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1 Introduction

To identify the best solution to optimal control problems, many numerical methods
have been introduced. These methods are classified as direct methods by which many
disadvantages of indirect methods can be eliminated. Direct methods are based on the
transformation of the original optimal control problem into a nonlinear programming
problem (NLP) by discretizing or parameterizing the state and/or control variables
and then solving the resulting NLP problem Also, they can be classified into three
different approaches. The first approach is based on state parameterization only. The
second approach is control parameterization and its idea is to approximate the control
variables and obtain the state variables by integrating the state equations. The third
approach is based on state and control variable parameterization.

Vlassenbrock and Van Dooren in [11]-[12], used Chebyshev polynomials to param-
eterize the state and control variables to solve the constrained and unconstrained non-
linear control problems. Jaddu in [3] proposed a numerical method that is based on
parameterizing the system variables via Chebyshev polynomials to solve the nonlinear
quadratic optimal control problems. In [1], a state-control parameterization method
based on Chebyshev wavelets for solving the optimal control of linear time-varying
systems was used. Also, Kafash et. al. [6]-[5] proposed a method that is based on
state parameterization which solved the optimal control problems using iteration tech-
nique. An efficient recursive shooting method for the optimal control of time-varying
systems with time delay in state variables was introduced in [4]. Mirhosseini et al. in
[7] proposed an iterative method for the control of linear time delay systems. In [8],
the Chebyshev wavelet method was used for solving various optimal control problems.

In this paper, a state-control parameterization method based on using basis poly-
nomials to approximate the state and control variables is presented. Although the
number of unknowns are increased by using this parameterization method, the approx-
imated optimal state and control variables can be obtained at the same time. Also
this parameterization does not need to integrate the system state equations as in con-
trol parameterization. In comparison with other works, the proposed method does not
attempt to use operational matrix to transform the optimal control problem in to op-
timization problem. The focus of this paper is on introducing an applicable numerical
method to find an optimal solution. For this goal, first, we present a brief description
of optimal control problem and state-control parameterization method for solving this
problem. Finally, several numerical examples are presented to illustrate efficiency of
this method.
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2 Optimal Control Problems

Optimal control problem can be considered as a generalization of the classical cal-
culus of variation. The essential parts of an optimal control problem are, a math-
ematical system to be controlled, a desired output of the system, a set of admis-
sible inputs and a performance index or a cost functional that measures the ef-
fectiveness of a given control operation. There are three equivalent optimization
problems, which are called Mayer, Lagrange and Bolza [2]. The performance index
in them is of the form, J(x0, u) = ϕ(t1, x(t1), J(x0, u) =

∫ t1
t0
L(t, x(t), u(t))dt and

J(x0, u) = ϕ(t1, x(t1) +
∫ t1
t0
L(t, x(t), u(t))dt respectively. where, L(t, x(t), u(t)) is the

running cost and ϕ(t, x) is the terminal cost. Generally, in order to get the simplest
mathematical description that predicts the response of the systems to all inputs, a
system described by ordinary differential equation can be considered. Thus, if we let
x(t) ∈ Rl as the state vector of the system and u(t) ∈ Rq as the control vector, then
we can write the state equation in the form of ẋ = f(t, x(t), u(t)) on the time inter-
val [t0, t1] with initial condition x(t0) = x0 . Usually, two different ways of choosing
the control variable exist. First, choosing u(t) as a function of time t , namely open
loop. Second, choosing u(t) as a function of state variable x(t), namely closed loop or
feedback. Finally, in general form, the optimal control problem can be written as:

min J(x, u) = ϕ(t1, x(t1)) +

∫ t1

t0

L(t, x(t), u(t))dt, (1)

subject to:

ẋ(t) = f (t, x(t), u(t)) , (2)
x(t0) = x0. (3)

3 The Proposed State-Control Parameterization

In this section, we describe our proposed method to determine the solution to optimal
control problems. The method is based on applying the state-control parameterization
technique and uses basis polynomials. Let Q ⊂ C1([t0, t1]) be a set of all functions
satisfying initial condition (3), and then consider Qn as a subset of Q consisting of
basis polynomials of degree at most n (Q0 = 1, Q1(t) = t,Q2(t) = t2, ...) and consider
the minimization of J on Qn with {ak}nk=0 and {bk}nk=0 as unknowns. In this manner,
the state and control variables can be considered as follows:
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x̂n(t) =

n∑
k=0

akt
k, (4)

ûn(t) =

n∑
k=0

bkt
k. (5)

By substituting (4) and (5) in to (1) and then integrating over the time interval [t0, t1],
the performance index can be computed easily.

