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1 Introduction

All graphs considered in this paper are simple. Let G = (V,E) be a graph. The distance between two
vertices u and v, denoted by d(u, v), is the length of a shortest connecting path between u and v. If there
is no path between u and v, we set d(u, v) = ∞. The diameter of G, denoted by D(G), is defined as
max{d(u, v) : u, v ∈ V (G)}. The graph adjacency matrix for the Floyd–Warshall algorithm is made as
below:

A(i, j) =


1 If there is an edge between vi and vj,
∞ If there is no edge between vi and vj,
0 if i = j.

Different types of graph coloring have emerged in response to various applications, including nor-
mal, dominant, recessive, star, p-distance, and others. Graph coloring in a graph G = (V,E) is a
function that maps the set V to a set C = {1, 2, . . . , k} of colors, ensuring that adjacent vertices receive
different colors. The chromatic number of a graph G, denoted χ(G) (refer to [21]), is the minimum
number of distinct colors required to color G. Graph distance coloring was first introduced in 1969
[16, 17]. The p-distance coloring of a graph G = (V,E) is a mapping from V to a set of colors, where
vertices with a distance of at most p receive different colors. The p-distance chromatic number, denoted
γ(p,G), represents the minimum number of distinct colors needed for this coloring. For a positive in-
teger p, p is the power of G if Gp = (V,Ep) is a graph with the vertex set V (G) and the edge set
{uv : u, v ∈ V (G) and dG(u, v) ≤ p}. It is evident that γ(p,G) = χ(Gp).

The p-distance coloring has various applications, including solving frequency assignment problems
such as radio channel allocation [14, 19]. This problem arises when multiple radio transmitters, such as
(mobile phones, operate in the same area and share the same or nearby transmitter channels. To prevent
wave interference, the problem of allocating frequencies to different transmitters can be reduced to a
graph coloring problem, which can be solved by p-distance coloring of the network. In [8], Fertin et al.
simulated the network graph when the transmitters are regularly broadcast on the plane and solved the
problem by p-distance coloring of the network.

The p-distance problem has been studied by various researchers since the seventies, including
Kramer [15], Speranza [22], and Antonucci [2]. In the eighties, it was also studied by Gionfriddo [12]
and Gionfriddo and Milici [13] in the nineties. Recent articles have reviewed these topics [1, 5, 6, 17].
The distance coloring parameters of graphs have been researched in general [18], and the 2-distance
chromatic number of some graph products has been investigated in [11]. Additionally, in [5], 2-distance
coloring of distance graphs has been studied. To find the p-distance color for a given graph, we use the
Floyd–Warshall algorithm [9] with the GCA graph coloring algorithm proposed in the [20], which we
refer to as GDCA.

The continuation of the pper is arranged as follows: Section 2 introduces theGDCA algorithm and
provides an example to illustrate its process. Section 3 presents a table of algorithm results on several
benchmark graphs found in theDIAMCS library [7] is presented. Subsequently, in Section 4, we apply
our algorithm to calculate the chromatic number of two molecular graphs from [17].

2 Graph p-Distance Coloring Algorithm

To present our algorithm, we need to recall the Floyd–Warshall and graph coloring algorithms (GCA).
The Floyd–Warshall algorithm receives the adjacency matrix A constructed according to the definition
and returns the distance matrix.

The GCA colors simple graphs without loops and multiple edges, undirected, connected or non-
connected, and finite, using the graph adjacency matrix. The graph adjacency matrix for the GCA
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Algorithm 8 Floyd–warshall algorithm
Input The graph adjacency matrix (A), the number of rows (n) of matrix A.
Output: Return Dn.
step-1 D0 = A

1-1: While k < n do:
1-1-1: Put D(k) = (d

(k)
ij ), let a new matrix be n× n.

While i < n do:
While j < n do:
(d

(k)
ij ) = min((d(k−1)

ij ), (d
(k−1)
ik ) + (d

(k−1)
kj )).

algorithm is made as below:

A(i, j) =

{
1 If there is an edge between vi and vj ,
0 otherwise.

