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1 Introduction

Consider the unconstrained optimization problem

min f(x), (1)

where f : Rn → R is a continuously differentiable function and bounded from below, whose
gradient is available. Let gk = g(xk) := ∇f(xk) be the gradient of f at xk and ∥ · ∥ be as the
Euclidian norm. Some iterative methods such as the Newton method [24], the quasi-Newton
methods [13, 14], the trust-region methods [9, 18, 29, 38] and the conjugate gradient methods
[5, 12, 19, 22] have been used to solve (1). In an iterative method, by starting from initial point
x0 ∈ Rn, the sequence {xk}k≥0 is generated using the formula

xk+1 := xk + αkdk, (2)

in which the step-size αk is obtained by an inexact monotone or a nonmonotone line search
[15, 24, 34]. In addition, dk is the search direction, satisfying the descent condition gTk dk < 0,
or the sufficient descent condition

gTk dk < −c∥gk∥2, (3)

where c > 0 is the constant.
Conjugate gradient (CG) methods are a well-known class of iterative methods to solve the

unconstrained optimization problems. Since CG methods have low memory requirement and
simple computational scheme, they are suitable especially for large-scale problems. CG methods
have strong local and global convergence properties which are investigated in many papers, see
for example [16, 25]. In the CG methods, the search direction dk is

dk :=

−gk, k = 0,

−gk + βkdk−1, k ≥ 1,
(4)

where βk is called the conjugate gradient parameter. We can obtain the various CG methods
with distinct choices of parameter βk. Some prominent CG methods are called Fletcher-Reeves
(FR) [12], Dai-Yuan (DY) [5], Liu-Storey (LS) [22], the conjugate descent method of Fletcher
(CD) [11], Hestenes and Stiefel (HS) [17] and Polak and Ribière [25] and Polyak [26] (PRP),
respectively, which are as follows:

βFR
k :=

∥gk∥2

∥gk−1∥2
, βDY

k :=
∥gk∥2

dTk−1yk−1
, βLS

k := − gTk yk−1

gTk−1dk−1
, (5)

βCD
k := − ∥gk∥

2

gTk dk−1
, βHS

k :=
yTk−1gk

gTk−1sk−1
, βPRP

k :=
yTk−1gk

∥gk−1∥2
, (6)

where yk−1 := gk − gk−1 and sk−1 := xk − xk−1. The exact step-size αk can be obtained by
solving the one-dimensional minimization problem

min
α>0

f(xk + αdk).
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Remark 1. The exact line search to obtain the step-size αk implies that dTk gk+1 = 0. Hence,

(i) −gTk−1dk−1 = −gTk−1(−gk−1 + βk−1dk−2) = ∥gk−1∥2.

(ii) dTk−1yk−1 = dTk−1gk − dTk−1gk−1 = −gTk−1dk−1 = ∥gk−1∥2.

(iii) Since the gradients are mutually orthogonal in CG methods, we get

gTk yk−1 = gTk gk − gTk gk−1 = ∥gk∥2.

Based on Remark 1, for strictly convex quadratic function with the exact line search, the CG
parameters in (5) and (6) are equivalent [24]. In this paper, we use the nonmonotone Armijo-
type line search [1] to obtain the inexact step-size αk, which sufficiently employs the current
value of the objective function f(x) as

f(xk + αkdk) ≤ Rk + ραkg
T
k dk, (7)

in which 0 < ρ < 1 and
Rk := ηkfl(k) + (1− ηk)fk, (8)

where fk := f(xk), ηk ∈ [ηmin, ηmax], ηmin ∈ [0, 1) , ηmax ∈ [ηmin, 1] and

fl(k) := max
0≤j≤n(k)

{fk−j}, k ∈ N0 := N ∪ {0}, (9)

in which

n(k) :=

0, k = 0,

min{n(k − 1) + 1, N}, k ≥ 1,

with N ≥ 0.
Liu and Story [22] introduced the parameter βLS

k for which the global convergence of the
LS method with Grippo-Lucidi line search stablished in [20]. Some researchers have studied for
variants of the LS methods [21, 31, 33]. In [33], Zhang proposed a MLS+ method and proved
that MLS+, independent of the line search, can always generate the descent directions satisfying
the following sufficient descent condition

gTk dk ≤ −
(
1− 1

t

)
∥gk∥2,

where t > 1. Li and Feng [21] improved the MLS+ method to obtain well-defined modified
MLS+ method to generate the sufficient descent directions independent of the line search. They
proved that the modified MLS+ method is globally convergent with the strong Wolfe line search.
A hybridization of known LS-CD conjugate gradient algorithms presented to solve unconstrained
optimization problem in [31]. In addition, the Wolfe-type line search can guarantee the global
convergence of the LS-CD conjugate gradient method.

