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1 Introduction

Infinite Programming problem is an optimization problem on a feasible set described by
infinitely many inequalities in a Banach space B.

In the classical nonlinear programming, the necessary conditions of Fritz-John type
can be viewed as being degenerate when the multiplier corresponding to the objective
function vanishes, since then the function being minimized is not involved. Various sup-
plementary conditions have been proposed under which it is possible to assert that the
multiplier rule holds in the Karush-Kuhn-Tucker (KKT, briefly) form (i.e., the multiplier
corresponding to objective function is equal to one). These conditions are called regularity
conditions.

The theory of optimality conditions for infinite problems can be seen as a natural
extension the classical KKT theory for ordinary nonlinear programming. Several papers
studied infinite problems and gave the KKT necessary conditions (See e.g., [1, 6, 8] and
their references). In these papers, two kinds of regularity conditions (RC in brief) are
usually considered including ” Farkas-Minkowski RC ” and ” closedness RC ”, using
basic/limiting subdifferential or convex ones.

This paper focuses mainly on some kinds of RCs for infinite problem which are based on
Michel-Penot subdifferential, their interrelations, and their applications to KKT necessary
optimality conditions.

The remainder of the present paper is organized as follows. In Section 2, basic notations

and preliminary results are reviewed. In Section 3, we present our main results.

2 Notations and Preliminaries

Let B* be the (continuous) dual space of B and let (z*,z) denotes the value of the
function z* € B* at x € B. If A* C B*, set (A*,z) := {{a*,z) | a* € A*}. The symbols
A, conv(A), and cone(A) denote the closure, the convex hull, and the convex cone
(containing zero) of A C B. When we write C' < 0 for some C' C R, means ¢ < 0 for all
ceC.

Let & € B and let ¢ : B — R be a function. The Michel-Penot (M-P, briefly)
directional derivative of ¢ at & in the direction v € B introduced in [4] is given by

0 (& + av + aw) — (& + aw)

©® (#;v) := sup limsup
weB  al0 a

and the M-P subdifferential of ¢ at & is given by the set

%0 (2) :={€€ B | (&) < ¥ (4;v) VveB}.

The M-P subdifferential is a natural generalization of the Gateaux derivative since it

is known (See [4], Proposition 1.3]) that when function ¢ is Gateaux differentiable at Z,
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0%p(2) = {Dyp(2)} and ¢© (&;v) = ¢ (&,v), where ¢’ (&, v) denotes the usual directional

derivative of ¢ at Z in the direction v, i.e.,

. . I+ av) — ()
/ i 2@
¢ (#,v) := lim a

Moreover when a function ¢ is convex, the M-P subdifferential coincides with the
subdifferential in the sense of convex analysis, denoted by 0.

Given a locally Lipschitz function ¢ : B — R we say that ¢ is M-P regular at & if
¢ (#;v) exists and
(

0% (&5 v) = ¢'(2,0)

for all v € B. Observe that convex functions are examples for M-P regular functions.

In the following theorem we summarize some important properties of the M-P direc-
tional derivative and the M-P subdifferential from [4] and [5] which are widely used in
what follows.

Theorem 1. Let ¢ and @ be functions from B to R which are Lipschitz near . Then,

the following assertions hold:

(i) One always has

X €edp ()}, (1)
0% (o +9) (2) C 0% (&) + 0% (2). (2)

(ii) The function v — ¢ (&;v) is finite, positively homogeneous and subadditive on B

and
0 (9% (#;.)) (0) = 0% (2) . (3)

(iii) 2% (%) is a nonempty, convex and weak star compact of B*.

3 Main Results

We consider the following optimization programming problem:

P) minimize f(x)
st fi(x) <0, teT

where T is an arbitrary set and all emerging functions f and f; for ¢ € T are extended

real-valued locally Lipschitz from the Banach space B.

As a starting, we denote the feasible set of problem (P) with

Q={zeB| fi(z)<0 teT}.
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The contingent cone, the attainable directions cone and the feasible directions cone

of Q at & € Q are respectively defined as:

Ko (%) := {z eB ' dax 4 0, szin—l;z, such that T+ arzr € Q) VEkeN

Aq (2) := {z eB ‘ Yai | 0, szm—éz, such that &+ arz €Q VEk€ N} ,

Dq (&) :={z€B|3e>0 suchthat £+azecQVac(e)}.

For a given & € , let T'( &) denotes the index set of all active constraints at Z, i.e.,

T(#):={teT| f (&) =0}.

