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1 Introduction

In many practical or real life problems, we normally need to optimize several
objectives simultaneously, which can even be in conflict to each other. In engi-
neering and economics, we encounter the same situation that many optimization
problems involve Multi-objectives cost functions. For example, one might want to
adjust a rocket’s fuel usage and orientation so that it arrives at a specified place
and at a specified time; or one might want to conduct open market operations so
that both the inflation rate and the unemployment rate are as close as possible
to their desired values (See for various applications [3, 13, 23, 27]). In these prob-
lems, however, instead of a single optimum there are rather a set of alternative
trade-offs, generally known as Pareto optimal solutions, which are considered to
be equally important, since all of them constitute global optimum solutions and
hence a variety of methods have been developed for the solution of multi-objective

optimization problems.

In the area of control engineering, multi-objective optimization discussion has
been used by the control engineers (See e.g. [6, 10, 19]). Targeted to manage
many objectives, which often involves conflict situations of many criteria, such as

control energy, tracking performance, robustness, etc.

A suitable introduction on the concepts of MOOCP may be found in ([11]).
Also, one may find an overview on multi-objective optimization applications in

control engineering in ([20]).

Over the years, some indirect and direct approaches with different views in-
cluding Q-parametrization ([14]), Chebyshev spectral procedure ([9]), nonessential
functional ([1]), extending the state space ([17]) and scalarizing objectives ([4])
have been presented to extract analytical and approximate Pareto solutions of
MOOCP’s. But, these approaches are facing some difficulties the same of the
methods which have been proposed for single-objective optimal control problems.
For instance, in algorithm based on parameterization and scalarization, the re-
gion of Pareto solutions can be surrounded related to the scheme of scalarizing or
another instance of difficulty is that in some of these methods, convexity of the
objectives is a basic requirement which limits the scope of applications of such
methods. There from that the study of multi-objective optimization has flour-
ished to a level where uncertainty is considered when comparing and evaluating
solutions for any given problem, this development has been generalized to the
area of MOOCP’s (See e.g., [22, 29]).
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Although the above mentioned methods suffer from some difficulties, recently
several evolutionary methodologies could show good performance detect approx-
imate solutions of multi-objective problems, such as Non-dominated Sorting Ge-
netic Algorithm NSGA ([26]), NSGA-II ( [7]), Strength Pareto Evolutionary Al-
gorithm SPEA ([32]), SPEA2 ( [31]), Pareto Archive Evolution Strategy PAES
(116)),

Multi-Objective Particle Swarm Optimization (MOPSO) ([5]) and Multi-
Objective Invasive Weed Optimization (MOIWO) ([18]). Analytical discussion
on a class of these problems can be found in ([2]). Also there are some approaches
based on bacterial chemotaxis ([12]), networks theory (][21]), weighted optimiza-
tion ([24]) and scalarization ([28]) which are presented to extract approximate

solution of these problems based on different concepts.

Due to outstanding abilities of evolutionary algorithms in finding Pareto so-
lutions of multi-objective optimization problems, in this paper we propose an
approach based on evolutionary algorithms to find a Pareto optimal pair of state

and control for multi-objective optimal control problems.

The considered multi-objective optimal control problem formulation requires
the simultaneous minimization of m objective in contrast to the general optimal
control problem formulation, in which only one objective has to be minimized. In

mathematics, it is

min {Qpl(x(')au(')aT)w"790j(1:(')au(')7T)a"'7¢m($(')au(')aT)} (1)

(-),u(),T
sit: F(t,z(t),z(t),u(t)) =0, (2)

Here, function F' represents the model equation with = as model states, u as

control inputs, and T" as the final time.

Also, ¢;denotes the j-th individual objective functional as

T
goj(x(.),u(.),T):/O £t w(t), ult) )dt.

with continuous function f;, while h and r are the path constraints and boundary

constraints of the optimal control problem.
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2 Discretization of the Control Space

To determine the optimal solution we must examine the performance index in the
set of all possibilities of control-state pairs. The set of admissible pairs consisting
of pairs like (x,u) satisfying (1)-(4) is denoted by P. In this section we present
a control discretization method based on an equidistant partition of [0,7] as
Ay ={0=to,t1,...,tn—1,t, = T} with discretization parameter h = % The
time interval is divided into n subinterval [ty = 0,¢1], [t1,t2], ..., [th—1,tn = T.

