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1 Introduction

Ordinary differential equations systems are very useful to model natural phenomena in many
areas for many years. Also, time delay is a widespread phenomenon which appears in the most
models. Therefore, the study of delay differential equations systems is important in scientific
and practical problems, for example in investigating delay neural networks, [9, 10, 16, 27, 29]
and references therein.

Artificial neural network (ANN) as an information processing system is introduced by Hop-
field in 1984. Then, Marcus and Westervelt proposed a neural network with time delay in 1989.
These delays are due to the finite switching speed of amplifiers in electronic neural networks,
or due to finite signal propagation time in biological networks. During the last 30 years, many
kinds of delayed neural networks have been used in different fields, such as associative memory
[9, 25, 26], pattern recognition [13], optimization [1], signal processing [2] and so on. Further-
more, study on the dynamics of delayed neural networks has attracted the attention of many
researchers, [1, 2, 9, 10, 11, 12, 13, 14, 15, 16, 18, 25, 26, 27, 28, 29].

Delay neural networks are large-scale nonlinear dynamical systems with complex behav-
iors, such that their dynamics are richer and more complicated than neural networks without
delay. In 1987, because of exhaustive analysis of large-scale delayed neural networks, Bobcock
and Westervelt suggested studying carefully the simple neural networks from the viewpoint of
dynamical behaviors such as stability, periodic solutions and etc. Then, they may be carried
these results on (over to) large systems. Furthermore, we should be mentioned that among
neural networks, ring networks have been found widely in some structures such as neocortex,
chemistry, electrical engineering. In fact, these systems are discussed to understand the behav-
iors of recurrent networks.

One of works on ring networks is the study of Wei and Li [20] which they considered a ring
with three neurons and studied the global existence of periodic solutions in the network. They
presented the following system with three different time delays

.i‘l(t) = — T (t) +ax tanh(arg(t — 7'1)),
Zo(t) = —pxa(t) + ag tanh(xq (t — 72)), (1)
E3(t) = —pas(t) + ag tanh(xa(t — 73)).
Although, the activation function in this model was not in the general form, they used the
function “tanh”, and every neuron had only a connection with one of other neurons but the

existence of different time delays was the advantage of this model.
After that, Wei and Velarde [21] developed the model of [20] as follows

#1(t) = —pax1(t) + fi(@s(t — 73)),
Bo(t) = —poxa(t) + fa(z1(t — 1)), (2)
E3(t) = —psws(t) + fa(w2(t — 72)).

In this model, the activation functions have been considered in general form and the internal

decay rates were assumed different. Wei and Velarde [21] investigated only the influence of
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different time delays on the stability and bifurcation of system (2). Notice that the connections
between neurons in system (2) were not bidirectional.
After that, Song et al. [17] considered the following bidirectional associative memory neural
network
#1(t) = —pa@1(t) + car fi(z2(t — 12)) + a1 f1(wa(t — 72)),
Ba(t) = —pawa(t) + crafo(z1(t — 71)), (3)
#3(t) = —psws(t) + ez fa(z1(t — 1)),

where f; s denoted the activation functions with general form and the real constants ¢;1 (I = 2, 3)
and c1,(k = 2, 3) denoted the connected weights through the neurons in two layers. This system
was not a ring network since there was not any connection between x, and z3 but the study
of this model helps us to propose our model. One year later, Yan [22] considered a delayed

tri-neuron network by extending of system (3),

@1(t) = —pwi(t) + f(21(t) + frz(@2(t — 7)) + fis(zs(t — 7)),
Ba(t) = —pwa(t) + f(@2(t) + fa(z1(t — 7)) + fos(zs(t — 7)), (4)
@3(t) = —pas(t) + f(xs(t)) + far(x1(t — 7)) + faa(w2(t — 7)),

