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Abstract. Todays, using automated guide vehicles (AGV) for container handling
in ports and flexible material handling in manufacturing are getting more attentions.
These vehicles are without drivers and are controlled by computers. One of the
challenges for these vehicles is to schedule several vehicles with some constraints in
appointment and delivery times of container jobs. This type of problem is often
modelled as Minimum Cost Flow (MCF) problem, which is one of the most well-known
problems in the area of network optimisation. To tackle the MCF problem, Network
Simplex Algorithm (NSA) is the fastest solution method. NSA has three extensions,
namely Network Simplex plus Algorithm (NSA+), Dynamic Network Simplex Algo-
rithm (DNSA) and Dynamic Network Simplex plus Algorithm (DNSA+). NSA and
NSA+ start from scratch without reconsidering the pre-established schedules. DNSA
and DNSA+ repair the solution rather than starting from scratch. The objectives
of the research reported in this paper are to simulate and investigate the advantages
and disadvantages of NSA compared with those of the three extensions in practical
situations. To perform the evaluations, an application of these algorithms to the
scheduling problem of automated guided vehicles in container terminal is used. In
the experiments, the number of iterations, CPU-time required to solve the problems,
overheads and complexity are considered. The experimental results show that the main
advantage of the dynamic algorithms over NSA and NSA+ is their performance..
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1 Introduction

In the past few decades, much research has been devoted to the technology of automated guided
vehicle (AGV) systems, both in hardware and software. Nowadays, they have become popular
over the world for automatic material handling and flexible manufacturing systems. Increas-
ingly, these unmanned vehicles are also becoming the common mode of container transport in
the seaport.

This paper is motivated by a need to schedule Automated Guided Vehicles AGVs) in con-
tainer terminals, which is one of the challenging problems in transportation area. The container
terminal components that are relevant to our problem include quay cranes (QC), container
storage areas, rubber tyred gantry crane (RTGC) or yard crane, and a road network [40]. A
transportation requirement in a port is described by a set of jobs, each of which is being charac-
terized by the source location of a container, the destination location and its pick-up or drop-off
times on the quay side by the quay crane. Given a number of AGVs and their availability, the
task is to schedule the AGVs to meet the transportation requirements. This transportation
problem is formulated as a Minimum Cost Flow (MCF) model. We choose this problem be-
cause the efficiency of a container terminal is directly related to the use of the AGVs with full
efficiency (see [4] , [8], [19],[29], [36], [50]).

The problem, here, is to schedule a number of Automated Guided Vehicles (AGVs) to
transport container jobs inside the terminal statically and dynamically. In the static problem,
where there is no change in the situation whereas in dynamic ones, the problem changes over
time. The components that are relevant to the problem include quay cranes, container storage
areas, and a road network [36]. The transportation requirement in a port is described by a
set of jobs, where each job is characterized by the source location of a container, the target
location and the time of its picking up or dropping-off on the quay-side by the quay crane.
Given a number of AGVs and their availability, the task is to schedule the AGVs to meet the
transportation requirements. This problem is formulated as a Minimum Cost Flow (MCF)
problem which is one of the most well-known problems in the area of network optimisation. In
this kind of problem, we must send a flow from a set of supply nodes, through the arcs of a
network, to a set of demand nodes, at minimum total cost, and without violating the lower and
upper bounds on flows through the arcs (See [2], [18], [24]). The MCF problem has numerous
applications in scheduling, transportation, logistics, and telecommunication. One of the fastest
algorithms to solve the MCF problem is Network Simplex Algorithm (NSA). NSA has three
extensions, namely network simplex plus algorithm [42], dynamic network simplex algorithm
and dynamic network simplex plus algorithm [40]. The main contribution of this research is to
determine the advantages and disadvantages of those algorithms. In order to determine to what
extent NSA and its extensions can be applied in practice, this paper followed the research done
in (Rashidi, 2014). The structure of the remaining parts is as follows: Next section is a brief
description of the literature review over algorithms and problems. Section 3 is a description of
the problem and its formulation in container terminals. Section 4 presents the solution methods.
Section 5 provides the experimental results in this research. The final section is considered for
the summary and conclusion.
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2 Literature Review

The static and dynamic flows networks over time as well as their variations are very challenging
problems. These types of problems are arising in various real applications such as communi-
cation networks, air/road traffic control, and production systems. Some major examples and
further applications of the problems are found in the references (see [3], [14],[20], [38], [49]).
Below we survey the results most closely related to the static and dynamic problems as well as
network flows problems that are based on the graph models.

Rauch (1992) classified dynamic graph problems according to the types of updates allowed
[45]. A graph is said to be fully dynamic if the update operations include unrestricted insertions
as well as deletions of arcs and nodes. A graph is called partially dynamic if only one type of
update, either insertions or deletions, is allowed. If only insertions are allowed, the graph is
called incremental; if only deletions are allowed it is called detrimental. DNSA and DNSA+

are fully dynamic.

Nasrabadi and Hashemi (2007) presented a general minimum cost dynamic flow problem in
a discrete time model with time-varying transit times, transit costs, transit capacities, storage
costs, and storage capacities [30]. For this problem, the authors develop an algorithm, which is
a discrete-time version of the successive shortest path. The time complexity of the algorithm
is O(V nT (n + T )) where V is an upper bound on the total supply, n is the number of nodes,
and T denotes the given time horizon of the dynamic flow problem.

Shen et al. (2007) [48] and Zheng and Chiu (2011) [51] worked on a dynamic problem.
They made a simplified System Optimal Dynamic Traffic Assignment (SO-DTA) model. The
model is based on the concept of Cell-Transmission Model (CTM), which requires the links in
the graph model to be decomposed into cells in space and time. Both works gave definitions on
traffic holding in CTM-based on single commodity and single destination problem. Shen et al.
(2007) utilized a network flow structure and solved a simplified SO-DTA, thus losing the ability
to capture wave propagation and queue spillback effects. They suggested a post-processing
algorithm to remove traffic holding from a solution generated by the Linear Programming,
but this algorithm depends on the fact that the traffic holding does not improve the objective
function value. Zheng and Chiu observed that the definition on diverge node may lead to a
suboptimal solution [51] and for the diverge links, it may be better to hold instead of discharge
all flow early. So they only applied the definition of holding-free solution to merge and ordinary
links. Then, they proved that an augmenting path algorithm produces holding-free solutions
at non-diverge links. Therefore, the definitions of holding-free in [48] and [51] are too strict
for diverge nodes, the algorithms may lead to suboptimal and are not appropriate for most
dynamic problems.