Based on the above notations and the Michel-Penot sub-differential, we extend the fol-

lowing RCs to non-differentiable infinite problem (P).
Definition 1. Let & € Q). We say that

1. The First regularity condition (RC', shortly) holds at & if
veB < U a<>ft(@,v> <0b ¢ Ko@)
teT ()
2. The Second regularity condition (RC4, shortly) holds at Z if
veB < U &7 <£>,v> <0 C D).
teT(2)

3. The Threee regularity condition (RC's, shortly)
holds at z if

veB <U 8<>ft(:i*),v>§0 C Aq (7).

teT(2)

4. The Fourth regularity condition (RC}, shortly)

holds at z if
{v eB

Tt is easy to see that Dgq (&) C Aq (&) C Kq (&) C conv (Kgq (2)) and hence the following
relationships among the above constraint qualifications are obvious:

< U a%# (50),11> g()} Cconv (Kq (2)).

tET (&)

RCy = RC3 = RC1 = RCy. (4)



N. Kanzi/ COAM, 1(1), Spring-Summer 2016 25

Remark 1. In particular case where T is a finite set and B has finite dimension, the RC'y,
RC5, RC5 and RCy are similar to the Abadie, Zangwill, Kuhn-Tucker, and Guignard
RCs, respectively, which defined for non-differentiable problems (See e.g., [3]). It is worth
mentioning that if f;s are convex functions, these RCs are equivalent.

The following theorem shows that in M-P regular systems the converse inclusion of

RC'y is always true.

Theorem 2. If for each t € T (%), f; is a regular function at & € €, then

Ko (i) CAveB < U a<>ft<@>,v>so . (5)

teT(z)

Proof. Suppose that z is an arbitrary element of Kgq (%). Then, there exist ar — 07 and
zr — z such that  + arzp € Q for all k£ € N. If ¢; denotes the Lipschitzian constant of
ft near &, then

|fe (2 + arz) — fi (2 4+ axz)| < beak || 2 — 2 || (when ap — 0).

The above relation leads us to

lim |ft (& + apzr) — fi (T + arz)

ar—0 Ak

=0 VteT. (6)

Let £ € T'(#). With regard to f; (&) = 0, feasibility of & + a2y, regularity of fs at &,
and virtue of (6) we conclude

£ (#::2) = lim fi @+ arz) = f; (%)

ak—>0 ak
— lim ff (:?:Jrakz) — ff (f+ak2k)
ar—0 Q.
+ gim J2GE T akzk) = £ (2)
ap—0 A
N fi (@ +akzi) — f; (2)
ap—0 7%
i @A)
ar—0 ag -

Since £ is an arbitrary index in T (), the last inequality and (1) imply that

< U a°r (fc),z>so,
)

teT (&
and hence

zesveDB <U 8<>ft(£),v>§0

teT(2)
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Remark 2. If B =R" then the convexity and closedness of
veB < U 8<>ft(i“),v> <0
teT(2)
implies that the inclusion (5) can be rewritten as
conv (Kq (%)) CvebB < U d° f; (;ﬁ)7v> <0
teT (&)

Therefore, if B has finite dimension and fis for ¢ € T (Z) are regular at Z then the following

implications are fulfilled at Z:
RCy <= conv (Kq (%)) =
veB < U (9<>ft(:f7),v> <0
teT(2)
Before proving the next theorems, we give a lemma, which shall be useful.

Lemma 1. Let & be an optimal solution of problem(P), and the mapping v — f¢(&,v)

be linear. Then,

{veB] fO (@5v) <0} Nconw (Kq (2)) = 0.

Proof. The proof falls naturally into two parts:
Part one. We first establish that

{veB| O (&v) <0} NKq (i) =0 (7)
On the contrary, suppose that there exists © € Kq (%) such that f< (#;9) < 0. Then
f (& +av) - f(2)
a

< f9(#;9) <0,

lim sup
al0

which implies that there exist § > 0 and € > 0 such that
f@+ad)—f(2) <—=da Vae(0,¢). (8)
Since f is Lipschitzian near Z, there exists r > 0 such that
f@+at)—f(@+ad) <la||lu—-70]|, YaueB(@r), 9)

where (¢ is the Lipschitz constant of f near & and B (&,r) denotes the open ball with
center . By the definition of Kgq (£), there exist sequences ar — 07 in R and 95, — © in
) such that & + a0, € Q.

Therefore for k large enough, one has

| o — 0 || < and ar € (0, €).

_%
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Now from (8), (9) and above inequality we can deduce that
f (@ +aiy) — f(2) = f (& +aty) — f (& + ad)
+f(@+a0) - f(2) <
Lrag || 0 — 0 || —0ar < —gak <0.
But this contradicts the fact that & is an optimal solution of (P) and hence (7) holds.