where f;;’s were activation functions in general form and p was same s in systems (2) and
(3). Tt should be mentioned that this network is a bidirectional ring network with different
activation functions in general form but the time delay between connections are the same. The
positive point of this model was that they assumed self-connections in their model which had
not been investigated before that time. The model of Yan was similar to the model which we
would like to propose, but we interested in studying a model with different time delays, internal
decay rates and connected weights. Finally, we studied the work of Zou et al. [29] which
modeled a bidirectional three-unit ring network by the following system of delay differential

equations in a parameter space consisting of two different delays,

Z1(t) = —px1(t) + atanh(za(t — 72)) + atanh(zs(t — 1)),
&a(t) = —paa(t) + atanh(xs(t — 7)) + atanh(z (t — 1)), (5)
x3(t) = —pws(t) + atanh(xi(t — 7)) + atanh(zs(t — 71)),

where a(# 0) is the connection strength, and tanh(x) is the activation function.

In this paper, we combine the idea of models (4) and (5), then we can extend them to a gen-
eral ring network for three neurons. In fact, these studies motivate us to propose a bidirectional
neural network with self connection and arbitrary activation functions. Moreover, it should be
noted that none of them did not study the asymptotically stability and exponential stability
of equilibrium of their models. Therefore, the aim of our work is to investigate asymptotically
stability and exponential stability in our network. For proposing our model, we use coupled
cell network theory as a new theory which is formalized in [4, 5, 6, 7, 19]. In this theory, every
system (neuron or other systems) is called a cell. In fact, a coupled cell network is a directed
graph with vertices as cells and directed edges as connections between cells. We should be point
out that there are not many studies on coupled cell systems with discrete delays. Because of the

generality of coupled cell network theory, we are interested in studying these systems. In [3],
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we study the dynamics of two-cell systems with discrete delays. In this study, we extend the
above models by applying the coupled cell network theory. Indeed, we present a new tri-cell
network with bidirectional connections and self-connections with different delays in transferring
data between cells. In our network, each cell can be assumed as a neuron or another thing
(for example in signaling networks; protein, gene or etc.). We would like to investigate global
asymptotic and exponential stability of this tri-cell network.

We develop the above neural networks as follows by using some ideas of [14]

y=—Dy+1f(y)+ Bg(y(t — 1)) + Ch(y(t — 72)) (6)
such that y(t) = (y1,y2,y3)", D = diag{dy,ds,d3} with d; >0, i =1,2,3, and
0 0 b3 0 c2 O fi(y1)
B:i=1|byy 0 0|, C:=10 0 ecs|, fW=]|rwl,
0 b3 O cai 0 0 f3(y3)
g1(y(t — 1)) ha(y(t — 72))
gyt —m)) = | galy(t —m)) | s Ryt —72)) = | haly(t — 7)) |
g3(y(t — 1)) hs(y(t — 72))

where f is assumed a second order function, f(0) = 2—5(0) = 0 and ¢g(0) = h(0) = 0. Therefore,
origin is an equilibrium point of (6). Our model is bidirectional with two loops where one
direction is with time delay 7 and the other direction is with different time delay 75. Also, our
network is with instantaneous self-connection and arbitrary activation C*-functions. We would
like to mention that to facilitate the design of neural networks, it is necessary and important
that the neural networks with general activation functions are studied.

In this study, our main aim is to obtain sufficient conditions that guarantee global asymp-
totic and exponential stability of system (6). To the best of our knowledge, there has not been
any work so far considering the globally asymptotic and exponential stability of system (6)
which is very important in theories and applications and also is a very challenging problem.
Motivated by the above considerations, in the next section, we will study the effect of the time
delay parameter on asymptotic and exponential stability of system (6) under weak conditions
which are independent of time delays. Finally, we show that our results agree with numerical
simulations.

