · · ·+ akxk + ak+1

c1x1 + · · ·+ ckxk + ck+1

s.t.

A1x1 + · · ·+Akxk ≤ b, (6)

x1 ≥ 0 , . . . , xk ≥ 0,

subject to c1x1+· · ·+ckxk+ck+1 > 0 for each for each(x1, . . . , xk) ∈ X , whereX represents
the feasible region of problem (6).

An LFPP can be transformed into a LFPP using the method proposed by Charnes and
Cooper’s [5].
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3.1 Charnes and Cooper’s method for solving the LFPP

Let us assume z = 1
c1x1+···+ckxk+ck+1

, in this case, Problem (6) transforms into the following
LPP.

Min W ′ (x) = a1x1z + · · ·+ akxkz + ak+1z

s.t.
c1x1z + · · ·+ ckxkz + ck+1z = 1,

A1x1 + · · ·+Akxk ≤ b,

x1 ≥ 0 , . . . , xk ≥ 0 , z ≥ 0.

(7)

By introducing yi = xiz for i = 1, . . . , k , Problem (7) takes the following form:

Min W ′ (x) = a1y1 + · · ·+ akyk + ak+1z

s.t.
c1y1 + · · ·+ ckyk + ck+1z = 1,

A1y1 + · · ·+Akyk ≤ bz,

y1 ≥ 0 , . . . , yk ≥ 0 , z ≥ 0.

(8)

In practical real-life scenarios, decisions are not always made based on for explicit data. In
such cases, uncertainty theories such as GST can be employed to represent imprecise coeffi-
cients.

4 Grey Linear Fractional Programming Problem

In general, the LFPP with grey coefficients in the objective function can be expressed in the
following form:

Min ⊗F=G

k∑
j=1

⊗ajxj+⊗aj+1

k∑
j=1

⊗cjxj+⊗cj+1

s.t.
k∑

j=1
Ajxj ≤ b,

xj ≥ 0 j = 1, . . . , k.

(9)

In other words,

Min ⊗F=G
⊗[a1,ā1]x1+···+⊗[ak,āk]xk+⊗[ak+1,āk+1]
⊗[c1,c̄1]x1+···+⊗[ck,c̄k]xk+⊗[ck+1,c̄k+1]

s.t.
A1x1 + · · ·+Akxk ≤ b,

x1 ≥ 0, . . . , xk ≥ 0,

(10)
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under the assumption ⊗ [c1, c̄1]x1 + · · · + ⊗ [ck, c̄k]xk + ⊗
[
ck+1, c̄k+1

]
> 0 for each

(x1, . . . , xk) ∈ X , where X represents the feasible region of Problem (10).

Example 4. Here is an illustration of an LFPP with grey coefficients in the objective function:

Min ⊗F=G
⊗[−3,−1]x1+⊗[2,4]x2+⊗[−2,−0.5]
⊗[0.5,1.5]x1+⊗[0.5,1.5]x2+⊗[3,5]

s.t.
−x1 + x2 ≤ 4,

+2x1 + 3x2 ≤ 14,

+x1 − x2 ≤ 5,

x1 ≥ 0 , x2 ≥ 0.

(11)

5 Proposed Method for Solving GLFPP

To address Problem (10) by incorporating the Charnes and Cooper variables transformation,
the following approach is proposed:

z =
1

⊗ [c1, c̄1]x1 + · · ·+⊗ [ck, c̄k]xk +⊗
[
ck+1, c̄k+1

] , yi = xiz i = 1, . . . , k.

In this scenario, Problem (5) takes the following form:

Min ⊗F ′=G ⊗ [a1, ā1] y1 + · · ·+⊗ [ak, āk] yk +⊗
[
ak+1, āk+1

]
z

s.t.
⊗ [c1, c̄1] y1 + · · ·+⊗ [ck, c̄k] yk +⊗

[
ck+1, c̄k+1

]
z = 1,

A1y1 + · · ·+Akyk ≤ bz,

y1 ≥ 0 , . . . , yk ≥ 0 , z ≥ 0.