For the first time, Beale [3] proposed a three-term conjugate gradient method whose the
search direction dk has the form

dk := −gk + βkdk−1 + γkdt, (10)
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where γk and dt are the scaler and restart direction, respectively. In general, the three-term
conjugate gradient algorithms are numerically strong, efficient, reliable, and robust compared
with two-term conjugate gradient algorithms [2, 36]. Recently, some researchers have focused
on the three-term conjugate gradient methods, generating a descent search direction [2, ?].
Moreover, the general class of three-term conjugate gradient methods are presented in [23],
satisfying the sufficient descent condition.

Some researchers used the CG methods for solving the eigenvalue problems of a symmetric
matrix [8, 32]. They introduced the unconstrained optimization problems and obtained some
variational characterizations for the minimum and maximum eigenvalues. Hence, we introduce
two modified three-term conjugate gradient algorithms based on the LS conjugate gradient
method to solve unconstrained optimization problems. We will obtain the search directions
which satisfy the sufficient descent condition using both quasi-Newton method and eigenvalues
analysis. The global convergence of the new algorithms will be investigated. We give some nu-
merical examples to show the efficiency our algorithms in comparison with several CG algorithms
based on LS method.

The rest of this paper is organized as follows. In Section 2, we introduce two new three-
term conjugate gradient algorithms based on LS conjugate gradient method. In the next section,
the global convergence of proposed algorithms will be established under mild assumptions. In
Section 4, numerical results are reported. Finally, some conclusions are given in Section 5.

Remark 2. Let A ∈ Rn×n be a square matrix. det(A) and tr(A) stand for the determinant
and trace of A [28].

(a) ∥A∥2F = tr(ATA) in which ∥ · ∥F denotes Frobenius norm, i.e.,

∥A∥F :=

√√√√ n∑
i=1

n∑
j=1

|aij |2.

(b) If λ1, λ2, · · · , λn are the eigenvalues of matrix A, then

tr(A) = λ1 + λ2 + · · ·+ λn,

and
tr(A2) = λ21 + λ22 + · · ·+ λ2n.

2 Motivation and Properties

In this section, we present a new three-term conjugate gradient method to solve unconstrained
optimization problems based on LS conjugate gradient method to obtain a descent search direc-
tion. Then, we will modify the new three-term conjugate gradient method using the eigenvalues
analysis to improve the efficiency of numerical results. Liu and Storey [22] proposed the LS
conjugate gradient method whose direction dk can be obtained by
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dk :=

−gk, k = 0,

−gk + βLS
k dk−1, k ≥ 1,

(11)

where
βLS
k := − gTk yk−1

gTk−1dk−1
. (12)

If the exact line search is used, the LS method is equivalent to PRP method [16], which has been
regarded as one of the most efficient CG methods in practical computation. We now combine
the LS conjugate gradient direction with yk−1 to obtain a new three-term conjugate gradient
method (N3TCG) as follows:

dk :=

−gk, k = 0,

−gk + βLS
k dk−1 + θkyk−1, k ≥ 1,

(13)

in which
θk :=

gTk dk−1

gTk−1dk−1
. (14)

We will show that (13) satisfies the sufficient descent condition, gTk dk = −∥gk∥2 < 0, indepen-
dent of the line search and the objective function convexity. Furthermore, N3TCG is reduced to
LS using the exact line search. To augment the efficiency of N3TCG, we now consider a modifi-
cation on N3TCG to get MN3TCG using the eigenvalue analysis. In MN3TG, the search directions
are generated by

dk :=

−gk, k = 0,

−gk + βLS
k dk−1 + tkθkyk−1, k ≥ 1,

(15)

where tk ∈ R is a parameter. MN3TCG has the following properties:

• For exact line search or tk = 0, ∀k ≥ 0, MN3TCG reduces to the LS method.

• If tk = 1, ∀k ≥ 0, MN3TCG reduces to the N3TCG.

