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Abstract. Fractional programming is a significant nonlinear planning
tool within operation research. It finds applications in diverse domains
such as resource allocation, transportation, production programming,
performance evaluation, and finance. In practical scenarios, uncer-
tainties often make it challenging to determine precise coefficients for
mathematical models. Consequently, utilizing indefinite coefficients
instead of definite ones is recommended in such cases. Grey systems
theory, along with probability theory, randomness, fuzzy logic, and
rough sets, is an approach that addresses uncertainty. In this study,
we address the problem of linear fractional programming with grey
coefficients in the objective function. To tackle this problem, a novel
approach based on the variable change technique proposed by Charnes
and Cooper, along with the convex combination of intervals, is em-
ployed. The article presents an algorithm that determines the solution
to the grey fractional programming problem using grey numbers,
thus capturing the uncertainty inherent in the objective function. To
demonstrate the effectiveness of the proposed method, an example
is solved using the suggested approach. The result is compared with
solutions obtained using the whitening method, employing Hu and
Wong’s technique and the Center and Greyness Degree Ranking
method. The comparison confirms the superiority of the proposed
method over the whitening method, thus it suggests that adopting the
grey system approach is preferable in such situations.
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1 Introduction

The fractional programming problem (FPP) is a significant nonlinear planning tool widely used in oper-
ation research. While linear programming problems (LPP) are insufficient to explain many real-world
models, the linear fractional programming problem (LFPP) emerged as a branch of nonlinear program-
ming in the 1960s. LFPP is particularly suitable for optimizing the efficiency of various activities, such
as maximizing company profit per unit cost of manpower, minimizing production cost per unit of prod-
uct, or maximizing dietary calories per unit cost. For more details, refer to [6, 9, 34]. Due to its practical
application, LFPP has attracted considerable attention from researchers [2, 3, 5, §, 23, 36], who have
proposed different methods to solve LFPP. Charnes and Cooper [5] introduced a variable change-based
method. Bitran and Novaes [3] presented an approach that updates the objective function and solves a
sequence of LPPs to tackle LFPP. Das and Mandal [12] employed various solving methods based on the
simplex method for LFPP.

In real-life scenarios, precise decision-making is often hindered by incomplete or inaccurate infor-
mation. In such cases, dealing with uncertainty using theories like fuzzy set theory (FST) and grey
system theory (GST) can be beneficial for expressing imprecise coefficients. It is crucial to identify the
uncertainty in the problem and apply these theories accordingly, considering their specific characteris-
tics in handling real data uncertainties. FST was first introduced by Professor Zadeh [38]. Recently,
researchers have shown interest in solving fuzzy linear fractional programming problems (FLFPPs)
[4, 7, 13, 14, 15, 16, 25, 29, 31]. Chinnadurai and Muthokumar [8] proposed a fuzzy mathematical
programming approach to solve the FLFPP. Das et al. [15] developed an algorithm based on the multi-
objective FPP for FLFPP. Srinivasan [35] investigated the FLFPP with fuzzy number coefficients and
proposed an algorithm utilizing ranking methods. However, when there is a scarcity of experts or limited
experience, making it difficult to obtain membership functions or gather sufficient data, FST may not
apply to solve FPPs with imprecise coefficients. In such cases, Deng introduced GST in 1982 [16]. The
GST focuses on studying small samples and systems with limited information, where some information
is known while others are unknown. With its development, GST has become a distinct scientific branch
encompassing systems analysis, modeling, prediction, decision-making, control, and optimization tech-
niques. The GST finds practical applications in solving real-world problems in various fields, including
social sciences, and engineering (e.g., metallurgy, petroleum, chemical industry, electronics, lighting
industries, energy sources, transportation, pharmaceuticals, health and health).

The application of GST has resulted in significant economic and social benefits in society, high-
lighting its wide-ranging utility, particularly in situations where available information is incomplete or
collected data is imprecise [22]. Currently, existing methods for tackling the grey linear fractional pro-
gramming problem (GLFPP) primarily rely on converting the grey parameters into exact ones via a
whitening process, thereby transforming the problem into an FPP with precise parameters. However,
these methods only yield exact solutions for the GLFPP. Therefore, in this study, we propose a direct
approach to address the uncertainty inherent in real-world problems by leveraging the advantages of
GST. In this method, the solution to the GLFPP is expressed as grey numbers (GN), allowing for the
representation of uncertainty within the objective function, and subsequently reflected in the final result.