Ĵ = ϕ(t1,

n∑
k=0

akt
k
1) +

∫ t1

t0

L(t,

n∑
k=0

akt
k,

n∑
k=0

bkt
k)dt, (6)

Also, we obtain the following system of equations by conditions (2) and (3):

k
n∑

k=1

akt
k−1 = f(t,

n∑
k=0

akt
k,

n∑
k=0

bkt
k), (7)

x̂(t0) =

n∑
k=0

akt
k|t=t0 = x0. (8)

This process yields the solution to problem (1)-(3) via the following problem:

min
(a0,a1,...,an,b0,b1,...,bn)∈R2n+2

Ĵ(a0, a1, ..., an, b0, b1, ..., bn) (9)

subject to:{
k
∑n

k=1 akt
k−1 = f(t,

∑n
k=0 akt

k,
∑n

k=0 bkt
k),

x̂(t0) =
∑n

k=0 akt
k|t=t0 = x0.

(10)

If we let α = (a0, a1, ..., an) and β = (b0, b1, ..., bn), then problem (9) subject to con-
straints (10) can be written as the following optimization problem:

min
(α,β)∈R2n+2

Ĵ(α, β) (11)

˜ subject to:

P [α, β] = h, (12)

where P is the coefficient matrix of constraints (10).
In fact, problem (1)-(3) are converted to optimization problems (11)-(12) with 2n+2

unknowns (α, β) = (a0, a1, ..., an, b0, b1, ..., bn). Solving this problem is easier than the
original one by using well-developed algorithms. The following algorithm shows the
process of transforming optimal control problems (1)-(3) into optimization problems
(11)-(12).
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Algorithm
Input: Optimal control problem (1)-(3).
Output: The approximate optimal trajectory, approximate optimal control and ap-
proximate performance index Ĵ .

Step 0: Choose ϵ > 0 and let n = 2.
Step 1: Approximate the state and control, variables by the nth basis polynomials

from equations (4)-(5).
Step 2: Find an expression of Ĵn from equation (6).
Step 3: Determine the set of equality constraints due to conditions (7)-(8) and find

matrix P .
Step 4: Determine optimal parameters (α∗, β∗) by solving optimization problem

(11)-(12) and substitute these parameters into equations (4)-(6) to find the approximate
optimal trajectory, approximate optimal control and approximate performance index
Ĵn .

Step 5: Let n+ 1 → n and go to step 1.
Step 6: If |Jn+1 − Jn| ≤ ϵ then stop otherwise, return to Step 5.

4 Convergence Analysis

Theorem 1. Let f ∈ (C[a, b], R). Then there is a sequence of polynomials Pn(x) that
converges uniformly to f(x) on [a, b].

Proof. See [9]. □

Lemma 1. If γn = infQn J ; (n = 1, 2, 3, ...) then limn−→∞(γn) = γ where γ = infQ J .

Proof. If we define:
γn = min

(αn,βn)∈R2n+2
J(αn, βn),

then
γn = J(α∗

n, β
∗
n),

where
(α∗

n, β
∗
n) ∈ argmin{J(αn, βn) : (αn, βn) ∈ R2n+2}.

Now, let (x∗n(t), u∗n(t)) ∈ argmin{J(x(t), u(t)) : (x(t), u(t)) ∈ Qn}, then

J(x∗n(t), u
∗
n(t)) = min

(x(t),u(t))∈Qn

J(x(t), u(t)),

in which Qn is a class of basis polynomials in t of degree n, so
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γn = J(x∗n(t), u
∗
n(t)).

Furthermore, according to Qn ⊂ Qn+1, we have:

min
(x(t),u(t))∈Qn+1

J(x(t), u(t)) ≤ min
(x(t),u(t))∈Qn

J(x(t), u(t)).

Thus, we will have γn+1 ≤ γn, which means γn is a non-increasing sequence. Also, this
sequence is upper bounded, and therefore is convergent. Now, the proof is complete,
that is:

lim
n−→∞

(γn) = min
(x(t),u(t))∈Q

J(x(t), u(t)). □

5 Numerical Examples

In this section for illustrating the efficiency of our proposed method, four optimal
control examples are considered. Three first examples have analytical solutions and
thus are suitable for validating the proposed method by comparing the results of exact
solutions. Also, because there is no analytical solution for fourth example (Van der Pol
problem), the approximated solutions of states and control variables are compared by
state parameterization method.

Example 1. Our goal is to find the optimal control which minimizes the following
optimal control problem:

min J =
1

2

∫ 1

0
(x(t)2 + u(t)2)dt

subject to:{
ẋ(t) = −x(t) + u(t),

x(0) = 1.

The analytical solution of this example is [10]:{
x(t) = cosh(

√
2t) + δ sinh(

√
2t),

u(t) = (1 +
√
2δ) cosh(

√
2t) + (

√
2 + δ) sinh(

√
2t),

where,

δ = −cosh(
√
2) +

√
2 sinh(

√
2)√

2 cosh(
√
2) + sinh(

√
2)
.