Ciurea and Parpalea (2010) presented a dynamic solution method for dynamic minimum
flow networks [9]. The solution method solves the problem for a special parametric bipartite
network. Instead directly work on the original network, the method uses the parametric residual
network and finds a particular state of the residual network from which the minimum flow and
the maximum cut for any of the parameter values are obtained. The research implements a
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round-robin algorithm looping over a list of nodes until an entire pass ends without any change
of the flow.

Fonoberova (2010) presented other class of dynamic flow networks with the cases of nonlin-
ear cost functions on arcs, multi-commodity flows, and time- and flow-dependent transactions
on arcs of the network [14]. All parameters of the networks are assumed to be dependent on
time. To formulate the problems, the classical optimal flow problems on networks are extended
and generalized. The algorithms for solving such kind of problems are developed by using spe-
cial dynamic programming techniques based on the time-expanded network method together
with classical optimization methods. To solve the problem, the author proposes an approach
based on the reduction of the dynamic problem to a static problem. This approach is employed
for solving some power systems problems by using optimal dynamic flow problems.

Fathabadi (2012) proposed a minimum flow problem on network flows in which the lower
arc capacities in the graph model vary with time [46]. For a set of time points, this problem is
solved by at most n minimum flow computations. The solution method is based on combining
of pre-flow-pull algorithm and re-optimization techniques. The complexity of the presented
algorithm is O(n2m) where m is the number of arcs in the graph model.

Hosseini (2010) introduced a class of dynamic network flows in which the flow commodity
is dynamically generated at supply nodes and dynamically consumed at demand nodes [21].
As a basic assumption in this research, the supply nodes produce the flow according to time
generative functions and the demand nodes absorb the flow according to time consumption
functions. In the general form and some special cases, the dynamic problems arise when the
capacities and costs are time varying. This research formulates the problem as the minimum
cost dynamic flow problem for a pre-specified time horizon. To solve the problems, some simple
and efficient approaches based on the minimum cost static flow models are developed.

Parpalea (2011) presented an approach for solving bi-criteria minimum cost dynamic flow
problem with continuous flow variables [32]. The approach is to transform a bi-criteria problem
into a parametric one by making a single parametric linear cost out of the two initial cost
functions. The approach iteratively finds efficient extreme points in the decision space by
solving a series of minimum parametric cost flow problems with different objective functions.
On each of the iterations, the flow is augmented along a minimum path from the supply node to
the demand node in the time-space network avoiding the explicit time expansion of the network.

Based on the previous research, Parpalea and Ciurea represented a generalization of the
maximum flow of minimum cost problem for the case of minimizing the travelling cost (minimum
cost flow) and travelling time (quickest flow) [33]. On this generalization, the research states a
multi-criteria maximum flow problem in discrete dynamic networks with two objective functions.
Then a solution method is based on generating efficient extreme points in the search space by
iteratively solving a series of maximum flow problems with different single objective functions.
Each time, the dynamic flow is augmented along a minimum cost path from the supply nodes
to the demand nodes in the time-space network while avoiding the explicit time expansion of
the network. Parpalea and Ciurea (2011) also study the generalization of the maximum flow of
minimum cost problem for the case of maximum discrete dynamic flow of minimum travelling
cost and time [34]. Their approach is very similar to the one used in [32].
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Geranis et al. (2012) developed a new Dual Network Exterior-Point Simplex Algorithm
(DNEPSA) for the Minimum Cost Network Flow Problem (MCNFP) [16]. The algorithm
starts from an initial dual feasible tree-solution and, after a number of iterations, it reaches an
optimal solution by producing a sequence of tree solutions that can be both dual and primal
infeasible. In the previous work, Geranis and Sifaleras (2007) utilized the dynamic trees data
structure in the DNEPSA algorithm, in order to achieve an improvement of the amortized
complexity per pivot [48]. In extensive computational studies, DNEPSA performed better than
the classical dual network simplex algorithm. Although the authors consider a dynamic tree
data structure, the problem does not change over time and the algorithm is not dynamic.

Sherbenym (2012) proposed a new version of the minimum cost flow problem on a time
varying and time windows [11]. For each vertex in the network, three integer parameters are
considered. These parameters are waiting cost, vertex capacity and time windows. In order
to obtain dynamic networks, all these parameters are functions of the time. The objective is
to find an optimal schedule to send a flow from the supply nodes to its demand nodes so that
satisfies a time window constraint with minimum cost and minimum waiting times at nodes,
subject to the constraint that the flow must arrive at the demand node before a deadline. In
this paper, the algorithm to be developed will search, successively, shortest paths from the
supply node, s, to the demand node in a dynamic residual network and then transmit as much
as possible flow along the paths so that satisfies the time window constraint.

Afshari and Taghizadeh (2013) presented a dynamic version of the maximum flow network
in the simplest kinds of interdiction problem [1]. In the problem, they assume that a positive
number is assigned to each arc in the graph model, which indicates the traversal time of the flow
through the arcs. Moreover, they assume that an intruder uses a single resource with limited
supply to interrupt the flow of a single commodity through the arcs in the network graph within
a given limited time period. So the arcs in the graph model is either vital or non-vital. To
formulate the problem, a mixed integer mathematical programming model is presented, based
on the concept of Temporally Repeated Flow (TRF). The model is then tackled by a couple of
algorithms [44]: (a) an algorithm based on the Benders’ decomposition and (b) another based
on the algorithm of Ratliff et al. (1975) for the most vital arcs. Although they consider a
dynamic problem of the network flow model, the algorithms are not dynamic; i.e. without
having any exploitation the current solution to respond to the dynamic changes.

