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Abstract. In this paper, we suggest a fifth order convergence
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other three-step methods. The advantages of the method lie in the
feature that this technique not only achieves an approximate solu-
tion with high accuracy, but also improves the calculation speed.
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1 Introduction

The system of nonlinear equations is ubiquitous in many areas of applied mathematics
and plays vital roles in a number of applications such as science and engineering. Most
physical problems, such as biological applications in population dynamics and genetics
where impulses arise naturally or are caused by control, can be modelled by nonlinear
equations or a system of them. The system of nonlinear equations is usually difficult
to solve analytically, therefore a numerical method is needed. Construction of iterative
methods to approximate solution for system of nonlinear equations is one of the most
important tasks in the applied mathematics.

Consider the following system of nonlinear equations:

F (x) = 0, F : D → Rn, (1)

in which F (x) = (f1(x), f2(x), . . . , fn(x)) is a Fréchet differentiable function, D ⊆ Rn,
and x = (x1, x2, . . . , xn)

T is an unknown vector. Suppose that F (x) = 0 has a solution
a ∈ D.

Newton method is undoubtedly the most famous iterative method to find a by using

x(k+1) = x(k) − F ′(x(k))−1F (x(k)) , (2)

that converges quadratically in some neighbourhoods of a ([8], [10]). In recent years,
several iterative methods have been proposed to improve the order of convergence and
efficiency of Newton method (2) to solve the system of nonlinear equations (1), by using
essentially Taylor’s polynomial, decomposition, homotopy perturbation method, quadra-
ture formulas and other techniques ([1], [2], [4], [7], [10], [14], [15]).

In this paper, we introduce an iterative three-step method for solving (1). It is proved
that our method is fifth order convergence and each of its iterations requires two function
evaluations, two first Fréchet derivative evaluations and two matrix inversions. Two
numerical examples are given to illustrate the efficiency and the performance of the new
iterative method. The obtained results suggest that this newly improvement technique
introduces a promising and powerful tool for solving system of nonlinear equations.

This paper is organized as follows. In Section 2, we provide our new method to solve
(1). It is proved that the method is fifth order convergence and efficiency analysis will be
discussed. In Section 3, the proposed method is applied to several types of examples and
the comparisons with the existing numerical solvers are made as reported in the other
published works in this area. Finally, some conclusions are given in Section 4.

2 Solution procedure

Before discussing on the numerical solution for solving (1), we need to consider some
definitions and one theorem.

Definition 1. Let {x(k)}k⩾0 be a sequence in Rn, which converge to a. Then, the
sequence {x(k)}k⩾0 is said to be convergence of order p to a if there exist a constant c
and a natural number N such that ∥x(k+1) − a∥ ≤ c∥x(k) − a∥p, for all k > N .
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Definition 2. Let a be a zero of function F (x) and suppose that x(k−1), x(k) and x(k+1)

are three consecutive iterations close to a. Then, the computational order of convergence
ρ (denoted by COC) is defined by

ρ =
ln(∥x(k+1) − a∥/∥x(k) − a∥)
ln(∥x(k) − a∥/∥x(k−1) − a∥)

.

It is well-known that the computational order of convergence ρ can be approximated
by means of

ρ ≈ ln(∥x(k+1) − x(k)∥/∥x(k) − x(k−1)∥)
ln(∥x(k) − x(k−1)∥/∥x(k−1) − x(k−2)∥)

,

which was used by Cordero and Torregrosa [4].

Definition 3. Let e(k) = x(k)−a be the error in the k-th iteration of an iterative method.
We call the relation

e(k+1) = Ce(k)
p

+O(e(k)
p+1

)

as the error equation.

If we obtain the error equation for any iterative method, then the value of p is its
convergence order.

For the sake of improving the local order of convergence, many modified methods
have been proposed in literatures. In the sequel, we mention some three-step methods.

Darvishi and Barati [5] provided the following fourth order convergence method, in
which each iteration requires two function evaluations, three first Fréchet derivative eval-
uations and two matrix inversions:

y(k) = x(k) − F ′(x(k))−1F (x(k)),

z(k) = x(k) − F ′(x(k))−1(F (x(k)) + F (y(k))),

x(k+1) = x(k) −
[1
6
F ′(x(k)) +

2

3
F ′(x(k) + z(k)

2

)
+

1

6
F ′(z(k))

]−1

F (x(k)).