2 Main Results

Consider system (6) with the network which is illustrated in Figure 1.
In the process of stability analysis of origin as an equilibrium point in system (6), we use
the following notations

(Hi)

Y=, f(y) =n2, 9(y(t)) = ns,
gyt —m)) =ns, k@) =ns, Ayt —"12)) =ne.
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Figure 1: Bidirectional tri- cell network

where 7, € R3,i=1,---,6.
Also, we assume that

(Hs) for given € > 0, if s € N.(0) then DT f;(s) >0, j=1,2,3,

where D shows the upper right Dini derivative and

D* £, (s) = limsup 228 F 2D = f5(5)
At—0+ At

(H3) functions g and h are decreasing on intervals [t — 71,¢] and [t — 7o, t], respectively.

(Ha) 0> 3, fori=1,2,3.

In this system, we would like to obtain sufficient conditions of global asymptotic stability and

exponential stability of origin. For this aim, we define the following function

vi(t) 3 t 3 t
v =23 / fils)ds +3 / P ys)ds + 3 / B2 (y(s))ds. (7)

i=1

In the following lemma, we show that V(¢) has the properties of Lyapunov function.

Lemma 1. Consider (7), thus
1. V(t) >0 for all ¢,
2. V(t) = 0 for a special ¢ if and only if y(t) = 0.

Proof. At first, we prove that V(t) > 0, for all t € R. It is clear that gZ(y(s)) > 0, h2(y(s)) > 0.
We know that if f > ¢, then fab f(s)ds > f:g(s)ds provided that a < b. Moreover, t — 1 < t,
t—7y < tand thus 27, f:fn G2(y(s)ds >0, 57, ftt—-rQ h2(y(s))ds > 0. It is thus enough to

K2
show that s

i (t)
23" [ =0 (®)

i=1
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According to (Hz), f;’s, j =1,2,3 , are increasing for s € N.(0):

D+fj(5) > 0= limsup fi(s + Dt) = £5(s)
At—0+ At

> 0= fi(s+ At) > fi(s). (9)

Therefore, for every s > 0, we conclude that f;(s) > f;(0) = 0. In addition, we know that
yi(t) > 0 and then [; i{® fi(s)ds > 0. This part of proof is complete.

It is not hard to show that if y(¢) = 0 for a special ¢ , then V' (t) = 0. The origin is an equilibrium
point of system (6), so g(0) = h(0) = 0. Also [ fi(s)ds = 0. Hence, if y(t) = 0 then

—22/ fils ds—I—Z/ g2( ds-i—Z/ =0. (10)
O

Now, by aid of this Lyapunov function we can investigate globally asymptotically stability

of origin.

Theorem 1. The Origin, as an equilibrium point, at system (6) is globally asymptotically
stable if nZ (n2 + Bna + Cng) < 0.

Proof. By differentiating of both sides of (7) and using the notation(H;), we have

=2 Z Jilyi ()4 (t) + Z g: (y(t = m))) + Z(h?(y(t)) = hi(y(t = 72)))

= QfT(y( )H(t) + 9" (y()g(y(t) — g" (y(t —m)g(y(t — 1))
+ R (y()h(y(t) — b (y(t — 72))h(y(t — 7))
=2,  (=Dy + I'f(y) + Bg(y(t — 1)) + Ch(y(t — 72))) + 13" n3
—na a4 15 15 — 6" e
= 2" (=Dny + Ina + Bna + Cne) + 13" ns — na na 415" ns — 06" 16
= —2n" Dy + 202" (112 + Bna + Crg) + 13" m3 — na” ma + 15" 15 — 16" M-

According to condition (Hs), functions g and h are decreasing. Thus

n3Tms —maTmy <0,
ns s — ne’ ne < 0.

Indeed, it suffices 73 (72 + Bna + Cng) < 0 then V(t) < 0, since d; > 0 for i = 1,2, 3. O
In the classic analysis, the existence of a positive Lyapunov function helps us to investigate

exponential stability of a system. Now, we claim that system (6) at origin is exponential

stability. We prove it as follows by using Lyapunov function (7).