Nicola et. el (2017) stated the maximum parametric flow over time problem [31] and propose
an approach to solve the problem. The proposed approach consists in repeatedly finding the
maximum dynamic flow in discrete dynamic networks, for a sequence of parameter values, in
their increasing order. In each of its iterations, the algorithm computes both the maximum
flow, by minimizing the transit time (quickest flow), and the new breakpoint for the maximum
parametric dynamic flow value function. The dynamic flow is augmented along quickest paths
from the source node to the sink node in the time-space network, avoiding the explicit time
expansion of the network. The complexity of the algorithm is presented and also an example
is given on how the algorithm works.

Chawla et al. (2018) used Particle Swarm Optimization (PSO) integrated with Memetic Al-
gorithm (MA) named as Modified Memetic Particle Swarm Optimization Algorithm (MMPSO)
to find some initial feasible solutions for scheduling of multi load AGVs for minimum travel and
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waiting time in the Flexible Manufacturing System [7]. The proposed MMPSO algorithm
exhibits balanced exploration and exploitation for global search method of standard Particle
Swarm Optimization (PSO) algorithm and local search method of Memetic Algorithm (MA)
which further results into yield of efficient and effective initial feasible solutions for the multi
load AGVs scheduling problem.

Hosseini and Sahlin (2018) focused on the problem of empty container repositioning (ECR)
in the distribution network of a European logistics company, where some restrictions impose
decision making in an uncertain environment [22]. The problem involves dispatching empty
containers of multiple types and various conditions (dirty and clean) to meet the on-time de-
livery requirements and repositioning the other containers to terminals, depots, and cleaning
stations. A multi-period optimization model is developed to help make tactical decisions under
uncertainty and data shortage for flow management of empty containers over a predetermined
planning horizon. Employing the operational law of uncertainty programming, a new auxiliary
chance-constrained programming is established for the ECR problem, and the research proves
the existence of an equivalence relation between the ECR plans in the uncertain network and
those in an auxiliary deterministic network. Exploiting this new problem, this study gives
the uncertainty distribution of the overall optimal ECR operational cost. The computational
experiments show that the model generates good-quality repositioning plans and demonstrate
that cost and modality improvement can be achieved in the network.

3 The Problem and its Model

The problem, here, is the same as the problem defined in [41] with the same assumptions. The
Minimum Cost Flow (MCF) associated with the problem is presented as MCF-AGV model [42].
The MCF-AGV model was established on a directed graph. Fig. 1 demonstrates an example
of the problem for two AGVs and four container jobs. As in the paper mentioned, the problem
was formalised with four different types of node: a supply node for each AGV (nodes 1 and
metricconverterProductID2 in2 in Fig. 1), a couple of nodes for each container job (nodes 3 to
10) as transshipment nodes and a demand node (the node 11).

The following four types of arc, namely ‘Inward Arcs’, ‘Intermediate Arcs’, ‘Outward Arcs’
and ‘Auxiliary Arcs’ with their properties connect the nodes in the graph model. The ‘Inward
Arcs’ are directed arcs from the each AGV nodeAutomated Guided VehicleAGVto the each
Job-Input node. The ‘Intermediate Arcs’ are directed arcs from the each Job-Output node to
the others Job-Input node. The ‘Outward Arcs’ are directed arcs from the each Job-Output
node and the each AGVAutomated Guided Vehicle node to the SINK. The ‘Auxiliary Arcs’ are
directed arcs from every Job-Input node to its Job-Output node. For more details on the nodes
and arcs refer to [42].

Suppose that for some values of the arc costs in the model, the solution paths are 1 → 3 →
4 → 9 → 10 → 11 and 2 → 5 → 6 → 7 → 8 → 11. This states that AGV 1 is assigned to serve
container jobs 1 and 4, and AGV 2 is assigned to serve container jobs 2 and 3 respectively.
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Figure 1: An example of the MCF-AGVAutomated Guided VehicleAGV model oftwo AGVs and four
container jobs [42]

4 The Solution Methods

In this section, we describe the solution methods to tackle the problem. These methods are
Network Simplex Algorithm (NSA) and its extensions. NSA has three extensions, namely Net-
work Simplex Plus algorithm [42], Dynamic Network Simplex Algorithm and Dynamic Network
Simplex Plus algorithm.

4.1 The Algorithms NSA and NSA+

NSA is an adaptation of the bounded variable of traditional primal simplex algorithm in Linear
Programming [2], specifically for the MCF problem. In NSA, the basis is represented as a rooted
spanning tree of the network graph, in which the arcs represent variables. The algorithm iterates
towards an optimal solution by exchanging basic and non-basic arcs in the graph. The network
simplex algorithm maintains a feasible spanning tree structure at each iteration and successfully
transforms it into an improved spanning tree structure until it becomes optimal.

Fig. 2 shows the pseudo code of Network Simplex Algorithm and its extensions. At the
beginning of the algorithm when the software made a MCF model, an initial feasible solution
is generated by the procedure Generate-Initial BFS in ‘Step 0’. The basic operation of this
procedure was described in [2]. In fact, in this step an initial feasible spanning tree solution
(T, L, U) is created. The ‘Step 1’ in the algorithm selects an entering arc, which is appended
to the spanning tree. The ‘Step 2’ determines the leaving arc, which must be removed from
the spanning tree. The ‘Step metricconverterProductID3’3’ makes pivoting and exchanges the
entering and leaving arc. The operation of the main body was described in [42] and [2].