We now use the eigenvalues analysis to compute the parameter tk in MN3CG, satisfying the
sufficient descent condition. From (15), the search directions of MN3TCG can be written as

dk = −Qkgk, ∀k ≥ 0, (16)

where
Qk := I +

dk−1y
T
k−1

gTk−1dk−1
− tk

yk−1d
T
k−1

gTk−1dk−1
. (17)

Hence, MN3TCG can be considered as a quasi-Newton method, in which the non-symmetric
matrix Qk is an approximation for the inverse Hessian matrix. Now, (16) implies that

dTk gk = −gTk QT
k gk = −gTk Akgk, (18)

in which
Ak :=

QT
k +Qk

2
.

The symmetric matrix Ak can be rewritten as follows:
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Ak = I − tk − 1

2

yk−1d
T
k−1

gTk−1dk−1
− tk − 1

2

dk−1y
T
k−1

gTk−1dk−1
. (19)

If dk−1 = 0 or yk−1 = 0, then Ak = I; consequently all the eigenvalues of Ak are 1. Otherwise,
there exists a set of orthonormal vectors {zik}

n−2
i=1 such that

dTk−1z
i
k = yTk−1z

i
k = 0, i = 1, · · · , n− 2. (20)

Therefore, from (19) and (20), we get

Akz
i
k = zik, i = 1, · · · , n− 2.

Hence, the matrix Ak has the eigenvalues 1 corresponding to the eigenvectors zik for i =

1, · · · , n − 2. Finally, we must to find two remaining eigenvalues λk and µk of the matrix
Ak. Remark 2 gives us

tr(Ak) = n− (tk − 1)
dTk−1yk−1

gTk−1dk−1
= 1 + · · ·+ 1︸ ︷︷ ︸

n−2 times

+ λk + µk,

so that
λk + µk = 2− (tk − 1)

dTk−1yk−1

gTk−1dk−1
. (21)

The symmetry of the matrix Ak along with Remark 2 implies that

∥Ak∥2F = tr(AT
kAk) = tr(A2

k)

= n− 2 + 2
(
1− tk − 1

2

dTk−1yk−1

gTk−1dk−1

)2
+

1

2
(tk − 1)2

∥yk−1∥2

∥gk−1∥2

= 1 + · · ·+ 1︸ ︷︷ ︸
n−2

+ λ2k + µ2
k,

leading to

λ2k + µ2
k = 2

(
1− tk − 1

2

dTk−1yk−1

gTk−1dk−1

)2
+

1

2
(tk − 1)2

∥yk−1∥2

∥gk−1∥2
. (22)

From (21) and (22), we have

λkµk =
1

2

[
(λk + µk)

2 − (λ2k + µ2
k)
]

=
1

2

[
4
(
1− tk − 1

2

dTk−1yk−1

gTk−1dk−1

)2
− 2
(
1− tk − 1

2

dTk−1yk−1

gTk−1dk−1

)2
− 1

2
(tk − 1)2

∥yk−1∥2

∥gk−1∥2
]

=
(
1− tk − 1

2

dTk−1yk−1

gTk−1dk−1

)2
− 1

4
(tk − 1)2

∥yk−1∥2

∥gk−1∥2
. (23)

Finally, the eigenvalues λk and µk using (21) and (23) are computed
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λk = 1− tk − 1

2

dTk−1yk−1

gTk−1dk−1
+
tk − 1

2

∥yk−1∥
∥gk−1∥

,

µk = 1− tk − 1

2

dTk−1yk−1

gTk−1dk−1
− tk − 1

2

∥yk−1∥
∥gk−1∥

.

Let λk = ξ ∈ (0, 1). Then, to guarantee the sufficient descent condition for directions generated
by (15), we compute the well-defined parameter tk as follows:

tk :=


1, if Γk = 0,

min{τ1,max{1, t̃k}}, if Γk ̸= 0 & (gTk dk−1)(g
T
k yk−1) ≥ 0,

min{τ2,min{1, t̃k}}, if Γk ̸= 0 & (gTk dk−1)(g
T
k yk−1) < 0,

(24)

in which τ2 ≤ 1 ≤ τ1, Γk := ∥yk−1∥ − dTk−1yk−1 and

t̃k := 1 + 2(ξ − 1)
gTk−1dk−1

∥yk−1∥ − dTk−1yk−1
.