On the other hand, corresponding to ¢-th component of control vector function
the set of control values is divided into constants w;,, u;,, ..., u;,,. In this way, the
time-control space is discretized and all components of the control vector function
are assumed to be linear at each time subinterval. In fact, using the characteristic
function

U Pt

the 4-th component of control vector function may be presented as

Ul(t) = Z Vik’(t)x[tk_l,tk](t)a
k=1

where v (t)is a part of a piecewise linear function v;(t) on an interval [t;_1, tx] ob-
tained by connecting the nodes (tx—1,u;x—1) and (¢, u;). A typical discretization
is given in Figure 1 with n = 7 and m = 6 where the bold pattern shows a control
function. In fact, we consider the main problem as a quasi-assignment problem,
where a performance index can be assigned corresponding to each chosen pattern
and choosing the best performance index can give rise to the near optimal control
of the problem. Now a trivial way to determine the near optimal solution is to
calculate all the possible patterns and compare the corresponding trade-offs.

This trivial method of total enumeration needs (m + 1)(®*1) evaluation.

To avoid so many computations, we may use an evolutionary algorithm, for
evaluating special patterns guiding to the optimal solution.

For each pattern of control we need its corresponding trajectory to evaluate
the performance index. Trivially, the corresponding trajectory must be in dis-
cretized form. For this propose, a stable finite difference implicit scheme (e.g.
Euler method) is used to approximate trajectory solution corresponding to each

piecewise linear control function.
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Figure 1: A typical piecewise linear control function in time-control space

3 Algorithm Design

First we consider the required concepts.

Definition 1 (Dominates). Given the vector of objective functions (1 (x,u), .. .,
©m(x,u)) we say that candidate (x1,u;) Dominates (x2,us3), ( and denote it as
(x1,u1) < (x2,u2) ), if for each i € {1,...,m}, pi(x1,u1) < pi(z2,uz) and for
some i € {1,...,m}, gi(x1,u1) < @i(x2,us).

Definition 2 (Pareto Optimal). The pair (Z,u) € P is said to be a Pareto Optimal
solution or Non-dominated solution if and only if there is not any admissible pair

which dominates it.

3.1 Genetic Algorithm for MOOCP

In this section, we introduce a matched non-dominated sorting genetic algorithm
(NSGA) for obtaining Pareto optimal solutions of MOOCP’s.

Deb et al. suggested NSGA-II to show predecessor of a solution to another(See
[7]). It has benefits to other available methods in three aspects, it improves
the Pareto ranking procedure so it has less time complexity, it adds the elitism
mechanism, and the new crowding distance method.

To implement it, at the primitive step, an initialization population is generated
where each individual of the population is a vector in R>**2 as the discretized pair
control and state (z;, ;) = (Xig, Tiyy - -y Ti,s Wigy Uiy, - - -, Wi, ) Such that random
control vector u; = (u;,, Wy, .., U, ) is chosen from the discretized time-control

space and the corresponding discretized state vector x; = (xi,,%iy, ..., Ti,) 1S
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constructed by considering initial state condition (4) and using a simple numerical
method of solving ODE’s (2). Objective values ¢;(z,u), i = 1,...,m is evaluated
by a numerical integration rule (e. g. as Simpson rule) for a discretized pair.

Also, a rank (level) is assigned based on non-dominated sorting for evaluation
of the quality of the given solutions.

Moreover, the algorithm uses crowding distance concept for variety of solu-
tions.

To compute the crowding distance in order to compare the crowdedness ac-
cording to the Pareto rank (upon the fitness value), we give ascending order to
the sequence for individuals in the rank in according to the fitness of objective
k. For this purpose, let cpg]represent the fitness value of the individual j in the
sequence. Then, crowdedness of the individual j in dimension k in that rank can

be expressed as follows

, [+1] _ li-1]
CECJ] = sijmax sOlrcnin (5)
P — Pr

where ©7'** and @"" represent the maximum and minimum values in objective £,

respectively. Let say individual ¢ in a Pareto rank has m values for m objectives
according to (5). So, one can simply summarize the distances to represent the

overall crowdedness, crowding distance, of this individual as

clil = Z cg] (6)
k=1

where c,[:] is calculated by (5) and ¢ is the crowding distance of individual 1.

@,
* ¢ =c +c
i" E .‘. E
C:I:
l.___l___. .
“ @,

Figure 2: Crowding distance diagram

For i =1 to the maximumiteration we generate child populations via crossover
and mutation and then assign rank (level) with lower rank and more crowding
distance, by (5) and (6), to be able to delete extra population from npop (The

number of population) or generate Pareto set if required.
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We repeat this procedure if state vectors which is obtained from Pareto set
satisfy the terminal condition and let the iterations go on, but if it is otherwise,
the Pareto solution must be deleted from Pareto set and the new set be generated.

An algorithm based on the previous discussions is summarized in the next

section. which is designed in two steps, the initialization step and the main step.