Algorithm 9 Graph Coloring Algorithm (GCA)

Input A is adjacency matrix of graph G = (V,E).
Output: Return x(k), where it is sets of separation and k is number of sets.
Step-1 Put k = 0, n = A.rows, V = 1, . . . , n, x = 1, . . . , n.
Step-2 While V 6= ϕ Do:

2-1 While sum(sum(A′))′ > 0 DO:
2-1-1 Put i as the smallest row which the sum of it, is not zero.
2-1-2 Put i neighbors in the w.
2-1-3 Put t = ∪(i, w) and order t.
2-1-4 Remove rows and columns contain array t from the largest to the smallest from

A and V .
2-2 Put k = k + 1; put union (i)’s and the only vertices in t; sort; and the members of

this set are the index of the members of the set x, so take the corresponding numbers
of this set from the largest to the smallest index of x and put them in xk.

2-3 Put c equals to the neighbors of (i)’s.
2-4 If |c| = 1, Then k = k + 1 and x(k) = x and the algorithm terminates.
2-5 If |c| > 1, Then set theB as the adjacency matrix of the induced subgraphG[c]. The

matrixB is constructed in such a way that the algorithm deletes the rows and columns
of the matrix A according to the ordered set t, from the largest to the smallest, and
the matrix B exists.

2-6 If sum(sum(B′))′ = 0, Then k = k+1 and x(k) = x and the algorithm terminates,
otherwise A = B and V = 1, . . . , length(c), Then go to Step 2.

To better comprehend the (GCA) algorithm, it is necessary to explain the concepts of sum(sum(A′))′

and sum(sum(B′))′. To determine whether the matrix A is zero or not, the algorithm calculates the
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transpose of the matrix A, denoted as A′. Furthermore, sum(A′) represents a vector obtained by sum-
ming each row of A, and also, sum(sum(A′))′ denotes the sum of the elements in the vector sum(A′).
If sum(sum(A′))′ > 0 is greater than zero, the algorithm proceeds with the subsequent commands.

Similarly, to determine the zero nature of matrix B, the algorithm calculates the transpose of ma-
trix B, denoted as B′. Additionally, sum(B′) represents a vector obtained by summing each row of
B, and sum(sum(B′))′ denotes the sum of the elements in the vector sum(B′). If sum(sum(B′))′

equals zero, it indicates that matrix B is indeed a zero matrix. The GDCA utilizes the Floyd–Warshall
algorithm and the GCA graph coloring algorithm. Initially, we construct the graph’s adjacency matrix,
denoted as A, according to the given definition. The Floyd–Warshall algorithm takes this adjacency
matrix as an input and generates the distance matrix, denoted as D. To create the adjacency matrix Gp

using the distance matrix, we perform as follow:

D(i, j) =

{
1, If 1 < D(i, j) ≤ p,
0, otherwise.

Now, the constructed adjacency matrix Gp is obtained using the coloring algorithm GCA. The
output of this algorithm represents the coloring of the graphGp, thereby providing the p-distance coloring
for the graph G. The algorithm for p-distance graph coloring is as follows:

Algorithm 10 Graph p-distance coloring algorithm (GDCA) to obtain sets of separation
Input Graph adjacency matrix for Floyd–Warshall algorithm, (A) and p.
Output: Return xk, where it is a set of separations and k is number of sets while the graph G

is colored p-distance.
Step 1. D = Floyd −Warshall(A), Obtain the distance matrix using the Floyd–Warshall

algorithm.
Step 2. Build the adjacency matrix Gp as follow:

If 1 < D(i, j) ≤ p, Then D(i, j) = 1, Otherwise D(i, j) = 0.

Step 3. Set A := D.
Step 4. Execute the algorithm GCA on A.

Instead of utilizing theGCA coloring algorithm, proposed in [20], our proposed algorithm,GDCA
can incorporate other coloring algorithms mentioned in [3].

In step 2, the adjacency matrix of the graph Gp is created, and by applying graph coloring to this
graph, the p-distance coloring for the original graphG is achieved. In this process, we have reduced the
p-distance graph coloring problem to the graph coloring problem. Since the graph coloring problem is
known to be NP-hard [10], it follows that the p-distance graph is also NP-hard.

2.1 Illustrative Example

This example includes the colorings of four graphs G1 = (V,E1), G
2 = (V,E2), G

3 = (V,E3), G
4 =

(V,E4), which have been obtained from graph G = (V,E) with |V | = 7 and |E| = 5, by the GDCA
algorithm. The graphs of Gp, where 1 ⩽ p ⩽ 4, obtained by the algorithm are shown in Figure 1.
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Figure 1: G = (V,E) with |V | = 7 and |Ep| = 5, 8, 10, 11 for p = 1, 2, 3, 4.