Theorem 2. The origin, as an equilibrium point, at system (6) is exponential stable if
nE (s + Bny+Cng) <O0and d; >1,i=1,2,3 .
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Proof. According to condition (Hjs), continuous functions g;’s, h;’s are decreasing on [t — 71, t]
and [t — 79,t]. Hence, we can define the following terms for ¢ =1,2,3

Mg = max |gi(y(s))], my, = min [g:(y(s))|
SE[t—T1,t] SE[t—T1,t]
My = max |hi(y(s))l, mp, = min |hi(y(s))].
SE[t—Ta,t] SE[t—Ta,t]
Thus
t
| stuends < a7
t—1
' M*2
S m;? g7 (y( ))Tla
*2
or < mg? 9:°(y(t — m1))71,
and
t
/ h2(y(s))ds < Mj*r
t—T2
M2,
< 5 i t ’
> m;f (y( ))72
M2,
or < g Syt — )7
As a result
3 t
> [ sons< Z i g2 ()
i=17/t-T gi
< Byms 371
or < Bgni mam
and
[ M2
hi(y(s))ds < w5 hi” (y(t)m2
>/ 2 i
T
< Buns 1572
or < Brma 6T
*2 *2
where 3, = (Hs), the function

fi is increasing on the interval 0 , it and maxXgeo.q, )] Ji(s) = fi(yi(t)). It is easy to see that
E[ 7yb( )

foyb(t) fi(s)ds < fi(y:(t))yi(t). By substituting the above equations in the Lyapunov function

V(t), Eq. (7), we have
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Yi (t)

—22/ 8))d8+§;/ti72h2

< QZfz yi(t )+ Byms m371 + Bz 1572

ds+2/

_7-1

<231 + Bgna 3T+ Brma 15T

Also, it is not hard to compute

3
V() <2 filyi(®)yit) + Bani nars + Bung neT2

i=1

<203 1+ By nat1 + Buig MeT2-
Moreover,
V(t) < —208 Dy + 208 2 + 203 Bna + 208 Cie + 12 ns — T na + nF s — nd .
We know D = diag{d;}3_;. If d; > 1 then —2nJ Dn; < —2nZ'In;. Furthermore, if
n3 (12 + Ba + Cg) < 0
and condition (Hj3) are satisfied, then
V(t) < —2n3 Dy < =203 Ty (11)

We assume that the specific ¢y such that nZ'n; is sufficiently large for all ¢ > to and nf ns < nd'ny,
nins <ndm. Hence V() < (24 By71 + BuTe)nd mi. Since v = 2+ By71 + B2 > 0, we have

@ <y (12)

. -2
By using (11) and (12) we have V(t) < ;V(t), therefore

—2(t—tg)

MV (t) — InV (k) < %(t—to) S V() < e (1), (13)

By the definition of V(¢), we also have

3

yi(t)
v =2y [T g

gl
> 2 filys(0)wi(t)
i=1

Define £ := %&gm, it is clear that 2f;(y;(t)) = &yi(t) for i = 1,2,3. By using (Hy), & > 1.

Therefore
3
t) > 52 yi(t)yi(t) (14)

> Elly(®)l. (15)
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Then, by applying (13) and (14), we have

[y < (V(to)g e ¢=10) (16)
< (V(to))e™ =) vt > ¢ (17)
and the proof of exponential stability of system (6) is complete. O

Theorems 1 and 2 show that global asymptotic and exponential stability of system (6) do
not dependent on delays.

3 Numerical Simulation

Now, in order to confirm our theoretical results in the previous section, we consider the following

tri-cell network with two time delays

91 = —6y1 + (y1 +0.3y7) — 2(ys(t — 1)) — 2(y2(t — 72)),
Yo = —Ty2 + (y2 + 0.3y3) — 3(y1 (t — 11)) — 2(y3(t — 72)), (18)
s = —Tys + (y3 +0.3y3) — 2(y2(t — 71)) = (v (t — 72)).