Algorithm of the approach

Initialization step:

Choose an equidistant partition of the time interval [0, 7] as A, with h = %

and equidistant nodes on the set of control values corresponding to ith component
of the control vector function as {u;,, w;,, ..., ui, }.

Main loop:

1. Choose a population of random individuals, i.e., random (2n + 2)— tuples

from the time-control space and numerical solution of ODE (2) as
(uio, ey Ug s Ligs e v vy Xin), .

2. Evaluate objective functions values for each individual.

3. Assign rank based on Pareto dominance.

4. Calculate the crowding distance for each individual.

5. Sort population in a descending manner.

6. Apply the rules of generating new population (such as crossover ).
7. Obtain Pareto set.

8. Generate new set via separating solution from Pareto set satisfying the

terminal condition.

9. Repeat the main step for a predetermined number of iterations.

3.2 Particle swarm optimization

In this section we describe the Particle Swarm Optimization scheme we have used

in the approach.
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The early precursors of PSO were simulators of social behavior for visualiz-
ing bird flocks. In fact, it was through the research in the behaviors of similar
biological communities that they found there exist a social information sharing
mechanism in biological communities. This mechanism provides an advantage for
the evolution of the biological communities and provides the basis for the forma-
tion of PSO. Nearest-neighbour velocity matching and acceleration by distance
were the main rules employed to produce swarming behavior by simple agents in
their search for food, in simulation experiments conducted by [15].

In contrary to traditional evolutionary algorithms which only keep track of
position, PSO maintains information regarding position and velocity (See for
more details [25]). The equations for calculating the next particle velocity and

position in m-dimensional space are:

vi(t + 1) = wu;(t) + crr [pbest;(t) — x;(t)] + cara[gbest — x;(t)], (7)
The i-th particle is commonly represented as x; = (x4, ..., Z,, )-

pbest; is the best previous position for that particle, and gbest is the position
of the best particle in the whole swarm up to that iteration. For particle i velocity
is v; = (Viy,y ..., 0i,).

It is also suggested in [8] to restrict the velocity to a specified range [Vmin, Umaz]-

c1 and ¢y are two positive constants that called learning factors (c; is the
cognitive learning factor and ¢y is the social learning factor). r1,79 € [0,1] are
random values, w is an inertia weight which is employed to control the impact of

the previous history of velocities on the current velocity of a given particle.

3.3 Particle swarm optimization for MOOCP

To apply the PSO strategy for solving MOOCP’s, the original algorithm has to be
modified. The main goals while solving a multi-objective problem are achieve max-
imization of the number of elements of the Pareto optimal set found, minimization
of the distance of the Pareto front produced by algorithm along maximization of
the spread of solutions found ([30]).

When solving single-objective optimization problems, the leader that each
particle uses to update its position is completely determined once a neighbourhood
topology is established. However, in the case of Multi-objective optimization

problems, the historical record of the best solutions found by a particle (i.e.,
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an individual) should be used to store nondominated solutions generated in the
past in a decreasing manner. In other language, for solving a single objective
optimization problem, we assign a rank to each individual such that help in (1)
repeating the last behavior of the individual (2) repeating the search algorithm in
the best space it has been so far and (3) the space where all the population have
been so far. However, in multiobjective optimization problems, since the multi-
objective space is not an ordering type of space, it is impossible to sort the solution
in a descending order and find the best solution in this way. Hence, in MOOP “s
we partition the searching space such that the nondominant solutions put in a
small square. Then, we calculate the possibility of selecting one small square in
Boltzano or Inverse method. The scheme is that the solution with lesser number
of members will be selected for the next iteration which results in more qualified
set of Pareto solution. Also, the benefit of using the partitioning scheme is that
we will reach enough variety in the solution set. Finally, we put all the solution
in a storage, which has an arbitrary size. Hence, to summarize the algorithm it

is to say,

T T T T T T T
: *
_________ S U S S S S = S
N ¥ FiF
: I
S U SN SR S e T T doo o
B Do
= s
O r :' r E *; T T
.................. e ST T
Lk
Fw * ¥
I
Objective 1

Figure 3: Great grid search space
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Algorithm of the approach

Initialization step:

Choose an equidistant partition of the time interval [0, 7] as A, with

h = t”%, and equidistant nodes on the set of control values corresponds to
ith component of the control vector function as {wi,, i, ..., u;, }-
Main step:

1. Choose a population of random individuals, from the time-control space and

numerical solving equation (2) i.e., random (2n + 2)— tuples as
(uioa ceey Wiy Tigs e v vy Xin)a

2. Evaluate objective function values for each individuals.

3. Assign rank based on Pareto dominance.

4. Great grid search space.

5. Any particle selects a leader and update its position.

6. Update the best previous position for any particle.

7. Add non-dominated population to repository.

8. Delete dominated solutions from archive.

9. Delete extra particles from archive and re-create grid search space.

10. If the ending conditions are not confirmed go to step 4 otherwise go to the

end.