This paper is organized as follows: The second section presents an overview of GST and relevant
concepts essential to comprehend the paper. The third section introduces the FPP in general and outlines
Charnes and Cooper’s method for solving them. In the fourth section, the GLFPP is introduced. The
fifth section presents the proposed solution method for the GLFPP and the corresponding algorithm.
Furthermore, the sixth section, demonstrates the effectiveness of the proposed method by solving an
example using it, and the obtained results are compared with those derived from solving the problem
using the whitening method. Finally, the seventh section provides the conclusion of the paper.
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2 Grey Systems Theory

The GST is widely recognized as a significant scientific advancement in utilizing uncertain informa-
tion. This theory offers a novel approach for investigating problems characterized by limited data and
restricted information, resulting in high levels of inaccuracy. A grey system refers to a system that en-
compasses uncertain information. Numerous researchers have been drawn to the exploration of GST
[10, 20, 28, 27, 26, 31, 32, 30, 33].

Definition 1. GN denotes an interval number with known upper and lower bounds, but its location within
these bounds remains uncertain [1]. Grey numbers find diverse applications in various mathematical
disciplines [19, 18, 21, 37].

Definition 2. The whitened GN ®z € [z, Z| is denoted by the symbol ®Z and can be computed as
follows:

T=aT+(1-a)z, ac]0,1], (1)

where « represents the weight employed for whitening the GN. When o = %, equal weight is assigned
to the lower and upper values of the interval, resulting in the whitened average with equal weight [24].

Definition 3. For any IGN ®z € [z, T, the center, ®% and width, ®z’ are defined as follows[18].

T+7T , Tz
= . 2
=, e = @)

QT =

Definition 4. The relationships between interval grey numbers (IGN), pertaining to two GN ®z; €
[21,T1] and ®z2 € [z,, T2, can be expressed through the following concepts [24]:

® x1 4+ Qx2 = [21 + Ty, T1 + o],

® T — QT2 = Qx1 + (— @ x2) = [T7 — T2, T1 — L) , (3)
® 1 X @79 = [min{z,2, 172, T129, 21 T2}, Max {22y, T1T2, T1Zg, T1T2}],

en Q1 X @12 = {min{xl7 %, ﬂ, :El} ,max{xl, %, ﬂ, xl” ,

RT2 Ty T2 Ty T2 Loy X2 Ly T2

0 ¢ (2o, 7]

2.1 Grey numbers ranking

The ranking of GN holds significant importance in decision-making and the practical applications of
GST. Darvishi et al. [11] conducted a detailed comparison of GN. Several methods have been proposed
for ranking IGN, in the meantime.

2.1.1 Hu and Wang approach

Hu and Wang identified the limitations of existing methods for comparing IGN and introduced a new
order relationship as follows [17].

Let @2 = [z, Z] and Qy = [g, gﬂ represent two IGN, with centers ®% and®y and widths @z’ and ®1/,
respectively. In this case, the order relationship based on the method proposed by Hu and Wang can be
expressed as follows:
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1) ® 1 # Qf = Q& < ®7,
2)® i =®j= 1 >y,
2.91<gRy < (Rr<g®yY, T#sQVY).

l.®r<a®y @{

The center and width of IGN are regarded as the expected value and uncertainty of the parameters,
respectively. Consequently, when the centers of IGN are equal, the widths of IGN are employed for
comparison.

Example 1. Compare IGN ®z = [—3, —1] and ®y = [2, 4] using Hu and Wang’s ranking method. By
calculating the centers of the given IGN, we obtain:

According to the first case, we have
RF=-2<®)=3=0z=[-3,-1<soy=[24].

Example 2. Compare IGN ®x = [1,5] and ®y = [2, 4] using Hu and Wang’s ranking method. By
calculating the centers and widths of the given IGN, we have:

®RYy=3, XT=3,
®y =1, ®2'=2.

According to the second case, we can obtain

RE=3=0)=3, 1'=2> y =1=>zr=[15<s0y=|[2,4].