(3)

Cordero et al. [3] provided the following fifth order convergence method, in which each
iteration requires two function evaluations, two first Fréchet derivative evaluations and
three matrix inversions:

y(k) = x(k) − F ′(x(k))−1F (x(k)),

z(k) = x(k) − 2
[
F ′(y(k)) + F ′(x(k))

]−1

F (x(k)),

x(k+1) = z(k) − F ′(y(k))−1F (z(k)).

(4)

Cordero et al. [2] provided the following sixth order convergence method, in which each
iteration requires two function evaluations, two first Fréchet derivative evaluations and
two matrix inversions:

y(k) = x(k) − 2
3F

′(x(k))−1F (x(k)),

z(k) = x(k) − 1
2 (3F

′(y(k))− F ′(x(k)))−1(3F ′(y(k)) + F ′(x(k)))F ′(x(k))−1F (x(k)),

x(k+1) = z(k) − 2(3F ′(y(k))− F ′(x(k)))−1F (z(k)).
(5)

Soleymani et al. [13] provided the following sixth order convergence method, in which
each iteration requires two function evaluations, two first Fréchet derivative evaluations
and two matrix inversions:
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y(k) = x(k) − 2
3F

′(x(k))−1F (x(k)),

z(k) = x(k) − 1
2 (3F

′(y(k))− F ′(x(k)))−1(3F ′(y(k)) + F ′(x(k)))F ′(x(k))−1F (x(k)),

x(k+1) = z(k) −
[
1
2 (3F

′(y(k))− F ′(x(k)))−1(3F ′(y(k)) + F ′(x(k)))
]2
F ′(x(k))−1F (z(k)).

(6)
Beside above methods, we introduce our three-step method as follows:

y(k) = x(k) − F ′(x(k))−1F (x(k)),

z(k) = x(k) − 1

2

[
F ′(x(k))−1 + F ′(y(k))−1

]
F (x(k)),

x(k+1) = z(k) − F ′(y(k))−1F (z(k)).

(7)

It is clear that each iteration of (7) requires two function evaluations, two first Fréchet
derivative evaluations and two matrix inversions.

Now, we analyze the convergence order of the recently described method. The fol-
lowing theorem shows that the order of convergence is 5.

Theorem 1. Let F (x) be sufficiently differentiable in a neighbourhood of a ∈ D which
is a solution of the nonlinear system (1). Let us suppose that F ′(x) is continuous and
nonsingular in a. If x(0) is sufficiently close to a, then the three-step method defined by
(7) is fifth-order, and satisfies the error equation

e(k+1) = C2
2C3e

(k)5 +O(e(k)
6

),

in which e(k) = x(k) − a, and Ck =
1

k!
F ′(a)−1F (a), k = 2, 3, . . . .

Proof. Using Taylor’s expansion we have

F (x(k)) = F ′(a)
[
e(k) + C2e

(k)2 + C3e
(k)3 + C4e

(k)4 + C5e
(k)5
]
+O(e(k)

6

), (8)

and
F ′(x(k)) = F ′(a)

[
I + 2C2e

(k) + 3C3e
(k)2 + · · ·+ 6C6e

(k)5
]
+O(e(k)

6

). (9)

From (9) we have

F ′(x(k))−1 = F ′(a)−1
[
I + d1e

(k) + d2e
(k)2 + d3e

(k)3 + d4e
(k)4
]
+O(e(k)

5

), (10)

where
d1 = −2C2,
d2 = 4C2

2 − 3C3,
d3 = −8C3

2 + 12C2C3 − 4C4,
d4 = 16C4

2 − 36C2
2C3 + 16C2C4 + 9C2

3 − 5C5.

Then, from (8) and (10), we have:

F ′(x(k))−1F (x(k)) = e(k) + n2e
(k)2 + · · ·+ n5e

(k)5 +O(e(k)
6

), (11)

in which
n2 = −C2,
n3 = 2C2

2 − 2C3,
n4 = −4C3

2 + 7C2C3 − 3C4,
n5 = 8C4

2 − 20C2
2C3 + 10C2C4 + 6C2

3 − 4C5.
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Now, for y(k) we have:

y(k) − a = −n2e
(k)2 − n3e

(k)3 − · · · − n5e
(k)5 +O(e(k)

6

),

and
F ′(y(k)) = F ′(a)

[
I + 2C2(y

(k) − a) + · · ·
]

= F ′(a)
[
I +N2e

(k)2 +N3e
(k)3 +N4e

(k)4
]
+O(e(k)

5

),
(12)

where
N2 = −2n2C2,
N3 = −2n3C2,
N4 = −2n4C2 + 3n2

2C3.