(12)

By considering a convex combination of intervals for the limit

⊗ [c1, c̄1] y1 + · · ·+⊗ [ck, c̄k] yk +⊗
[
ck+1, c̄k+1

]
z = 1,

we obtain:

0 ≤ λi ≤ 1 , i = 1, . . . , k + 1 , y1 ≥ 0, . . . , yk ≥ 0,

[λ1c1 + (1− λ1) c̄1] y1 + · · ·+ [λkck + (1− λk) c̄k] yk+[
λk+1ck+1 + (1− λk+1) c̄k+1

]
z = 1. (13)

In simpler terms,

λ1y1(c1 − c̄1) + · · ·+ λkyk(ck − c̄k) + λk+1z(ck+1 − c̄k+1) + c̄1y1 + · · ·+
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c̄kyk + c̄k+1z = 1. (14)

Consequently, we can derive:

1 ≤ 1 +
[
λ1y1 (c̄1 − c1) + · · ·+ λkyk (c̄k − ck) + λk+1z

(
c̄k+1 − ck+1

)]
≤ 1 + y1 (c̄1 − c1) + · · ·+ yk (c̄k − ck) + z

(
c̄k+1 − ck+1

)
. (15)

Now, combining Equations (14) and (15), we arrive at:

1 ≤ λ1y1 (c1 − c̄1) + · · ·+ λkyk (ck − c̄k) + λk+1z
(
ck+1 − c̄k+1

)
+ c̄1y1 + · · ·

+ c̄kyk + c̄k+1z + λ1y1 (c̄1 − c1) + · · ·+ λkyk (c̄k − ck) + λk+1z
(
c̄k+1 − ck+1

)
≤ 1 + y1 (c̄1 − c1) + · · ·+ yk (c̄k − ck) + z

(
c̄k+1 − ck+1

)
. (16)

Hence,

1 ≤ c̄1y1 + · · ·+ c̄kyk + c̄k+1z ≤ 1 + y1 (c̄1 − c1) + · · ·

+ yk (c̄k − ck) + z
(
c̄k+1 − ck+1

)
, (17)

Based on Equation (17), we can further deduce:

c̄1y1 + · · ·+ c̄kyk + c̄k+1z ≥ 1,

c1y1 + · · ·+ ckyk + ck+1z ≤ 1. (18)

By utilizing the constraints expressed in Equation (18), Problem (10) can be reformulated
as follows:

Min ⊗F ′=G ⊗ [a1, ā1] y1 + · · ·+⊗ [ak, āk] yk +⊗
[
ak+1, āk+1

]
z

s.t.
c̄1y1 + · · ·+ c̄kyk + c̄k+1z ≥ 1,

c1y1 + · · ·+ ckyk + ck+1z ≤ 1,

A1y1 + · · ·+Akyk ≤ bz,

y1 ≥ 0 , . . . , yk ≥ 0 , z ≥ 0.

(19)

5.1 The proposed method algorithm

The proposed algorithm for solving the GLFPP is outlined as follows.
Step 1. Consider the general form of the problem as:
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Min (or Max) ⊗ Z=G

k∑
j=1

⊗ajxj+⊗aj+1

k∑
j=1

⊗cjxj+⊗cj+1

s.t.
k∑

j=1
Ajxj ≤ b,

xj ≥ 0 j = 1, . . . , k.

(20)

Step 2. Apply the proposed method to convert the problem from the first step into a grey linear
programming problem (GLPP) in the following form.

Min (or Max) ⊗ F ′=G ⊗ [a1, ā1] y1 + · · ·+⊗ [ak, āk] yk +⊗
[
ak+1, āk+1

]
z

s.t.
c̄1y1 + · · ·+ c̄kyk + c̄k+1z ≥ 1,

c1y1 + · · ·+ ckyk + ck+1z ≤ 1,

A1y1 + · · ·+Akyk ≤ bz,

y1 ≥ 0 , . . . , yk ≥ 0 , z ≥ 0.

(21)

Step 3: Solve the GLPP obtained in the second step using the simplex method for new variables
and obtain the solution.
Step 4: Obtain the solution to the initial problem by utilizing constraints yi = xiz for i =

1, . . . , k.

6 Numerical Example

In this section, we demonstrate the efficiency of the proposed algorithm by solving a problem.

Example 5. Obtain the solution to the following GLFPP using the proposed algorithm.

Min ⊗F=G
⊗[−3,−1]x1+⊗[2,4]x2+⊗[−2,−0.5]
⊗[0.5,1.5]x1+⊗[0.5,1.5]x2+⊗[3,5]

s.t.
−x1 + x2 ≤ 4,

+2x1 + 3x2 ≤ 14,

+x1 − x2 ≤ 5,

x1 ≥ 0 , x2 ≥ 0.