We now describe the proposed three-term conjugate gradient algorithms to solve unconstrained
optimization problems:
Algorithm 1. New three-term conjugate gradient method (N3TCG)
Input: Choose x0 ∈ Rn, ρ ∈ (0, 1), ηmin ∈ (0, 1), ηmax ∈ [ηmin, 1], N > 0 and ϵ > 0.

begin
set k = 0 and dk = −gk;
while ∥gk∥ > ϵ

determine αk by (7)-(9);
set xk+1 = xk + αkdk;
compute βLS

k+1 by (12) and obtain θk by (14);
compute dk+1 by (13);
k ← k + 1;

end
end

xb := xk; fb := fk;
Output: xb, fb

Algorithm 2. Modified three-term conjugate gradient method (MN3TCG)
Input: Choose x0 ∈ Rn, ρ ∈ (0, 1), ηmin ∈ (0, 1), ηmax ∈ [ηmin, 1], τ1 ≤ 1 ≤ τ1, N > 0 and
ϵ > 0.

begin
set k = 0 and dk = −gk;
while ∥gk∥ > ϵ

determine αk by (7)-(9);
set xk+1 = xk + αkdk;
compute βLS

k+1 by (12) and obtain θk by (14);
obtain tk+1 by (24);
compute dk+1 by (15);
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k ← k + 1;
end

end
xb := xk; fb := fk;
Output: xb, fb

The following example is used to explain the eigenvalue analysis in MN3TCG.

Example 1. Consider the vectors

gk−1 =

12
3

 , dk−1 =

 0

1

−2

 , yk−1 =

 4

2

−3

 .
The relation (19) gives the symmetric matrix Ak as follows

Ak =

1 0 0

0 1 0

0 0 1

− tk − 1

2

0 4 −8
0 2 −4
0 −3 6


−4

− tk − 1

2

 0 0 0

4 2 −3
−8 −4 0


−4

=



1
tk − 1

2
1− tk

tk − 1

2

tk + 1

2

7− 7tk
8

1− tk
7− 7tk

8

3tk + 1

4


.

Now, from (21)-(23), we get

λk + µk =
tk + 3

2
,

λ2k + µ2
k =

65

56
t2k −

37

28
tk +

121

56
, (25)

λkµk = − 51

112
t2k −

37

56
tk +

121

112
.

By solving (25), we obtain

λk =
9tk − 2

7
, µk =

−11tk + 25

14
.

Let ξ = 0.15 and τ1 = 5. Then, t̃k = −1.6, (gTk dk−1)(g
T
k yk−1) = 4 and

tk = min{5,max{1,−1.6}} = 1.

3 Convergence Analysis

In this section, we investigate the global convergence results of the proposed methods. For
these, the following assumptions are needed.
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Assumption 3.1 The level set L(x0) := {x ∈ Rn | f(x) ≤ f(x0)} is bounded, i.e., there exists
a positive constant B > 0 such that ∥x∥ ≤ B for all x ∈ L(x0).

Assumption 3.2 In the neighborhood Ω of L(x0), the gradient g(x) is Lipschitz continuous,
i.e., there exists a constant L > 0 such that

∥g(x)− g(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Ω. (26)

Assumptions 3.1 and 3.2 imply that there exists a constant ζ > 0 such that

∥gk∥ ≤ ζ, ∀k ≥ 0. (27)

We now show that the generated directions in both algorithms satisfy the sufficient descent
condition (3) independent of line search type.

Lemma 1. Suppose that dk is generated by (13) or (15). Then, dk is the sufficient descent
direction, i.e., gTk dk ≤ −∥gk∥2.

Proof. From (12)-(14), we get

gTk dk = −∥gk∥2 −
gTk yk−1

gTk−1dk−1
gTk dk−1 +

gTk dk−1

gTk−1dk−1
gTk yk−1 = −∥gk∥2 < 0.