From (12) we have

F ′(y(k))−1 = F ′(a)−1
(
I −N2e

(k)2 −N3e
(k)3 + (N2

2 −N4)e
(k)4
)
+O(e(k)

5

). (13)

From (8) and (13) we have

F ′(y(k))−1F (x(k)) = e(k) + L2e
(k)2 + L3e

(k)3 + L4e
(k)4 + L5e

(k)5 +O(e(k)
6

), (14)

where
L2 = C2,
L3 = C3 −N2,
L4 = C4 − C2N2 −N3,
L5 = C5 − C3N2 − C2N3 −N3 + (N2

2 −N4).

Now, for z(k) we have

z(k) − a = M3e
(k)3 +M4e

(k)4 +M5e
(k)5 +O(e(k)

6

), (15)

where
Mi = −Li + ni

2
i = 3, 4, 5.

Taylor expansion of F (z(k)) is equal to

F (z(k)) = F ′(a)
[
(z(k) − a) + C2(z

(k) − a)2
]

= F ′(a)
[
M3e

(k)3 +M4e
(k)4 +M5e

(k)5
]
+O(e(k)

6

).
(16)

From (13) and (16) we have

F ′(y(k))−1F (z(k)) =
[
q3e

(k)3 + q4e
(k)4 + q5e

(k)5
]
+O(e(k)

6

), (17)

where
q3 = M3, q4 = M4, q5 = M5 −N2M3.

Now, for x(k+1) we have

x(k+1) − a = N2M3e
(k)5 +O(e(k)

6

) = C2
2C3e

(k)5 +O(e(k)
6

). (18)

Therefore,
e(k+1) = C2

2C3e
(k)5 +O(e(k)

6

), (19)
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which shows that the convergence order of the method (7) is five. □

In order to compare the introduced methods, we use the index of efficiency defined
by I = p1/Op, where p is convergence order and ”Op” is the number of operations per
iteration in terms of the number of arithmetic computations. To this end, evaluation
of any scalar function is considered as an operation. We display index of efficiency of
fifth-order Cordero et al. method (4) by ICM5, sixth-order Cordero et al. method (5) by
ICM6, Soleymani et al. method (6) by ISOM , and the proposed method (7) by IEAM .

To calculate the computational cost per iteration of any method, we notice the fol-
lowing facts: Every computation of F (x(k)) requires n evaluations of component scalar
functions fi(x

(k)), i = 1, . . . , n; Every computation of F ′(x(k)) requires n2 evaluations
of scalar functions. A LU decomposition for solving the linear systems involved requires
2

3
n3 floating point arithmetic, while the floating point operations for solving a triangular

system is n2. Also, n3 and n2 operations need to compute a matrix-matrix and a matrix-
vector multiplication, respectively. According to above enumerations, index of efficiency
of different methods are as follows:

IEAM = 5
1

2n+4n2+ 4
3
n3

, IDM = 4
1

2n+6n2+ 4
3
n3

, ICM5 = 5
1

2n+8n2+2n3 ,

ICM6 = 6
1

2n+6n2+ 7
3
n3

, ISOM = 6
1

2n+6n2+ 7
3
n3

.

In Figure 1, efficiency indices of various methods are compared (for n = 2, 3, 4, 5, 6). We
notice that larger n result in exponential decrease in efficiency of the method. Further-
more, our method (7) has the highest efficiency index.

2 3 4 5 6
n (size of system)

E
ffi

ci
en

cy
 in

di
ce

s
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I
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I
CM5

I
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I
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Figure 1: Comparison of efficiency indices

3 Applications and numerical results

In this section, several numerical examples are given to illustrate the accuracy and effec-
tiveness of our method. All computations are done by using a PC with CPU of 2.5 GHz
and RAM 4 GB, and all codes have been carried out in MATLAB, with variable precision
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arithmetic that uses floating point representation of 4096 decimal digits of mantissa. We
accept an approximate solution as the exact root, depending on the precision (ε) of the
computer. We use the following stopping criterion for computer programs:

Error = ∥x(k+1) − x(k)∥+ ∥F (x(k))∥ < ε,

or the maximum number of iterations is maxiter. So, when the stopping criterion is
satisfied, x∗ := x(k+1) is taken as the exactly computed root a. For numerical illustrations
in this section, we used the fixed stopping criterion ε = 10−200 and maxiter = 250.
Example 1. Consider the mixed Hammerstein integral equation [6]

x(s) = 1 +
1

5

∫ 1

0

G(s, t)x(t)3dt,

where x ∈ C[0, 1], s, t ∈ [0, 1] and the kernel G is

G(s, t) =

{
(1− s)t t ≤ s,

s(1− t) s ≤ t.