The ‘Step 1’of the algorithm (see Fig. 2) is certainly an important step in the Network Sim-
plex Algorithm (NSA) since the total computational effort to solve a problem heavily depends
on its choice. This step is called pricing scheme which does two things. It checks whether
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Figure 2: The pseudo code of the Network Simplex Algorithm [42]

the optimality conditions for the non-basic arcs are satisfied, and if not it selects a violated
arc to enter the spanning tree structure. The selected arc has a potential of improving the
current solution. According to the theory [50], NSA terminates in a finite number of iterations
regardless of which profitable candidate is chosen if degeneracy is treated properly.The most
well-known schemes in NSA are the steepest edge scheme [17], the Mulvey’s list [28], the block
pricing scheme [18], the BBG Queue pricing scheme [5], the clustering technique [12], the multi-
ple pricing schemes [26], the general pricing scheme [27]. In this paper we present a new pricing
scheme, which significantly reduces the CPU-time required to tackle MCF model.

Rashidi and Tsang (2012) develop an extension for network simplex algorithm, namely
NSA+ [42]. Compared with the standard version of NSA by Grigoriadis’s blocking scheme
[18] and maintaining the strongly feasible spanning tree [10], NSA+ has three new features.
These features are concerned with the starting point/block for scanning violated arcs, the
memory technique and the scanning method.The pricing scheme of NSA+ is designed based
on these features. There are two options to choose the first block to be scanned; Randomly
and Heuristically. Hence, NSA+ has two extensions: (a) NSA+R: The entering arc function
chooses the first block by Random selection; (b) NSA+H : The entering arc function chooses
the first block by a Heuristic method and the location of the largest cost in the graph model.

4.2 The Algorithms DNS and DNSA+

In many applications of graph algorithms, including communication networks, graphics, as-
sembly planning, and scheduling, graphs are subject to discrete changes, such as additions or
deletions of edges or vertices. In a typical dynamic graph problem one would like to response
to the changes in the graph that are under-going a sequence of updates, for instance, insertions
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and deletions of edges and vertices. Given the powerful versatility of the dynamic graphs, it is
not surprising that dynamic algorithms and dynamic data structures are often more difficult
to design and analyze than their static counterparts.

The goal of DNSA and DNSA+ is to update efficiently the solution of a problem after
dynamic changes, rather than having to resolve it from scratch-line each time. DNSA and
DNSA+ are the dynamic version of NSA and NSA+, respectively. Fig. 3 shows the pseudo
code of the Dynamic Network Simplex Algorithm for dynamic problems in which there are
three input parameters. The first parameter is the s as ‘Stage’ for the dynamic problem and
is increased by the dynamic algorithms for each problem. The second and third one are the
set of DELETION Nodes and the set of INSERTION Nodes, respectively. When the s is zero,
the procedure Generate Initial BFS is called. Otherwise, the Reconstruct New BFS procedure
repairs the current solution and spanning tree at time t; (Tt, Lt, Ut) is reconstructed. There
are four types of arcs in the graph model at time t; the arc is in the Tt set, Lt set, Ut set
(See Rashidi, 2014 for more detail on the structure of spanning tree). The main body of the
algorithms, NSA and DNSA, are the same.

Figure 3: The pseudo code of the Dynamic Network Simplex Algorithm [40]
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5 Simulation Results and Comparisons

We implemented the simulation software in Borland C++Builder, running on GenuineIntel
3.081GHZ Processor. Fig. 4 shows the main screenshot of the software. It shows a single
vessel, four Quay Cranes (QCs), one Rubber Tyred Gantry Crane (RTGC) in each block of
the Storage Area and several AGVs. The figure also shows the main menu as well as several
buttons including ‘Port’, ‘Route’, ‘Containers’, ‘Vehicles’ and ‘Process’. These buttons have
been shown under the main menu and designed as hotkeys to facilitate the software execution.
Some important features of the software DSSAGV: Dynamic Scheduling Software for Automated
Guided Vehicles are described briefly as follows (for more detail see [39] and [43]).

• The user can define a few ports, a number of blocks in the yard, a number of working
positions or cranes in the berth and a number of Automated Guided Vehicles in each
port. The ‘port’ button activates this feature.

• A facility to generate a random distance between every two points in the yard or berth
has been considered. The user can change the distance. The ‘route’ button activates this
feature.

• At the beginning of the process, the start location of each vehicle may be any point of the
port. The user can define or change the ready time of the vehicles at the start location
and the location as well.

• A Job Generator was designed and implemented in the software. For static and dynamic
fashion, a few container jobs are generated to transport from their source to their desti-
nation. Either the source or destination of each job is the quayside, which can be chosen
randomly by the Job Generator. The initial time of the operation and the time window
for the cranes and vehicles are defined by the user. The user can monitor some indices to
measure the efficiency of the model and algorithm. The waiting or delay time for every
job, the number of jobs and the total travelling and waiting times for every vehicle, are
calculated in the static and dynamic problems.

5.1 Memory Management of the Simulation Software

In the software, a small memory management facility has been designed, implemented and
embedded in the software. The objectives of this facility are to make independent software, to
get a higher performance and prevent any missing job (when the Job Generator generates a
job and the memory can not be allocated). There is a buffer for the jobs, which is allocated
at the start of operation. Once a job is fulfilled, a hole will be created in the buffer and when
the Job Generator generates a job, it puts the job into the first hole. Given N jobs and M
AGVs in the problem, there are M +2×N +1 nodes and M +M ×N +N × (N − 1) + 2×N

arcs in the MCFMCF : Minimum Cost Flow-AGVMCF-AGV:Minimum Cost Flow model for
Scheduling problem of AGVs model [42]. The challenge, here, is to control them correctly. The
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Figure 4: The main screenshot of the simulation software

memory management routine allocates the memory based on the Maximum Number of Jobs.
This parameter is determined by the user and here is represented as MNJ.

Table 1 shows a memory map of the allocated space. As shown in the table, there are four
different types of arcs in the MCF-AGV model: ‘Inward Arcs’, ‘Outward Arcs’, ‘Auxiliary Arcs’,
and ‘Intermediate Arcs’ (see Fig. 1). Additionally, the ‘Artificial Arcs’ are needed to generate
an initial Basic Feasible Solution [2]. In memory management, two blocks of the memory are
allocated for these arcs and two pointers are used to access them; the first one is for arcs in the
MCF-AGV model and the second one is for the Artificial Arcs. In order to address a certain
type of arc, it is necessary to have an offset. The offset is the difference in the address from the
beginning of the block.