In step 0, the adjacency matrix of G = (V,E) with |V | = 7 and |E| = 5, for p in which 1 ⩽ p ⩽ 4
is given to the algorithm as follows:

A =



0 1 ∞ ∞ ∞ ∞ ∞
1 0 1 ∞ ∞ ∞ ∞
∞ 1 0 1 ∞ ∞ ∞
∞ ∞ 1 0 1 ∞ ∞
∞ ∞ ∞ 1 0 ∞ ∞
∞ ∞ ∞ ∞ ∞ 0 1
∞ ∞ ∞ ∞ ∞ 1 0


In step 1, the distance matrix for the graph G = (V,E) with |V | = 7 and |E| = 5 is obtained by the
Floyd–Warshall algorithm. In step 2, the adjacency matrix Gp is created. In step 3, we set A = D, and
in step 4, the coloring algorithmGCA receives and colors the adjacency matrix A and the output of this
algorithm. The sets of separation are xk in the graphG, which is a separated p-distance and k represents
the number of obtained sets or coloring number. The value of k is zero at the beginning. At each step,
when the coloring of graph is finished with one color, the value of k is incremented by one. The set xk
is colored with the kth color, and the largest k in xk is the number of different colors that is used to color
the graph.

For 1-distance coloring, the GDCA algorithm receives A and p = 1. It generates the matrix D
and using the matrix D, it creates the adjacency matrix G1 and puts it in A. Then the GCA algorithm
receives A and x1 and x2 produces as follows: At this stage, the number of edges of G1 is equal to 5.

D =



0 1 2 3 4 ∞ ∞
1 0 1 2 3 ∞ ∞
2 1 0 1 2 ∞ ∞
3 2 1 0 1 ∞ ∞
4 3 2 1 0 ∞ ∞
∞ ∞ ∞ ∞ ∞ 0 1
∞ ∞ ∞ ∞ ∞ 1 0


, A =



0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0


,

|E1| = 5, x1 = [1, 3, 5, 6], x2 = [2, 4, 7].

For 2-distance coloring, the GDCA algorithm receives A and p = 2. It generates the matrix D.
Using the matrix D, it creates the adjacency matrix G2 and puts it in A. Then the GCA algorithm
receives A and x1, x2, and x3 produces as follows: At this stage, the number of edges of G2 is equal to
8.

D =



0 1 2 3 4 ∞ ∞
1 0 1 2 3 ∞ ∞
2 1 0 1 2 ∞ ∞
3 2 1 0 1 ∞ ∞
4 3 2 1 0 ∞ ∞
∞ ∞ ∞ ∞ ∞ 0 1
∞ ∞ ∞ ∞ ∞ 1 0


, A =



0 1 1 0 0 0 0
1 0 1 1 0 0 0
1 1 0 1 1 0 0
0 1 1 0 1 0 0
0 0 1 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0


,
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|E2| = 8, x1 = [1, 4, 6], x2 = [2, 5, 7], x3 = 3.

For 3-distance coloring, the GDCA algorithm receives A and p = 3. It generates the matrix D.
Using the matrixD, it creates the adjacency matrix G3 and puts it in A. Then GCA algorithm receives
A and x1, x2, x3, and x4 produces as follows: At this stage, the number of edges of G3 is equal to 10.

D =



0 1 2 3 4 ∞ ∞
1 0 1 2 3 ∞ ∞
2 1 0 1 2 ∞ ∞
3 2 1 0 1 ∞ ∞
4 3 2 1 0 ∞ ∞
∞ ∞ ∞ ∞ ∞ 0 1
∞ ∞ ∞ ∞ ∞ 1 0


, A =



0 1 1 1 0 0 0
1 0 1 1 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
0 1 1 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0


,

|E3| = 10, x1 = [1, 5, 6], x2 = [3, 7], x3 = 4, x4 = 2.

For 4-distance coloring, the GDCA algorithm receives A and p = 4. It generates the matrix D.
Using the matrix D, it creates the adjacency matrix G4 and puts it in A. Then the GCA algorithm
receives A and x1, x2, x3, x4, and x5 produces as follows: At this stage, the number of edges of G4 is
equal to 11.