2
2

First, we consider (18) with 73 = 3, 7o = 7 and initial value (1.5,0.5,2.5). In this case,
the settling time is larger than 60. By Theorems 1 and 2, we expect global asymptotic and
exponential stability of the origin, see figures 2, 3 and 4. Also, by these theorems, the stability
of the origin is independent on delays. Second, we consider (18) with 7, = 0.3, 72 = 0.7 and
initial value (1.5,0.5,2.5), see figures 5, 6 and 7. Noted that the settling time is almost 4. In
these two cases, solutions are stable but it should be noted that if time delays are large, then
the settling times for solutions are so large. Thus, we change the constant value of C' matrix

and we check the settling time for the following system when 7y =3, 7, =7

g1 = —6y1 + (s +0.3y3) — 2(ys(t — 1)) — 0.08(y2(t — 7))
Yo = —Tya + (y2 + 0.3y3) — 3(y1(t — 11)) — 0.5(y3(t — 7)) (19)
g3 = —Tys + (ys +0.3y3) — 2(y2(t — 1)) — 0.1(y1(t — 72)).

See figures 8, 9 and 10. The settling time is almost 15.
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solution ¥
=
T

_1 i 5 1 1 1 1 1 1 1 1 1
0 20 40 =in] 80 03 1200 140 180 180 200

time t

Figure 2: Solution y; of system 18 with 71 = 3, 72 = 7 and initial value (1.5,0.5,2.5).

s T T T T T T T T T

=

m
T

1

solution ¥y

_2 1 1 1 1 1 1 1 1 1
0 20 40 =in] 80 030 120 140 160 180 200

time t

Figure 3: Solution y» of system 18 with 71 = 3, 72 = 7 and initial value (1.5,0.5,2.5).
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24 T T T T T T T T T

in
T

solution ¥
T

=
in
T

_1 1 1 1 1 1 1 1 1 1
0 20 40 B0 80 03 1200 140 160 180 200

time t

Figure 4: Solution ys of system 18 with 71 = 3, 72 = 7 and initial value (1.5,0.5,2.5).

=
in
1

solution ¥

)

-0 1

1 1 1 1 1 1 1
a 2 4 G a 10 12 14 16 18 20
time t

Figure 5: Solution 41 of system 18 withmy = 0.3, 72 = 0.7 and initial value (1.5,0.5,2.5).
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0.6 T T T T T T T T T

04 1

021 1

solution ¥y
-
=
1

-0s |

Figure 6: Solution y2 of system 18 withmy = 0.3, 72 = 0.7 and initial value (1.5,0.5,2.5).

25 T T T T T T T T T

i
i
1

solution ¥s
1

=
o
1

20

=)
)
=
=k
=3
=}
[}
=
-
=]
@

Figure 7: Solution ys of system 18 withmy = 0.3, 72 = 0.7 and initial value (1.5,0.5,2.5).
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o7

solution ¥,

14 T T T T T
1 L waf
o0&t —
a
045 o
o B
_15 1 1 1 1 1
0 g 1o 15 20 25 30
time t

Figure 8: Solution y; of system 19 with 7 = 3, 72 = 7 and initial value (1.5,0.5,2.5).

solution ¥y

Figure 9:

0.4F

0.z

o

=
b

=
=

0.6

0.8

_12 1 1 1 1 1
0 5 10 15 20 25 an
time t

Solution y2 of system 19 with 7 = 3, 72 = 7 and initial value (1.5,0.5,2.5).
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25

solution ¥s
1

0.5 B

_05 1 1 1 1 1
0 ] 10 14 20 25 30

Figure 10: Solution ys of system 19 with 71 = 3, 72 = 7 and initial value (1.5,0.5,2.5).

4 Conclusion

In this paper, we studied a tri-cell network with activation function may be neither bounded nor
differentiable in connection with itself and activation functions in connection with other cells
considered decreasing. We obtained independent conditions of delay for global asymptotic and
exponential stability of the network. Moreover, we verified our analytical results by numerical

examples.
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