Table 1: Memory allocation for the arcs of the MCF-AGV model and its algorithm

Type of Arcs in
the MCF-AGV

model
Description Of Arc Example of the Model for 2

AGVs and 2 Jobs
Size

(the number of arcs)

ARCinward
Arcs from every vehicle node

to Job-Input nodes
(1, 3); (1, 5); (2, 3); (2, 5) M ×MNJ

ARCoutward
Arcs from every vehicle node to the Sink (1, 7); (2, 7) M

Arcs from every Job-Output node
to the Sink

(4,7);(6,7) MNJ

ARCauxiliary
Arcs from every Job-Input node

to its Job-Output node
(3, 4); (5, 6) MNJ

ARCintermediate
Arcs from every Job-Output node

to other Job-Input node
(4, 5); (6, 3) MNJ× ( MNJ – 1)

ARCartificial
Artificial Arcs to generate

initial feasible solution
(1, 0); (2, 0); (0, 3); (4, 0);

(0, 5); (6, 0); (0, 7)
2×MNJ +M + 1

There is another aspect of memory management in the software to which refers to the graph
model. For the arcs and nodes in the graph model, an Identification flag has been considered.
The Identification flag associated with each arc identifies whether the arc is in the Tt set, Lt set,
Ut set, or Dt set (see [40]) at time t. There is the one-to-one mapping between every location
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in the Job Buffer and the nodes associated with the job in the graph model. When a job is
fulfilled, the nodes associated with this job are marked for deletion. For each node belonging
to the fulfilled jobs, the node and the relevant arcs are removed from the spanning tree of the
graph. In order to make a new spanning tree, a procedure which is called Remove-Node, is
used. When a new job arrives, the relevant nodes (which have been deleted from the graph
model) will be marked for insertion. The insertion nodes and the arcs associated with the new
jobs are inserted into the spanning tree consistently. This task is performed by an Insert-Node
procedure, which is presented in [40].

5.2 Simulation and Evaluations in Static Problems

In static problems, there is no change in the situation. To simulate and evaluate the perfor-
mance of the algorithms, many jobs in static fashion have been generated. Fig. 5 shows the
block diagram of the software executed for solving static problems [43]. In our experimnet,
it was assumed that there were fifty AGVs and seven cranes in the port. Other experimental
parameters are the same as in [42].Their sources, destinations and the distance between every
two points in the port have been chosen by the uniform random distribution.

Figure 5: Block diagram of the software executed NSA+: Network Simplex Plus Algorithm.for solving
static problems

We generated 40 static problems with uniform random distribution. Fig. 6 shows the CPU-
Time required to solve the problems by NSA, NSA+H and NSA+R, based on the number of
container jobs.

Although NSA+ is faster than NSA [42], it has some overhead costs. In ‘Step metric-
converterProductID1’1’ of the algorithm (see Fig. 1), NSA+R chooses an entering arc from
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the first block randomly. NSA+H chooses anentering arc from the first block by a Heuristic
method. This heuristic is based on the location of the largest cost in the graph model into
which must be searched. In fact, it chooses the arc with the lartgest cost. Hence it has some
overheads due to the search needed. Fig. 5 shows the overhead of the algorithms NSA+H

and NSA+R compared with zero for NSA, based on the number of container jobs in the static
problems. The overhead is determined in the number of high level instructions needed to solve
the problems.

Figure 6: The overhead of NSA+H and NSA+R compared with that of NSA

In order to calculate the average CPU-Time required to solve the problems and to compare
performance of the algorithms in this experiment, we introduce the following terms:
CPU−TRNSA

i : The CPU-Time required to solve the problem i by NSA .
CPU−TRNSA+H

i :The CPU-Time required to solve the problem i by NSA+H .
CPU−TRNSA+R

i : The CPU-Time required to solve the problem i by NSA+R.
PICPUHi: The Percentage of Improvement in CPU-time required to solve the problem i

by NSA+H compared with that of NSA .
PICPURi: The Percentage of Improvement in CPU-time required to solve the problem i

by NSA+R compared with that of NSA
TPICPUH: The Total Percentage of Improvement in CPU-Time required to solve the

problems by NSA+H compared with that of NSA
TPICPUR: The Total Percentage of Improvement in CPU-Time required to solve the

problems by NSA+R compared with that of NSA
TPIHCPUR: The Total Percentage of Improvement in CPU-Time required to solve the

problems by NSA+H compared with that of NSA+R

Wi: The Weight of improvement for the problem i. In this experiment we consider the
number of arcs in the MCF-AGV model for the weight. Given N jobs and M AGVs in the
problem, the number of arcs isM +M ×N +N × (N − 1) + 2×N.
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Now, we calculate the percentage of improvements in the CPU-Time used for the problems
by the following equations:

TPICPUH =

∑40
i=1Wi ×

(
CPUTRNSA+H

i − CPUTRNSA
i

)
∑40

i=1Wi

× 100 = 22.39 (1)

TPICPUR =

∑40
i=1Wi ×

(
CPUTRNSA+R

i − CPUTRNSA
i

)
∑40

i=1Wi

× 100 = 22.53 (2)

TPIHCPUR =

∑40
i=1Wi ×

(
CPUTRNSA+H

i − CPUTRNSA+R

i

)
∑40

i=1Wi

× 100 = 18.00 (3)

The percentages of overhead in the number of high level instructions used to solve the
problems by NSA+H , NSA+R, and NSA are calculated by the similar expressions. In this
comparision, the average overhead of the algorithms NSA+H and NSA+R are comapred with
that of NSA. Table 2 shows the results of the comparison between the algorithms in their
CPU-Time and overheads.