D =



0 1 2 3 4 ∞ ∞
1 0 1 2 3 ∞ ∞
2 1 0 1 2 ∞ ∞
3 2 1 0 1 ∞ ∞
4 3 2 1 0 ∞ ∞
∞ ∞ ∞ ∞ ∞ 0 1
∞ ∞ ∞ ∞ ∞ 1 0


, A =



0 1 1 1 1 0 0
1 0 1 1 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0


,

|E4| = 11, x1 = [3, 6], x2 = [1, 7], x3 = 2, x4 = 4, x5 = 5.

3 Numerical Results

Here, we present some numerical results obtained by applying MATLAB 80 9.3. All experiments were
run on a PC with CPU Intel Core (TM) i7-7700K CPU at 4.20GHz, 32G bytes of SDRAMmemory, and
Windows 10 operating system. Here, we show the numerical results of theGDCA algorithm, which has
been tested on some benchmark graphs located in theDIAMCS library, in Table 1. In Table 1, the first
column entitled Graph shows the name of benchmarks graph; the column entitled V shows the number
of vertices; the column entitled E shows the number of edges; the column entitled Den displays the
density of edges obtained from the relation Den = 2E/v(v − 1); and the best solution or χ(G) is for
1-distance coloring, the chromatic number or the best number ever known. In the rest of the columns,
the results of the algorithm in terms of calculation time T and coloring number R for Gp graphs, where
p = {1, 2, 3, 4, 5, 6, 7}, and also the number of edges of Gp, E, is given. If the number of edges of
Gp and Gp−1 are equal, then the graph is saturated. Experiments have been performed on a 12-core
system and MATLAB software. The GCA algorithm simply colors the graph G. Since G = G1, then
the coloring of p-distance can be obtained directly with the GCA algorithm. As a result, it requires less
calculation time for coloring. The calculation time T for coloring of a p-distance after obtaining the
adjacency matrix of the graph Gp is calculated from step 3 onwards in Table 1. With the increase of p,
the density of edges of the graph Gp increases strongly and the coloring number also increases. Also,
the number of iterations of the GCA coloring algorithm increases as the coloring number. As a result,
the calculation time is also greatly increased.
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Table 1: Results R and calculation times (in the seconds) T .

Graph V E Den. Best/χ(G) G1 G2 G3 G4 G5 G6 G7

R,E T R,E T R,E T R,E T R,E T R,E T R,E T
DSJC125-1 125 736 0.09 5 7-736 0.0293 42-5508 0.2543 123-7748 0.5634 125-7750 0.5691 - - - - - -
inithx-i3 621 13969 0.07 31 31-13969 0.6250 558-155960 25.0136 559-155961 25.2172 559-1555961 25.1700 - - - - - -
le450-5c 450 9803 0.10 5 6-9803 0.2357 237-98014 4.2451 450-101025 10.7515 450-101025 10.7925 - - - - - -
mycie17 191 2360 0.13 8 8-2360 0.0296 191-18145 1.2253 191-18145 1.2252 - - - - - - - -

queen10-10 100 1470 0.59 11 13-1470 0.0408 100-4950 0.4023 100-4950 0.4002 - - - - - - - -
DSJR500-1 500 3555 0.03 12 14-3555 0.4462 31-10177 0.9224 55-19785 1.3808 86-31709 1.9638 126-44851 2.6388 173-58368 3.4875 221-71793 4.4179

To the best of our knowledge, no existing algorithm exists for determining the distance coloring
of graphs. In this study, we present an algorithm specifically designed for this purpose. As men-
tioned previously, our algorithm is versatile and can utilize different types of graph coloring algorithms.
Therefore , we compare the graph coloring algorithm (GCA) utilized in Graph Distance Coloring Al-
gorithm (GDCA) with the best existing graph coloring algorithms. In [3], the FF , LDO,WP , IDO,
DSATUR algorithms, and the RLF were tested on benchmark graphs provided by DIMACS [7].
The GCA algorithm was also tested on the same benchmark graphs, and the results were included in
the last two columns of the tables in [3]. The benchmark graphs, used for testing the algorithms include
Mycielski, SGB, david, jean, anna, homer, huck, miles, and game. Additionally, the number
of vertices V , the number of edges E shows the number of edges, and the density of edges Den were
recorded. The density is calculated using the formula Den = 2E/v(v − 1) and displays either the
chromatic number χ(G) or the best number knownBest. The number of colorsR obtained by the algo-
rithms, and the calculation time in seconds T are also provided. Table 2 presents one of the comparison
tables for graph coloring.