(22)

By utilizing the simplex method, we obtain:
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Min ⊗F ′=G ⊗ [−3,−1] y1 +⊗ [2, 4] y2 +⊗ [−2,−0.5] z

s.t.
0.5y1 + 0.5y2 + 3z ≤ 1,

1.5y1 + 1.5y2 + 5z ≥ 1,

−y1 + y2 − 4z ≤ 0,

+2y1 + 3y2 − 14z ≤ 0,

+y1 − y2 − 5z ≤ 0,

y1 ≥ 0 , y2 ≥ 0 , z ≥ 0.

(23)

By using the simplex method, we will have:

Min ⊗F ′=G ⊗ [−3,−1] y1 +⊗ [2, 4] y2 +⊗ [−2,−0.5] z +MR1

s.t.
0.5y1 + 0.5y2 + 3z + s1 = 1,

1.5y1 + 1.5y2 + 5z − s2 +R1 = 1,

−y1 + y2 − 4z + s3 = 0,

+2y1 + 3y2 − 14z + s4 = 0,

+y1 − y2 − 5z + s5 = 0,

y1 ≥ 0, y2 ≥ 0, z ≥ 0.

(24)

Table 1: Preliminary tableau of the GLPP

Basic
variables y1 y2 z s1 s2 R1 s3 s4 s5 RHS

F
′
0 −[−3,−1] −[2, 4] −[−2,−0.5] 0 0 −M 0 0 0 0

s1 0.5 0.5 3 1 0 0 0 0 0 1

R1 1.5 1.5 5 0 −1 1 0 0 0 1

s3 −1 1 −4 0 0 0 1 0 0 0

s4 2 3 −14 0 0 0 0 1 0 0

s5 1 −1 −5 0 0 0 0 0 1 0

Table 3 represents the optimal tableau of the problem, and thus, the optimal solution is as
follows.

z = 0.18, y1 = 0.9, y2 = 0, ⊗F ′=G −⊗ [0.59, 3.14] . (25)

Using constraints yi = xiz for i = 1, . . . , k, the optimal solution to the primal problem is
as follows.

x1 = 5, x2 = 0, ⊗F=G −⊗ [0.44, 3.09] = ⊗ [−3.09,−0.44] . (26)

To showcase the effectiveness of the proposed method, we compare the results obtained
from the proposedmethod for Example 5 with the solution obtained from the whiteningmethod.
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Table 2: Initial tableau of GLPP

Basic
variables y1 y2 z s1 s2 R1 s3 s4 s5 RHS

F
′
0 1.5M + [1, 3] 1.5M − [2, 4] 5M + [0.5, 2] 0 −M 0 0 0 0 M

s1 0.5 0.5 3 1 0 0 0 0 0 1

R1 1.5 1.5 5 0 −1 1 0 0 0 1

s3 −1 1 −4 0 0 0 1 0 0 0

s4 2 3 −14 0 0 0 0 1 0 0

s5 1 −1 −5 0 0 0 0 0 1 0

Table 3: Optimal tableau of GLPP

Basic
variables y1 y2 z s1 s2 R1 s3 s4 s5 RHS

F
′
0 0 −[1.12, 4.98] 0−[0.59, 3.49] 0 −M 0 0 −[0.25, 1.69]−[0.59, 3.49]

+[−1.28, 1.28]
s2 0 −0.72 0 2.27 1 −1 0 0 0.36 1.27
z 0 0.18 1 0.18 0 0 0 0 0.09 0.18
s3 0 1.65 0 1.63 0 0 1 0 0.17 1.63
s4 0 5.73 0 0.72 0 0 0 1 −2.37 0.72
y1 1 −0.08 0 0.9 0 0 0 0 0.54 0.9

6.1 Solving Example using the whitening method

Min ⊗F=G
⊗[−3,−1]x1+⊗[2,4]x2+⊗[−2,−0.5]
⊗[0.5,1.5]x1+⊗[0.5,1.5]x2+⊗[3,5]

s.t.
−x1 + x2 ≤ 4,

+2x1 + 3x2 ≤ 14,

+x1 − x2 ≤ 5,

x1 ≥ 0, x2 ≥ 0.

(27)

By applying the whitening technique to the GLFPP using the center of the ⊗C, we obtain
the following LFPP in canonical form:

Min W = −2x1+3x2−1.25
x1+x2+4

s.t.
−x1 + x2 ≤ 4,

+2x1 + 3x2 ≤ 14,

+x1 − x2 ≤ 5,

x1 ≥ 0, x2 ≥ 0.