Table 2: The results of the comparison between the algorithms in their CPU-Time and their overhead

Algorithm
CPU-Time Overhead

NSA NSA+H NSA+R NSA NSA+H NSA+R

NSA 0 -22.39 -22.53 0 18 9
NSA+H 22.39 0 -18.00 -18 0 6
NSA+R 22.53 18.00 0 9 -6 0

Corollary 1. Both NSA+H and NSA+R are around 22 percents faster than NSA. NSA+H

is 18 percent faster than NSA+R

Corollary 2. The overhead of NSA+H and NSA+R are around 18 and 9 percents, respectively,
compared with that NSA. The overhead of NSA+H is 6 percent more than NSA+R

The CPU-Time and time complexity of the algorithms can be examined in the experiments.
We did a rgression on the CPU-Time required in running the algorithms. Given N as the the
number of jobs in the graph model, we obtained the following equations to estimate the CPU-
Time:

CPU − TimeNSA(N) = 8E − 06N2 + 0.0006N R2 = 0.96 (4)
CPU − TimeNSA+H (N) = 8E − 06N2 − 0.004N R2 = 0.94 (5)
CPU − TimeNSA+R(N) = 6E − 06N2 + 0.0007N R2 = 0.94 (6)

The coefficient R2 in the regression reveals how closely the values of the estimated curve
correspond to the actual data. Its value is more than 0.9 for both estimations.
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Corollary 3. According to the equations (4), (5) and (6), the complexity of the algorithm ,
NSA, NSA+H and NSA+R, are in order 2 of the number of jobs.

The overhead of the algorithms, NSA+H and NSA+Rare examined in the experiments.
We did a rgression on the CPU-Time required in running the algorithms. Given N as the
the number of jobs in the graph model, we obtained the following equations to estimate the
CPU-Time:

OHNSA+H (N) = 0.004N2 + 0.366N R2 = 0.999 (7)
OHNSA+R(N) = 0.002N2 + 0.264N R2 = 0.999 (8)

Corollary 4. According to the equations (7) and (8), the overhead of NSA+H and NSA+R

are in order 2 of the number of jobs.
Note that for any prediction the equation for the CPU-Time in practice depends on other

factors, such as the speed of processor, active programs when the problem is being solved
in multi-task operating systems, and so on. Our program has been run on a Windows XP
computer with a GenuineIntel 3.081GHZ Processor in the normal situation.

The performnce in running the two algorithms has been analyzed statistically. Fig. 7 shows
a comparison of CPU-Time required solving the same problems by NSA, NSA+H and NSA+R.
We tested the nullhypothesis that the means produced by the two algorithms were statistically
indifferent (α = 5%). Table 3 provides the test’s result along with the values of T-distribution
for a particular degree offreedom. Since we cared if the change (the difference between thetwo
means) was positive or negative, ‘One-tail’ test was chosen.

Figure 7: A comparison of CPU-Time required solving the same problems by NSA, NSA+H

andNSA+R

Corollary 5. Table 3 shows that although NSA+H and NSA+R statistically are better than
NSA, the overhead of these algorithms are significant compared with that of NSA.
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Table 3: The statistical test over the results of the comparison in static aspect

Statistic
CPU-Time Overhead

NSA+H

vs. NSA

NSA+R

vs. NSA

NSA+H

vs. NSA

NSA+R

vs. NSA

Number of Observations 40 40 40 40
T-Test (Paired Two Sample For

Means)
5.8 5.16 −6.14 −6.18

Degree of Freedom 39 39 39 39
Critical T-Value 1.69 1.68 1.68 1.68

5.3 Simulation and Evaluations in Dynamic Problems

The problem defined in [41] is dynamic. In reality, the dynamic problem arises when several
new jobs are arrived, the fulfilled jobs are removed and the links or junctions in the port layout
are blocked. For the arriving jobs, the Job Generator has to generate a few new jobs, when it
finds out any crane is in idle state. The fullfilling jobs must be removed from the graph model
by the software. When the links or junctions in the port layout are blocked, the software must
make the changes in distances between points in the source and destination of the jobs.

The flowchart of Figure 8 demonstrates what is done in the real-time processing and dynamic
aspect while the time is being progressed. Note that the termination condition for the end of
simulation is determined by meeting a specific time, 10 hours or a day, for example. We ran
the software for 200 minutes. At the start of the process, the Job Generator generates a few
jobs for each crane. These jobs will be appended to the remaining jobs, which are empty at
the beginning. The remaining jobs are used to make up a MCF-AGV model. Then the model
will be tackled by NSA+. The output of this algorithm is a few job sequences for the vehicles.
Based on these sequences, the software will prepare a job list for each vehicle.

At the beginning, based on the solution to the problem at the current stage, a job is
assigned to each vehicle and crane. During the simulation, handling of the jobs by the cranes
and vehicles are executed in parallel. Briefly, the software does two tasks. The first task is
related to updating the status of the vehicles and cranes whereas the second one takes influence
from any change in the problem or any idle crane. The second task refers to any change in
the problem or status of the cranes. In the both cases, a new MCF-AGV model will be made
by the remaining jobs (except the current job for every vehicle) and the new jobs (if there are
any). The new model will be tackled by the algorithms from scratch. Then, the new solution
will be used for updating the list of jobs for every vehicle.

At the start of the process, a few jobs are generated for each crane and the memory for
the jobs and graph model are allocated. Then, the MCF-AGV model is made and tackled by
the algorithms. The output of this algorithm is a few job sequences for the vehiclesAutomated
Guided VehicleAGV. Based on these sequences, the software will prepare a job list for each
vehicle. While the time is being progressed, the vehicles and cranes are carrying and handling
the containers.
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Figure 8: Operations of the software in dynamic aspect

In the dynamic aspect, every event must be responsed and processed. The events include
modification of the vehicle’s position, the fulfilled jobs and new jobs, and any change in the
distance table. A hole will be created in the Job Buffer when a job is fulfilled ( [39], [43]). After
the Job Generator generates a job, it puts the job into a hole of the buffer. The software marks
the nodes and arcs associated with the fulfilled and new jobs. The most important events that
affect the spanning tree are the fulfilled and new jobs. The fulfilled jobs are removed from the
list of vehicles and model whereas the new jobs are appended to remaining jobs and inserted
into the model. Note that any change in the problem, without any fulfilled or new job, does
not affect the spanning tree. In this case, only the body of the algorithm is executed and finds
out the optimal solution.