Table 2: The results and computation times for Register Allocation graphs.

Graph V E Den. Best/χ(G) RLF DSATUR WP LDO IDO FF GCA
R T R T R T R T R T R T R T

fpso12-i1 496 11654 0.09 65 65 0.9869 65 3.1791 65 0.0044 65 0.0646 65 1.8096 65 0.0552 65 0.3890
mulsol-i1 197 3925 0.20 49 49 0.1299 49 0.6347 49 0.0021 49 0.0153 49 0.2924 49 0.0137 49 0.1182
mulsol-i2 188 3885 0,22 31 31 0.1171 31 0.6423 31 0.0015 31 0.0145 31 0.2899 31 0.0133 31 0.0773
mulsol-i3 184 3916 0.23 31 31 0.1164 31 0.6189 31 0.0015 31 0.0143 31 0.2805 31 0.0134 31 0.0772
mulsol-i4 185 3946 0.23 31 31 0.1243 31 0.6328 31 0.0015 31 0.0145 31 0.2994 31 0.0130 31 0.0777
mulsol-i5 186 3973 0.23 31 31 0.1253 31 0.6286 31 0.0015 31 0.0145 31 0.2900 31 0.0128 31 0.0761
inithx-i1 864 18707 0.05 54 54 2.7427 54 6.7614 54 0.0066 54 0.1337 54 4.2802 54 0.1266 54 1.5789
inithx-i2 645 13979 0.07 31 31 1.4014 31 4.2319 31 0.0037 31 0.0839 31 2.5214 31 0.0800 31 0.6985
inithx-i3 621 13969 0.07 31 31 1.3034 31 4.1724 31 0.0035 31 0.0819 31 2.5577 31 0.0780 31 0.6160
zeroin-i1 211 4100 0.18 49 49 0.1427 49 0.6636 49 0.0020 49 0.0157 49 0.3188 49 0.0139 49 0.1197
zeroin-i2 211 3541 0.16 30 30 0.1062 30 0.5390 30 0.0015 30 0.0136 30 0.2504 30 0.0124 30 0.0753
zeroin-i3 206 3540 0.17 30 30 0.1150 30 0.5439 30 0.0014 30 0.0134 30 0.2530 30 0.0123 30 0.0681

4 Applications

A molecular graph serves as a representation of a chemical compound’s structural formula based on
graph theory. Specifically, a molecular graph is a labeled graph where the vertices represent atoms of
the compound and edges correspond to chemical bonds. Therefore, molecular graphs can be described
as graphs with a maximum vertex degree of 4. The chromatic number has been utilized in [4] to classify
certain molecules (molecular graphs). In this study, we applied our algorithm to compute the chromatic
number of two specific molecular graphs, namely F5,12 and the truncated cube.
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Figure 2: G = (V,E) with |V | = 36 and |E| = 54.

|E1| = 54,

x1 = [1, 3, 5, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30],

x2 = [2, 4, 6, 7, 11, 15, 19, 21, 23, 25, 27, 29, 31, 33, 35],

x3 = [9, 13, 17, 32, 34, 36].

|E2| = 162,

x1 = [1, 4, 10, 16, 19, 25, 33, 36],

x2 = [2, 5, 12, 18, 21, 27, 31, 34],

x3 = [3, 6, 8, 14, 23, 29, 32, 35],

x4 = [7, 11, 15, 20, 24, 28],

x5 = [9, 13, 17, 22, 26, 30].

|E1| = 36,

x1 = [1, 3, 5, 7, 10, 12, 14, 21],

x2 = [2, 4, 6, 8, 9, 11, 13, 15],

x3 = [16, 17, 18, 19, 20],

x4 = [22, 23, 24].

|E2| = 84,

x1 = [1, 4, 13, 16, 20, 22],

x2 = [2, 7, 11, 14, 19, 21],

x3 = [3, 6, 10, 15, 17, 23],

x4 = [5, 8, 9, 12, 18, 24].
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Figure 3: G = (V,E) with |V | = 24 and |E| = 36.
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