2.1.2 Center and degree of greyness of grey numbers approach
Definition 5. [20] The length of IGN ®x € [z, Z] is defined as:

p(®z) = |z — z. 4)
Definition 6. [20] With IGN background((2), the degree of greyness ¢ (®z) is introduced as follows.

w(@z)
n($2)

Definition 7. [20] For IGN ®x1, ®x2, we define their ranking based on the Center and degree of grey-
ness is defined as follows:

9 (@r) =

®Zi’1 < ®Zi'2 = ®r1<g & T2,

if ¢° (®21) = ¢° (®12) = @T1=6 ® T2,
@) = @iy = ¢ if ¢° (®21) < ¢° (R22) = 21> @ T2, )
if ¢° (®z1) > ¢° (®12) = Q1< ® T2.

Example 3. Let us assume that the IGNs ®z1 = [—4, —2], ®x2 = [1,7], ®z3 = [1, 5] belong to the
field 2 € [-5,20].
Calculate the measures of field 2, ®zx1, ®xs, @x3 and
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respectively. The centers and the degrees of greyness of these three GN are as follows:

®i‘1 - _37 ®i‘2 - 47 ®i‘3 = 47

0 p(®@z1) 2 0 w(®@z2) 6
= = — = U. = = — = 24
0 _ p(®x3) 12
<g (®IE3) = M(Q) =95 0.48.

The first mode:
®T =-3< @y =4 = ®r1<g @ T2.

The second mode:
RTo =4 = RT3 =4,
therefore,
3% (®22) = 0.24 < ¢°(®23)0.48 = Rr2>g @ 3.

3 Fractional Programming Problem

The FPP is a topic extensively studied in operations research. It serves as a modeling tool for real-world
problems in various fields, such as business, economics, engineering, economics, etc. In an FPP, the
objective function is a ratio of two functions, typically nonlinear that needs to be optimized. This ratio
often represents the efficiency of a system.

Min(Max) W (x) = ;f((g
s.t.
g(x) >0,

reS={xeSyCR":hj(x)<0,j=1,...,m}.

In [36], Stancu-Minassian conducted a thorough investigation into deficit planning, its applications,
solution methods, and related issues. The LFPP is a special case of FPP. The general form of an LFPP
problem can be expressed as follows:

a1r1 + -+ apTr + ag41

Min W (z) =
c1z1+ -+ CkTE + Ckta
s.t.
Ajzy + -+ Agzy, <D, (6)
z12>0,...,25 >0,
subject to c;x1 + - - - + ¢,k + cx+1 > O for each for each(zq,...,z;) € X, where X represents the

feasible region of problem (6).
An LFPP can be transformed into a LFPP using the method proposed by Charnes and Cooper’s [5].

3.1 Charnes and Cooper’s method for solving the LFPP

1
c1Z1+ - FCrTp+Cr1

Let us assume z = , in this case, Problem (6) transforms into the following LPP.
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Min W' (z) = a1212+ -+ + apzrz + agpp12

S.t.
C1T1Z2 + -+ CpTRZ + Cpp12 = 1, (7
Az + -+ Agzg < b,
z12>20,...,2, >0, 22>0.

By introducing y; = x;z fort = 1,..., k , Problem (7) takes the following form:

Min W' (z) =a1y1 + - + apyi + akt12

S.t.
cayr+ - CpYr + 1z =1, (8
Ay + -+ Agyr < bz,
ylzoa"'aykzoa z 2 0.

In practical real-life scenarios, decisions are not always made based on for explicit data. In such
cases, uncertainty theories such as GST can be employed to represent imprecise coefficients.

4 Grey Linear Fractional Programming Problem

In general, the LFPP with grey coefficients in the objective function can be expressed in the following
form:

®a;z;+@aj+1

)
Min ®@F=¢g’
_Z:l @cjj+®cj11
s.t. ©)
k
3 Ay <b
xj 2 0j5=1,...,k

In other words,

. ®lay,a1 |1+ +Q|ay,0k | T+ (A 1,0k+1
Min ®F:G ®[[£1751]]$1+“‘+®[[£k7Ek]}mk+®[[£k:175k+l]]
S.t. (1())
Ay + -+ Agzy <),
T1 Zoa"'7xk 207

under the assumption ® [¢;, ¢1] 21+ -+ & [¢g, Ck) T+ [Qk+1, ékﬂ} > O foreach (z1,...,2x) € X,
where X represents the feasible region of Problem (10).