(28)

By employing the Charnes and Cooper method, we obtain:
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Min W ′ = −2y1 + 3y2 − 1.25z

s.t.
+y1 + y2 + 4z = 1,

−y1 + y2 − 4z ≤ 0,

+2y1 + 3y2 − 14z ≤ 0,

+y1 − y2 − 5z ≤ 0,

y1 ≥ 0, y2 ≥ 0.

(29)

Table 4: Preliminary tableau of the LPP

Basic
variables y1 y2 z R1 s2 s3 s4 RHS

W
′
0 2 −3 1.25 −M 0 0 0 0

R1 1 1 4 1 0 0 0 1

s2 −1 1 −4 0 1 0 0 0

s3 2 3 −14 0 0 1 0 0

s4 1 −1 −5 0 0 0 1 0

Table 5: Initial tableau of LPP

Basic
variables y1 y2 z R1 s2 s3 s4 RHS

W
′
0 2 +M −3 +M 1.25 + 4M 0 0 0 0 M

R1 1 1 4 1 0 0 0 1

s2 −1 1 −4 0 1 0 0 0

s3 2 3 −14 0 0 1 0 0

s4 1 −1 −5 0 0 0 1 0

Table 6: Optimal tableau of LPP

Basic
variables y1 y2 z R1 s2 s3 s4 RHS

W
′
0 0 −3.49 0 −1.23−M 0 0 −0.74 −1.247

Z 0 −0.22 1 0.112 0 0 −0.11 0.111

s2 0 2 0 1 1 0 0 1

s3 0 5.89 0 0.475 0 1 −2.42 0.447

y1 1 0.11 0 0.55 0 0 0.44 0.555
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Table 6 represents the optimal tableau of the problem, and thus, the optimal solution is as
follows:

z = 0.111, y1 = 0.555, y2 = 0, W ′ = −1.247. (30)

Using these solutions, the solution to the main problem can be obtained as follows:

x1 = 5, x2 = 0, W = −1.25. (31)

6.2 Discussions

In this section, we compare the results obtained from the proposed method and the whitening
method.

Table 7: Comparison of the solution obtained from the proposed method and the whitening method.

proposed method y1 = 0.9 y2 = 0 z = 0.18 ⊗F ′=G −⊗ [0.59, 3.14]

x1 = 5 x2 = 0 ⊗F=G −⊗ [0.44, 3.09]

whitening method y1 = 0.555 y2 = 0 z = 0.111 W ′ = −1.247

x1 = 5 x2 = 0 W = −1.25

When dealing with real-world problems that involve imprecise parameters, the LPPmethod
cannot be used directly. Hence, the whitening method is employed to transform the problem
into an exact one by handling the imprecise parameters. Consequently, the solution obtained
through this method is only an approximation of the solution for the problem with imprecise
parameters and does not capture the uncertainty associated with the imprecise parameters of the
main problem in the final solution. As depicted in Table 7, W = −1.25 the exact solution for
the GLFPP of Example 5, serves as an approximation to the grey solution obtained through the
proposed method ⊗F=G −⊗ [0.44, 3.09].

Table 8: Comparison of the proposed method and the whitening method using Hu and Wang’s and Center and
greyness degree ranking methods

proposed method Whitening method Hu and Wang center and greyness
solution (A) solution (B) method degree method

⊗ [−3.09,−0.44] ⊗ [−1.25,−1.25] A ≤ B A ≤ B

The outcomes presented in Table 8 demonstrate that the solution obtained through the pro-
posed method, considering both Hu andWang’s, and Center and greyness degree ranking meth-
ods, outperforms the whitening method.
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7 Conclusion

The linear fractional programming problem is a prominent area of focus in operations research,
employed for modeling real-world problems. However, in many practical problem models, the
determination of precise coefficients is often unattainable, necessitating the utilization of non-
deterministic coefficients. The theory of grey systems provides an approach to address uncer-
tainty in such scenarios. This research focuses on the problem of linear fractional programming
with grey coefficients within the objective function. While existing approaches transform the
grey linear fractional programming problem into one or multiple classical fractional program-
ming problems to derive optimal solutions, this study introduces a novel method that directly
solves the linear fractional programming problem while incorporating grey coefficients within
the objective function. The proposed approach employs a combination of the Charnes and
Cooper variable change technique and convex intervals. By converting the grey linear frac-
tional programming problem into a grey linear programming problem, the solution is obtained
as a range of interval grey numbers. Consequently, the uncertainty inherent in the objective
function is accurately reflected in the final result. Evaluation using the ranking methods of Hu
and Wang, as well as the Center and Greyness Degree method, demonstrates the superiority of
the proposed method over the whitening method, further reinforcing its efficacy.
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