The software processes the recorded events and updates the MCF-AGV model. After
removing the nodes and arcs (associated with the fulfilled jobs) from the model and omitting the
jobs from the vehicle’s lists, a new spanning tree is made. Next, the nodes and arcs associated
with the new jobs are put into the new model and then the spanning tree is repaired. These jobs
are assigned to one or more vehicles, randomly. These two tasks are made by Reconstruct
New BFS. After repairing the spanning tree, the main body of the algorithm is executed and



94 Optimizing the Static and Dynamic ... / COAM, 2(2), Autumn-Winter 2017

it finds out the optimal solution. Note that these tasks are not pre-emptive, i.e. when a task
starts execution on the processor it finishes to its completion.

Fig. 9 shows the number of jobs arrived, the number of jobs fulfilled and the number of
jobs remained in each stage of the dynamic problems. The relation between these numbers of
jobs is according to the equation (9):

#JobsRemained (S)

= #JobsRamined (S − 1)

+ #JobsArrived (S)

− #JobsFullfilled (S) (9)

Figure 9: The number of jobs arrived, fullfilled and remained in the dynamic problems

Fig. 10 shows the percentages of changes made in the graph model, due to the number
of jobs arrived and the number of jobs fulfilled in each stage of the dynamic problems. The
values in the figure are calculated based on the number of nodes and arcs in the graph model
for insertion and deletion, according to the number of jobs arrived and fulfilled at each stage.
The arcs and nodes for jobs arrived (fulfilled) must be inserted (deleted) into (from) the graph
model. The number of nodes and arcs are calculated according to the simple equations like ones
shown in Fig. 1. Given #V ChIns(S) as the value of changes due to insertion some nodes with
their arcs, and #V ChDel(S) as the value of changes due to deletion some nodes with their
arcs at each stage, S, the percentage of changes in the graph model is calculated according to
equation (10):

ChangesInGraphModel (S)

=

∣∣∣∣∣#V ChIns (S) + #V ChDel (S)− (#V ChIns (S − 1) + #V ChDel (S − 1))

#V ChIns (S − 1) + #V ChDel (S − 1))
∗ 100

∣∣∣∣∣
(10)
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Figure 10: The percentages of changes in the graph model of the dynamic problems

It was very difficult to isolate the CPU-Times required to tackle the problems by the
algorithms and the CPU-Time required for memory management. Moreover, the CPU-Time
required to solve the problem is too much small and is not convenient for the comparision.
Hence, the number of iterations is considered as an indicator to compare the algorithms. The
number of iterations required to solve the problems are drawn in Fig. 11.

Figure 11: The number of iterations of the algorithms for solving the dynamic problems

From Fig. 11, it is clear that the number of iterations are improved when we use the
dynamic algorithms, DNSA and DNSA+ , compared with that of NSA and NSA+. Note
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that since NSA+H performs better than NSA+R (see Corollary2), we use only NSA+H in
this experiment. The percentage of improvement in reduction of the number of iterations is
calculated by the following terms and equation:

NSADS: The number of iterations in NSA for the dynamic problem at the stage S.
NSAD+

S : The number of iterations in NSA+ for the dynamic problem at the stage S.
DNSAS: The number of iterations in DNSA for the dynamic problem at the stage S.
DNSA+

S : The number of iterations in DNSA+ for the dynamic problem at the stage S.
TPRNSA

NSA+ : The Total Percentages of Reduction in the number of iterations in the exper-
iment.

TPRNSA
DNSA : The Total Percentages of Reduction in the number of iterations in the exper-

iment.
TPRNSA

DNSA+ : The Total Percentages of Reduction in the number of iterations in the ex-
periment.

TPRNSA
NSA+ =

∑40
S=1 (NSADS −NSAD+

S )∑40
S=1NSADS

× 100 = −58.11% (11)

Similar equations are used to compare the performance algorithms in the number of iterations
required to solve the problems. Table 4 shows this comparision.

Table 4: The percentages of the performace comparisons between the algorithms

Algorithm NSA NSA+ DNSA DNSA+

NSA 0.00 -58.11 -62.40 -77.34
NSA+ 58.11 0.00 -10.26 -45.92
DNSA 62.40 10.26 0.00 -39.74

DNSA+ 77.34 77.34 39.74 0.00

From this table, we can obtaine the following corollaries:

Corollary 6. The performace of DNSA+ , DNSA and NSA+ are around 77.3, 62.4 and 58.1

percents better than that of NSA, respectively.

Corollary 7. The performace of DNSA+ and DNSA are around 77.3 and 10.3 percents faster
than that of NSA+ , respectively.

Corollary 8. Since the major process of the algorithms is performed in the body and the oper-
ations of the body are identical (Rashidi, 2006), the CPU-time required to solve the problems
is also decreased practically.

The number of iterations in running the two algorithms, DNSA+ and NSA+, has been
analysed statistically. We tested the null hypothesis that the means produced by the two
algorithms were statistically indifferent (α = 5%). Then, we got the following corollary:

Corollary 9. The Paired T-test determines the two means are significantly different at a
ninety-five percent degree of confidence since the test’s result is in the reject region.