Example 4. Here is an illustration of an LFPP with grey coefficients in the objective function:

. _ ®[-3,—1]z1+®[2,4]z:+8[—2,-0.5]
Min  ®F=6¢ 55515, 16051 5w 053]

s.t.
—z1 + w3 < 4,
+2(E1 —+ 3(E2 S 14,
+x1 — 22 <5,
T Z 0 s, Lo Z 0.

(11)
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5 Proposed Method for Solving GLFPP

To address Problem (10) by incorporating the Charnes and Cooper variables transformation, the follow-
ing approach is proposed:

1
® ey, )@+ + ® e, Bl T + ® [Cprs Crgt]

z = , yi=xiz 1=1,...,k.

In this scenario, Problem (5) takes the following form:

Min @F'=¢ ® lay,a1]y1 + -+ ® [ag, @] ye + @ [agy1, Grt1] 2

S.t.
® e, alyr + -+ Qe Gl Y + @ [Copr, Crgr] 2 =1, (12)
Ayyr + -+ Apyp < bz,
y1>0,...,y. >0, 2>0.

By considering a convex combination of intervals for the limit
& [Qla El] Y1 +- 1+ ® [gk76k] Yk + & [Qk_;'_l, 5k+1] z = 17
we obtain:

OSAZS]- 7i:17"'ak+]—7 ylzov-"7yk207
Mg + (1= A1) e]yr + -+ [Aegy, + (1 = Ax) Cr] yrt
[/\k+1gk+1 +(1- )\k-&-l)ék—i-l] z=1. (13)

In simpler terms,

Myi(e; —e) + -+ Meyr(ep — k) + Aeg12(Cpyr — Chy1) + Gy + -+
CkYk + Ck+12 = 1. (14)

Consequently, we can derive:

L<1+ My (@ —cq) + - 4 M (G — ) + Met12 (Cogr — Cgr) ]
<l+yi(er—c)+ - +ye (@ —cp) + 2 (Cog1 — Cpgr) - (15)

Now, combining Equations (14) and (15), we arrive at:

1< My (e — @)+ 4 Mk (G — &) + Arg12 (Cppq — Cog1) +Cayn + -
+ ek + Cep1z + My (G —¢p) + oo+ Atk (6 — ) + M1z (Gegr — Crgn)
<14y (@ —c)+ - +ye (@ —cp) + 2 (Cor1 — Cpyr) - (16)

Hence,

I1<éyp+-+ayp+ 12 <14y (1 —c))+ -
+ i (Cx _Qk) + 2z (Ek+1 _Qk+1)a (17)

Based on Equation (17), we can further deduce:

Cy1 + -+ CrYk + Crr12 > 1,
ayr+ -t gyk o1z < 1 (18)

By utilizing the constraints expressed in Equation (18), Problem (10) can be reformulated as follows:
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Min ®@F'=¢ ® [ay,a1)y1 + - + @ [ag, @] yr + © [api1, Grs1] 2
s.t.

Y1+ + Cryk + Crr1z 2 1,

Gyt ok ez < 1

Ayyr + -+ Apy < bz,

y1>20,...,y. >0, 2>0.

(19)

5.1 The proposed method algorithm

The proposed algorithm for solving the GLFPP is outlined as follows.
Step 1. Consider the general form of the problem as:

E

®ajr;j+®ajt1
1

Min (or Max) ® Z=¢"*

it-

®cjzj+®cjt1
J
s.t. (20)
k
Z ijj S b,
j=1
z; >05=1,...,k

Step 2. Apply the proposed method to convert the problem from the first step into a grey linear pro-
gramming problem (GLPP) in the following form.

Min (or Max) ® F'=¢ ® [a;,a1]y1 + - + @ [ag, ar] yr + @ (@11, Try1] 2
s.t.
cGy1 + -+ Cryr + Ek+1Z > 17 (21)
ayr+ -t oYk H o2 <1,
Ayyr + -+ Aryr < bz,
y1 =20,y 20, 2>0.

Step 3: Solve the GLPP obtained in the second step using the simplex method for new variables and
obtain the solution.
Step 4: Obtain the solution to the initial problem by utilizing constraints y; = x;z fori =1,... k.

6 Numerical Example

In this section, we demonstrate the efficiency of the proposed algorithm by solving a problem.

Example 5. Obtain the solution to the following GLFPP using the proposed algorithm.