4 Numerical Results

In this section the proposed algorithm is examined via two numerical examples.

Example 1. Consider a bi-objective optimal control problem ([4]),

x(.gg(r.l),T {o1(x(.),u(.), T), p2(x(.),u(.), T)}

where
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1
P00 T) = 5 [ o

pa(a()u(),T) = /0 W2(1)dt.

In Figure 4 the control and state functions u, x with accurately values are
shown.

An equidistant partition of the interval [0,1] with 100 nodes was considered.
The results of applying the GA with 100 iterations and population size 100, are
shown in Figures 5 and 6, while, in Figure 5 the functions u, « and the approxima-
tion of these functions are shown. Also, in Figure 6 approximately and accurately

values of functions u, x are shown.

[ 173
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Figure 4: Analytical control and state functions u, x
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Figure 5: Piecewise linear control and state functions u, x
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Position of x, u

posltions

Figure 6: Comparison of approximate and exact control and state

We repeat the procedure for MOPSO with the same example. An equidistant
partition of the interval [0,1] with 100 nodes was considered. The results of apply-
ing the proposed algorithm with 100 iterations and population size 50, are shown
in Figures 7 and 8, while, in Figure 7 the functions u, x and the approximation of
these functions are shown. Also, in Figure 8 approximately and accurately values

of functions u, x are shown.

1

08F uH

06} QX .
&

04r

02r

U_

02k J
04k

T - {F\ J L) \ .\ .-'. AI
08 ‘\;\jr\/ﬂ -v'“\' 7AW v’_\\qux\\f"\_.,qf\wf “.ﬂfij f\A/ .V-\\:’f [

08 . WS )
0 01 02 03 04 05 05 07 08 05 1

t

Figure 7: Piecewise linear control and state functions u, x

Example 2 ( An application to cancer modelling). Consider the following multi-

objective optimal control problem ([29]),
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Figure 8: Comparison of approximate and exact control and state

x('l){lf‘(%j{spl(aj(‘)v u()v T)? 902(x(')7 u()v T)v @3($(‘)7 u()v T)? 904(x(')7 u()’ T)}

s.t:

1
oa(x(),u( ), T) = — /0 W (4) .

0<u,<0.70<urp<9x10".

Here x is the number of healthy CD4+ T-cells, v is the free virus particles and
up, ur are denoted protease inhibitors (PI) and reverse transcriptase inhibitors

(RTT), respectively.

Dynamic behavior of the state variables x,v versus time in the presence of
continues controls (the dashed line), piecewise constant controls (the solid line),
STT controls (the dotted line), with no treatment (Up = UR = 0) (the x shape)
and with fully efficacious treatment (Up = 0.7,UR = 9 x 10710 (the dashed
dotted line) in Figures 9 and 10.

An equidistant partitions of the interval [0, 45] with 100 nodes was considered
(m = 2).



14 Approximate Pareto Optimal Solutions .../ COAM, 1(1), Spring-Summer 2016
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Figure 9: Dynamic behavior of the state variables z versus time
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Figure 10: Dynamic behavior of the state variables v versus time

The results of applying the GA with 100 iterations and population size 50, are
shown in Figures 11 and 12 and the corresponding control functions are presented
in Figures 13 and 14.

We repeat the method for MOPSO with the same example. An equidistant
partitions of the interval [0, 45] with 100 nodes was considered. The results of
applying the proposed algorithm with 100 iterations and population size 50, are
shown in Figures 15 and 16.
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Figure 11: Piecewise linear state function x
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Figure 12: Piecewise linear state function v
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x10™® Positions of UR at t

Figure 14: Piecewise linear control function UR
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Figure 15: Piecewise linear state function x

5 Conclusions

In this paper, a combined computational approach for obtaining approximate
MOOCP is proposed. Although, applying a discretization method to obtain the
trajectory corresponding to each control in each iteration of considered evolution-
ary algorithm may require a lot of computation, but arising the chance of choosing
various solutions in implemented evolutionary algorithm could solve the problem
of being trapped in local minimum points. Further, in this method the nonlinear-

ity of functional and equations does not harden the procedure of the algorithm.
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Figure 16: Piecewise linear state function v

PSO algorithm is not discrete algorithm in general and we need to pay attention

for discrete problems, but for continuous problems one can find an appropriate

solution.
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