We transform the above equation into a finite-dimensional problem by using the Gauss-
Legendre quadrature formula given as∫ 1

0

f(t)dt ≈
10∑
j=1

ωjf(tj),

in which the abscissas tj and the weights ωj are determined. Denoting the approximation
of x(ti) by xi, i = 1, 2, . . . , 10, we obtain the system of nonlinear equations

xi − 1− 1

5

10∑
j=1

aijx
3
j = 0, i = 1, 2, . . . , 10,

in which

aij =

{
ωjtj(1− ti) j ≤ i,

ωjti(1− tj) i < j.

The abscissas tj and the weights ωj are shown in Table 1. The initial approximation is
x(0) = [1.5, 1.5, . . . , 1.5]t and the solution of this problem is as follows:

a = [1.0013772322535366 · · · , 1.0067577156846859 · · · , 1.0145195809538557 · · · ,
1.0219909920721493 · · · , 1.0265429339811655 · · · , 1.0265471862815878 · · · ,
1.0220033146356359 · · · , 1.0145387536672509 · · · , 1.0146449605572704 · · · ,
1.0146499054957095 · · · ]t.

Numerical results of the various methods are given in Table 2.

Example 2. To illustrate advantage of our method (7), consider the following nonlinear
system:

x2 + y2 − 4 = 0

−ex + y − 1 = 0.
(20)

There are two exact solutions for this system: a = [0, 2] and b = [−1.5983..., 1.2022...].
The real dynamical planes in R2 and the two solutions (black dots) of the system (20)
are represented in Figure 2. According to the figure, for any starting point arise from the
white or gray regions, the method (7) is converged to the solution in that region, while
starting points from other region fails to converge (The point a = [0, 2] is in the gray
region).
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Table 1: Abscissas and weights for n = 10

j tj ωj

1 0.0130467357414141399610179 · · · 0.03333567215434406879678440 · · ·
2 0.0674683166555077446339516 · · · 0.07472567457529029657288817 · · ·
3 0.1602952158504877968828363 · · · 0.10954318125799102199776746 · · ·
4 0.2833023029353764046003670 · · · 0.13463335965499817754561346 · · ·
5 0.4255628305091843945575870 · · · 0.14776211235737643508694649 · · ·
6 0.5744371694908156054424130 · · · 0.14776211235737643508694649 · · ·
7 0.7166976970646235953996330 · · · 0.13463335965499817754561346 · · ·
8 0.8397047841495122031171637 · · · 0.10954318125799102199776746 · · ·
9 0.9325316833444922553660483 · · · 0.07472567457529029657288817 · · ·
10 0.9869532642585858600389820 · · · 0.03333567215434406879678440 · · ·

Table 2: Numerical results

Function Method Iter Solution ρ Error Time(sec.)
Example 1 EAM 9 a 4.9734 1.75e− 228 61.79

NM 16 a 2.3067 2.26e− 201 52.20
DM 14 a 4.3952 3.53e− 203 116.8
CM5 9 a 4.6762 1.24e− 201 65.28
CM6 9 a 5.9946 2.52e− 225 88.52
SOM 9 a 4.7066 1.07e− 232 94.42
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Figure 2: Real dynamical planes for Example 2.

4 Conclusion

In this paper, we have proposed an efficient iterative method for finding real roots of non-
linear systems. One of the advantages of proposed method is that the convergence order
of this method is five. The calculation speed Improves greatly and it is another consid-
erable advantage of this method. Moreover, satisfactory results of illustrative examples
with respect to the several other methods were used to demonstrate the application of
this method.
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چکیده
هر آن در که دهیم. می ارائه غیرخطی معادلات دستگاه حل برای پنج مرتبه گامی سه روش یک مقاله، این در
کارایی اندیس بنابراین باشد. می معکوس ماتریس دو و تابع فرشه مشتق دو تابع، دو محاسبه مستلزم روش تکرار

بهتر دیگر گامی سه های روش به نسبت فوق روش کارایی اندیس که باشد می 5
1

2n+4n2+4
3n3 برابر فوق روش

نشان آمده دست به عددی نتایج کرد. اشاره بالا دقت و سرعت تکرار، تعداد به می توان روش مزیت های از است.
می باشد. گامی سه روش های دیگر به نسبت فوق روش برتری از

کلیدی کلمات
کارایی. اندیس همگرایی، مرتبه تکراری، روش های غیرخطی، معادلات
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