: _  ®[=3,—1]z:1+®[2,4]x24+8[-2,—0.5]
Min  ®F=¢ ®[0.5,1.5];1+®[0.5,12.5]x2+®[3,5]

S.t.
—x1 + a2 < 4, 22)
+2I1 + 31}2 S 14,
+x1 — 22 <5,
z1 > 0,22 > 0.

By utilizing the simplex method, we obtain:
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Min QF'=¢®[-3,-1y1 +®[2,4]y2 + ®[-2,-0.5] 2
s.t.
0.5y1 + 0.5y2 + 32 < 1,
1.5y1 + 1.5y2 + 5z > 1,

—y1+y2 —42 <0, (23)
+2y1 + 3y2 — 142 <0,
+y1_y2_5ZS05
Y1 20,922>20,2>0.
By using the simplex method, we will have:
Min ®@F'=¢®[-3,-1]y1 + ®[2,4]y2 + ®[-2,—0.5] z + M Ry
S.t.
0.5y1 + 0.5y2 + 32+ s1 = 1,
1.5y1 + 1.5y + 5z — so + Ry = 1,
—y1+y2—4z+s3=0, 24)
+2y1 + 3ys — 14z + 54 =0,
+y1 — Y2 — 5z + 55 =0,
'A% 207y2 205220
Table 1: Preliminary tableau of the GLPP.
Basic
variables Y1 Yo z s1 S92 Ri s3s4 85 RHS
Fy, |-[-3,-1] —[2,4] -[-2,-05] 0 0 —M 0 0 0 0
s1 0.5 0.5 3 1 0 0 00O 1
Ry 1.5 1.5 5 0-1 1 000 1
S3 -1 1 —4 00 0 10O O
S4 2 3 —14 O 0 0 010 O
S5 1 -1 ) 00 0 OO0O1 O
Table 2: Initial tableau of GLPP.
Basic
variables Y1 Yo z $1 8o Ry s3 s4 85 RHS
F(; 1.5M +[1,3] 1.56M —[2,4] 5M +1[0.5,2) 0 =M 0 0 0 0 M
s1 0.5 0.5 3 1 0 0 00O0 1
R, 1.5 1.5 5 0O -1 1 000 1
S3 -1 1 —4 0O 0 010O0 O
Sy 2 3 —14 0O 0 0010 O
S5 1 -1 ) 0O 0 0001 O

Table 3 represents the optimal tableau of the problem, and thus, the optimal solution is as follows.
z2=018, y1 =09, y2=0, ®F'=¢—®][0.59,3.14]. (25)

Using constraints y; = x;z for ¢ = 1,...,k, the optimal solution to the primal problem is as
follows.

11 =5, 22=0, ©F=g—®][0.44,3.09] = ®[3.09, —0.44] . (26)
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Table 3: Optimal tableau of GLPP.

Basic
varia}loles Y1 Y2 z S1 S9 R, S3 S4 S5 RHS
E, 0 —[1.12,4.98] 0 —[0.59,3.49] 0 —M 0 0 —[0.25,1.69] —[0.59, 3.49]
+[—1.28,1.28]
$9 0 -0.72 0 2.27 1 —1 00 0.36 1.27
% 0 0.18 1 0.18 0 0 00 0.09 0.18
$3 0 1.65 0 1.63 0 0 10 0.17 1.63
S4 0 5.73 0 0.72 0 0 01 —2.37 0.72
Y1 1 —0.08 0 0.9 0 0 00 0.54 0.9

To showcase the effectiveness of the proposed method, we compare the results obtained from the
proposed method for Example 5 with the solution obtained from the whitening method.

6.1 Solving Example using the whitening method

®[—3,—1]z1+®[2,4]z2+8[—2,—0.5]

Min  @F=¢gr 5181805150 705.5]
s.t.
—x1 +1x9 < 4, @7
+2(E1 + 3(E2 S 14,
+x1 — 29 < B,

z1 20,22 > 0.

By applying the whitening technique to the GLFPP using the center of the ®C', we obtain the fol-
lowing LFPP in canonical form:

: _ —2x143x25—1.25
Min W = e R
s.t.
—x1 + 22 < 4,

+2x1 + 322 < 14, (&)

+$1*$2 §5,
1 2 0,22 > 0.