It is seemed that there is strong correlation between the percentages made on the graph
model and the number of iterations required to solve the problems. So, we decided to calculate
the correlation between them. Table 5 shows the result of this experiment.
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Table 5: The correlation between the perentages of changes in the graph model and the algorithms

Approach

Ratio of
Changes in
the Graph

Model

# Iterations
in NSA

# Iterations
in NSA+

# Iterations in
DNSA

# Iterations
in DNSA+

Ratio of Changes in
the Graph Model

1.00 0.80 0.75 0.75 0.73

Starts from
Scratch

# Iterations in NSA 0.80 1.00 0.90 0.90 0.89
# Iterations in NSA+ 0.75 0.90 1.00 1.00 1.00

Repair the
Solution

# Iterations in DNSA 0.75 0.90 1.00 1.00 0.99
# Iterations in DNSA+ 0.73 0.89 1.00 0.99 1.00

Corollary 10. From Table 5 , it is clear that the order of the algorithms, NSA, NSA+, DNSA
and DNSA+, to solve the dynamic problem have a proportion of 80, 75, 75 and 73 percents,
repectively, of changes made in the graph model. It shows the algorithms NSA and NSA+ use
more attemps to solve the dynamic problems. The complexity of the algorithms are the same
[see (Rashidi & Tsang, 2011)]. In theory, the total complexity of the algorithms for the problem
is O(N6) where N is the number of container jobs.

6 Summary and Conclusion

This paper is motivated by a need to schedule Automated Guided Vehicles AGVs) in container
terminals and followed the research done in [40]. In fact, in order to determine to what extent
Network Simplex Algorithm and its extensions can be applied in practice, we did the experi-
mental experiments and several comparisons in running NSA, NSA+ , DNSA and DNSA+ To
evaluate the performance of the algorithms, the dynamic scheduling problem of AGVs in the
container terminal (the problem defined in [41]) was considered. Many random problems have
been generated and solved by both DNSA+ and NSA+ . The results showed considerable
improvements in DNSA+ , in terms of reducing the number of iterations, compared with that
of DNSA+ .

Table 6 shows a summary of the algorithms studied in this research for the MCF-AGV
model. These algorithm are complete and produce optimal solution. NSA and NSA+ start
from scratch without reconsidering the pre-established schedules. The memory management
in these two algorithms is an easy task since a block of memory is allocated for the whole of
the graph model. Also there is no partitioning in the graph model and its spanning tree to
solve the problem by those algorithms. The disadvantage of these algorithms lies in taking time
to rebuild the graph model and putting it into the memory. DNSA and DNSA+ repair the
solution rather than starting from scratch. The main advantage of these dynamic algorithms
over NSA and NSA+ is the performance. On the other hand, DNSA and DNSA+ deal with
memory management, partitioning of the graph model and its spanning tree. However, they
are costs that have to be paid in return for the performance.



98 Optimizing the Static and Dynamic ... / COAM, 2(2), Autumn-Winter 2017

In the future, we are going to make a decision support system for port automation. The
main components of this system are the algorithms and their extensions. Moreover, this system
provides some attractive features and facilities for planning and control inside the container
ports.

Table 6: A summary of the complete algorithms studied in this research for the MCF-AGV model

Algorithms Main Feature
Static

Dynamic
Problem

Performance
Complexity

Theory Experimental
Simulation

NSA
A graph algorithm
to solve the MCF-

AGV model.
Efficient for static
MCF-AGV Model;

when applied to
dynamic MCF-
AGV Model, it

starts from
scratch

Fastest Algorithm
to solve MCF-
AGV Model

NSA+

A graph algorithm
with enhanced

features to solve
the MCF-AGV

model

Faster than NSA
in both static and

dynamic MCF-
AGV Model

O(N6); N is the
number of jobs
in the problem.
We assume the
number of jobs

is greater than the
number of AGVs

O(N2); N is
the number of

jobs in the
problem. We
assume the

number of jobs
is greater than
the number of

AGVs

DNSA

A dynamic
version of NSA

to solve the MCF-
AGV model

Efficient for
dynamic MCF-

AGV Model; the
graph structure is

changed
incrementally

Faster than NSA
and NSA+ in
dynamic MCF-

AGV Model

DNSA+

A dynamic
version of NSA+

to solve the MCF-
AGV model

Faster than
DNSA in

dynamic MCF-
AGV Model
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چکیده

تولید سیستم های و بنادر در کانتینرها نقل و حمل برای (AGV) خودکار راهنمایی نقلیه وسایل از استفاده امروزه،
یکی می کنند. کار کامپیوتر کنترل تحت و راننده بدون وسایل این است. گرفته قرار بیشتری توجه مورد انعطاف پذیری،
از خاصی نقطه به کانتینرها تحویل و رسیدن زمان در محدودیت هایی با نقلیه وسیله زمانبندی وسایل، این چالش های از
در مدل ها شده ترین شناخته از یکی که ،(MCF) جریان هزینه حداقل مدل عنوان به اغلب مساله نوع این است. اسکله
حل راه سریع ترین (NSA)شبکه سیمپلکس الگوریتم مدل، این حل برای می گردد. فرموله است، شبکه برنامه ریزی زمینه
شبکه سیمپکس الگوریتم ،(NSA+) یافته ارتقاء شبکه سیمپلکس الگوریتم شامل انشعاب، سه دارای NSA است.
بدون ابتدا، از NSA+ و NSA است. (DNSA+) یافته ارتقاء پویای شبکه سیمپلکس الگوریتم و (DNSA) پویا
پیشین حل های راه ابتدا، از عملیات آغاز جای به ،DNSA+ و DNSA می کند. کار به آغاز پیشین، حل های راه بازبینی
آن انشعاب سه با مقایسه در NSA معایب و مزایا بررسی همچنین و شبیه سازی تحقیق، این اهداف می کنند. ترمیم را
راهنمایی نقلیه وسایل زمان بندی مساله حل برای الگوریتم ها این از استفاده ارزیابی، انجام برای است. عملی شرایط در
برای نیاز مورد CPU زمان تکرارها، تعداد آزمایشات، در است. شده گرفته قرار آزمایش مورد کانتینری بنادر در خودکار
الگوریتم های اصلی مزیت می دهد نشان آمده بدست تجربی نتایج است. شده گرفته نظر در پیچیدگی و سربار مسائل، حل

می باشد. آنها عملکرد ،NSA+ و NSA با مقایسه در پویا
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