The exact solution for the performance index is 0.1929092981.
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Table 1: Comparison between exact and approximate solutions’ performance indexes

n J Error
2 0.1942959002 1.3e−3

3 0.1929316056 2.2e−5

4 0.1929094450 1.4e−7

5 0.1929092990 9.0e−10

We use our proposed method for solving this problem and present the obtained
results in Table 1.
As seen from Table 1, when we increase n, we can obtain the results of performance
index J more close to the exact solution. The simulation curves of x(t) and u(t) in
comparison by their exact solutions and the error functions |x∗(t)− x(t)| and |u∗(t)−
u(t)| are shown in Figure 1.

Example 2. Our goal is to find the control which minimizes the following optimal
control problem:

min J =

∫ 1

0
(
5

8
x(t)2 +

1

2
x(t)u(t) +

1

2
u(t)2)dt,

subject to: {
ẋ(t) = 1

2x(t) + u(t),

x(0) = 1.

The analytical solution in this example is:{
x(t) = cosh(1−t)

cosh(1) ,

u(t) = − (tanh(1−t)+0.5) cosh(1−t)
cosh 1 ,

where the exact solution for the performance index is J = 0.3807970779. The proposed
method is used for solving this problem and obtained results for performance index
J are shown in Table 2. Also, in Figure 2, the obtained solutions and the analytical
solutions of state and control variables and their errors ( |x∗(t)−x(t)| and |u∗(t)−u(t)|)
are plotted.
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Figure 1: Plots of the numerical solutions compared by exact solutions and the absolute errors for
Example1.

Table 2: Comparison between exact and approximate solutions’ performance indexes

n J Error
2 0.3808837656 8.6e−5

3 0.3807998336 2.7e−6

4 0.3807970803 2.3e−9

5 0.3807970780 1.0e−10
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Figure 2: Plots of the numerical solutions compared by the exact solutions and the absolute errors for
Example 2.

Example 3. Consider the optimal control of a linear oscillator:

min J =
1

2

∫ 0

−2
u(t)2dt,

subject to:

ẋ(t) = y(t),

ẏ(t) = −x(t) + u(t),

x(0) = 0,

y(0) = 0,

x(−2) = 0.5,

y(−2) = −0.5.

The analytical solutions of this example are:
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
x(t) = 1

2(At sin t+B(sin−t cos t)),
y(t) = 1

2(A(t sin t+ t cos t) +Bt sin t),

u(t) = A cos t+B sin t,

where

A =
2(sin 2 + 0.5(2 cos 2− sin 2))

4− sin2 2
,

and

B =
2(− sin 2 + 0.5(2 cos 2 + sin 2))

4− sin2 2
.

Also, the exact solution for the performance index is:

J =
1

8
(4(A2 +B2) + (A2 −B2) sin 4− 4AB sin2 2) = 0.184858542.

In Table 3 The optimal performance index J obtained by the proposed method
is shown and the obtained solutions and the analytical solutions of state and control
variables and their errors (|x∗(t)− x(t)|, |y∗(t)− y(t)| and |u∗(t)− u(t)|) are plotted in
Figure 3.

Table 3: Comparison between exact and approximate solutions’ performance indexes

n J Error
4 0.1849168910 5.8e−5

5 0.18487352976 1.4e−5

6 0.1848585741 3.2e−8

7 0.18485854440 2.4e−9

Example 4. Consider the Van der Pol oscillator problem:

min J =
1

2

∫ 5

0

(
x(t)2 + y(t)2 + u(t)2

)
dt,

subject to:

ẋ(t) = y(t),

ẏ(t) = −x(t)− (x(t)2 − 1)y(t) + u(t),

x(0) = 1,

y(0) = 0,

x(5) = −1,

y(5) = 0.
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Figure 3: Plots of the numerical solutions compared by the exact solutions and the absolute errors for
Example 3.

The optimal performance index J obtained by the proposed method is 2.140571429
for n = 4 which is in consonance with the solutions obtained by state parameteriza-
tion (if we parameterize only state variables). Also, the approximate solution to the
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Figure 4: Plots of the numerical solutions compared by state parameterization for Example 4.

performance index given in [5] by three iterations is J = 2.143904324. In Figure 4,
the obtained solutions by our proposed method compared by state parameterization
method are plotted.

6 Conclusion

In this paper, an efficient numerical method based on state-control parameterization
was presented. In comparison with other methods that use state-control parameteri-
zation, our method is more applicable and does not require complicated computations.
Several illustrative examples were studied in details to show the efficiency and reliability
of the presented method.
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چکیده

ارا ئه حالت-کنترل سازی پارامتری پایه بر عددی روش یک بهینه، کنترل مسئله یک از جوابی آوردن دست به منظور به
کنترل و حالت متغیرهای عملکرد، شاخص تقریب با بهینه کنترل مساله حل ساده سازی باعث پیشنهادی روش است. شده

است. شده تایید پیشنهادی روش کارایی عددی، مثال چند حل با هم چنین می شود. زمان از تابعی حسب بر
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