By employing the Charnes and Cooper method, we obtain:

Min W' = —2y; + 3y — 1.252
s.t.
+y1 ty2 +4z2=1,
—y1 +y2 — 42 <0, (29)
+2y1 + 3y2 — 142 <0,
+y17y2*527§07
y1 > 0,y2 > 0.

Table 6 represents the optimal tableau of the problem, and thus, the optimal solution is as follows:
2=0.111, y; =0.555, 3y, =0, W' =-1.247. 30)
Using these solutions, the solution to the main problem can be obtained as follows:

1=5, a9=0, W =-125. 31
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Table 4: Preliminary tableau of the LPP.

Basic

variables| y1 y2 2z

Ry s9 s3 s4 RHS

7

Wy |2 —31.25-M 0

R, 1
S9 —1

1 4
1 —4

S3 2 3 —14
Sy 1 -1 -5

0 0
1 00
00
10
01

S oo+~ OoO

0
0 1
0 0
0 0

Table 5: Initial tableau of LPP.

Basic
variables| 11 Y2 z Ry s9 s3 s4 RHS
Wy [24+M —3+M125+4M 0 0 0 0 M
R 1 1 4 1 000 1
S9 —1 1 —4 0100 O
S3 2 3 —14 0010 O
Sq 1 —1 —5 0 001 O
Table 6: Optimal tableau of LPP.
Basic
variables|y1 2 =z Ry s9s3 sS4 RHS
W, |0 -3490-1.23—-M 0 0 —0.74 —1.247
Z 0 —-0.221 0.112 0 0 —0.11 0.111
S92 0 2 0 1 10 0 1
S3 0 589 0 0.475 0 1 —2.42 0.447
Y1 1 0.11 0 0.55 0 0 0.44 0.555

6.2 Discussions

In this section, we compare the results obtained from the proposed method and the whitening method.

Table 7: Comparison of the solution obtained from the proposed method and the whitening method.

proposed method [ 41 = 0.9 [y =02 =0.18 [ F'=¢ — ®[0.59, 3.14]
1 =5 | z2=0 RQF=c — ® [0.44, 3.09]

whitening method|y; = 0.555| yo =0 [z = 0.111 W= —1.247
x1:5 562:0 W =-1.25

When dealing with real-world problems that involve imprecise parameters, the LPP method cannot
be used directly. Hence, the whitening method is employed to transform the problem into an exact one
by handling the imprecise parameters. Consequently, the solution obtained through this method is only
an approximation of the solution for the problem with imprecise parameters and does not capture the un-
certainty associated with the imprecise parameters of the main problem in the final solution. As depicted
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in Table 7, W = —1.25 the exact solution for the GLFPP of Example 5, serves as an approximation to
the grey solution obtained through the proposed method ® F=¢ — ® [0.44, 3.09)].

Table 8: Comparison of the proposed method and the whitening method using Hu and Wang’s and Center and
greyness degree ranking methods.

proposed method | Whitening method |Hu and Wang |center and greyness
solution (A) solution (B) method degree method
® [—3.09,—0.44]| ® [-1.25, —1.25] A<B A<B

The outcomes presented in Table 8 demonstrate that the solution obtained through the proposed
method, considering both Hu and Wang’s, and Center and greyness degree ranking methods, outperforms
the whitening method.

7 Conclusion

The linear fractional programming problem is a prominent area of focus in operations research, employed
for modeling real-world problems. However, in many practical problem models, the determination of
precise coefficients is often unattainable, necessitating the utilization of non-deterministic coefficients.
The theory of grey systems provides an approach to address uncertainty in such scenarios. This research
focuses on the problem of linear fractional programming with grey coefficients within the objective
function. While existing approaches transform the grey linear fractional programming problem into one
or multiple classical fractional programming problems to derive optimal solutions, this study introduces
a novel method that directly solves the linear fractional programming problem while incorporating grey
coefficients within the objective function. The proposed approach employs a combination of the Charnes
and Cooper variable change technique and convex intervals. By converting the grey linear fractional
programming problem into a grey linear programming problem, the solution is obtained as a range of
interval grey numbers. Consequently, the uncertainty inherent in the objective function is accurately
reflected in the final result. Evaluation using the ranking methods of Hu and Wang, as well as the Center
and Greyness Degree method, demonstrates the superiority of the proposed method over the whitening
method, further reinforcing its efficacy.
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