Part two. Let v* € conv (Kgq (Z)). Then, there exist non-negative scalars 81, fa,..., Bm €
R and vectors 01, ¥a,..., Om € Kq (&), such that

Zﬂlil, ’U*:Zﬁz 0.
=1 =1

Using the linearity of f¢ (2;.) and part one, we get
£O (i50%) = £0 <x N m) =Y Bif (&0) = 0.
1=1 =1
Taking into consideration the continuity of f¢ (z,.) and above inequality, it follows that
fO(#;0) >0  forall vcconv (Kq(#)).
The proof is complete. O

Theorem 3. Suppose that & is an optimal solution of problem (P) and the RCy is
satisfied at . If the mapping v — f©(&;v) is linear, then the following inclusion holds:

0 € 9% f (&) + cono U % fy (&)
teT (%)
Proof. Let v is an element of B satisfying
< U o°r (@),@> <0.
teT (&)

Owning to RCy and Lemma 1 we conclude

fe(#0) = 0.

<conv< U a%# (f:)) ,v> <0}7
teT(2)

veRB <com1 U o f, (&) 7v>§0

teT(2)

Thus, we can obtain

@ 0)>0 \me{ueB

in view of

={veB < U 8<>ft(§c),v>§0

teT(2)
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The above result implies that v* = 0 is a global minimizer of the convex function
v— H W)= f°(&;;v) + O(v),

where O(.) denotes the indicator function of set

veDB <conv U o f, (2) 7U><0 ;

teT (%)
ie.
O (v) =0if <W (UteT(i) % fy (;%)) ,v> < 0 and O (v) = 400 otherwise.
Now, by necessary condition for convex optimization problems (See e.g. [2]) and by
the sum rule formula (2) (which equality holds there for convex functions), one has

0€d(f°(a;.)(0)+ 00 (0),

where 0 denotes the subdifferential of convex function ¢ in the sense of convex analysis.
Finally, the virtue of (3) and the fact that © (0) = conv (UteT(i) o° f, (i)), one can
conclude that

0€0%f (&) +eom [ |J 0% (2)

teT(2)

The proof is complete. O

Theorem 4. Suppose that & is an optimal solution of problem (P) and the RC; is

satisfied at £. Then the following inclusion holds:
0€0%f(@)+eomw | |J 0% (2)
teT (%)
Proof. Owning to the equality (7), the proof is similar to Theorem 3. O

Theorem 5 (KKT Necessary Condition). Suppose that & is an optimal solution of prob-
lem (P) and one of the following conditions holds:

e RC, at 2 and linearity of f< (i;.).
[ RC’1 at Z.
o RCQ at Z.

[ RCg at Z.

If cone (UteT(i) o° f, (56)) is a closed cone, then, there exist Ay > 0, ¢t € T (Z), where
At # 0 for finitely many ¢ € T (&), such that

0€d%f(@)+ Y MO (2).

teT(2)
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Proof. Owning to the Theorems 3 and 4, virtue of (4) and the following fact for convex
sets Ay, v €T (Seeeg., [2]):

cone U A, | = { Z Toy Gy

yel’ ~v€Tlo

Iy is a finite subset of I',a, € Ay, ay > 0},

the result is immediate. O

Note that cone (UteT(i) % fy (i:)) is assumed to be closed in Theorem 5. The fol-
lowing example shows that this assumption can not be waived, even when B has finite

dimension and f;s are convex.
Example 1. For all t € T := N, take

Ay = {(a1,a2) € R* | af + a3 — 2tay < 0}.
Set f(x1,x2) := —x1 and

ft(x1,22) == sup (ar1w1 + agxz).
(a1,a2)EA;

It is easy to see that Q = (—o0,0] x (—00,0] and & = (0,0) are respectively the feasible
solution set and the optimal solution of the following problem:

inf {f (x1,22) | fi (x1,22) <0, t€T}.

We observe that T' () = T. Since f; is support function of A;, we obtain 9% f; (&) = Ay,
and hence

cone( |J 99fi(#)) = ((0.+ € fty) x (0,+ € fty)) U{(0,0)},
teT(2)
{veB|( |J 0°f(@),v) <0}=Q.

teT(2)

Owning to Kq () = Q and convexity of € we conclude that the RC; holds at & for
i=1,2,3,4. Note that cone (UteT(ﬁ) % fy (i‘)) is not closed. It is easy to see that there

is no sequence of scalars satisfying Theorem 5. Moreover, it can show that

0€0%f(@)+eomw | |J 0%°f (2)

teT(2)
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