Suppose that dk is generated by MN3TCG. Then, (12), (14) and (15) imply that

gTk dk = −∥gk∥2 −
gTk yk−1

gTk−1dk−1
gTk dk−1 + tk

gTk dk−1

gTk−1dk−1
gTk yk−1

= −∥gk∥2 + (tk − 1)
gTk yk−1

gTk−1dk−1
gTk dk−1. (28)

If Γk = 0, then tk = 1. Therefore, MN3TCG is reduced to N3TCG satisfying the sufficient descent
condition. We continue the proof with the induction over k. Using the induction hypothesis,
we have gTk−1dk−1 ≤ −∥gk−1∥2 < 0. Now, we have two cases:
Case (i): If Γk ̸= 0 and (gTk dk−1)(g

T
k yk−1) ≥ 0, then

tk = min{τ1,max{1, t̃k}} ≥ 1.

This inequality, along with (28), results in

gTk dk = −∥gk∥2 + (tk − 1)
gTk yk−1

gTk−1dk−1
gTk dk−1 ≤ −∥gk∥2.

Case (ii): If Γk ̸= 0 and (gTk dk−1)(g
T
k yk−1) < 0, then

tk = min{τ2,min{1, t̃k}} ≤ 1.

Similar to case (i), we have

gTk dk = −∥gk∥2 + (tk − 1)
gTk yk−1

gTk−1dk−1
gTk dk−1 ≤ −∥gk∥2.

Hence, dk satisfies the sufficient descent condition in both algorithms.
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Lemma 2. Suppose that dk is a sufficient descent direction and Assumptions 3.1 and 3.2 hold.
Then ∑

l(k)−1

(
gTl(k)−1dl(k)−1

)2
∥dl(k)−1∥2

<∞.

Proof. See Lemma 3.4 in [10].

Lemma 3. Let dk be the direction generated by N3TCG or MN3TCG and the step-size αk be
obtained by the nonmonotone Armijo-type line search (7)-(9). Also, Assumptions 3.1 and 3.2
hold. If ∑

l(k)−1

1

∥dl(k)−1∥2
= +∞, (29)

then
lim
k→∞

inf ∥gk∥ = 0.

Proof. By contradiction, we suppose that limk→∞ inf ∥gk∥ ̸= 0. Hence, there exists a constant
γ > 0 such that

∥gk∥ ≥ γ, ∀k. (30)

Define
Πk :=

gTk dk
∥gk∥∥dk∥

. (31)

Using the Lemma 1, we have gTk dk ≤ −∥gk∥2; hence

Πk ≤ −
∥gk∥
∥dk∥

,

so that
Π2

k ≥
∥gk∥2

∥dk∥2
. (32)

Therefore, (30)-(32) lead to

γ2

∥dk∥2
≤ ∥gk∥

2

∥dk∥2
≤ Π2

k =
(gTk dk)

2

∥gk∥2∥dk∥2
≤ (gTk dk)

2

γ2∥dk∥2
. (33)

Without any loss of generality, we can take k := l(k)− 1. From Lemma 2, we obtain

∑
l(k)−1

1

∥dl(k)−1∥2
≤
∑

l(k)−1

(
gTl(k)−1dl(k)−1

)2
∥dl(k)−1∥2

<∞,

which contradicts with (29). Hence, the proof of the desired result is completed.

Theorem 1. Let dk be the direction generated by N3TCG or MN3TCG and the step-size αk be
obtained by the nonmonotone Armijo-type line search (7)-(9). If Assumptions 3.1 and 3.2 hold,
then

lim
k→∞

inf ∥gk∥ = 0.
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Proof. In the conjugate gradient algorithms, it is clear that iterations can fail when ∥gk∥ > ε

for all k ≥ 0 [27]. By using Lemma 1 and (27), we get

|θk| =
∣∣∣ gTk dk−1

gTk−1dk−1

∣∣∣ = |gTk dk−1|
|gTk−1dk−1|

≤ ∥gk∥∥dk−1∥
∥gk−1∥2

≤ ζ

ε2
∥dk−1∥. (34)

Assumption 3.2 results in
∥yk−1∥ ≤ Lαk−1∥dk−1∥. (35)

Now, Cauchy–Schwarz inequality along with Lemma 1, (12) and (35) gives us

|βLS
k | =

∣∣∣− gTk yk−1

gTk−1dk−1

∣∣∣ = |gTk yk−1|
|gTk−1dk−1|

≤ ∥gk∥∥yk−1∥
∥gk−1∥2

≤ ζ

ε2
Lαk−1∥dk−1∥. (36)

From (15) and (27), we get

∥dk∥ ≤ ∥gk∥+ |βLS
k |∥dk−1∥+ |tk||θk|∥yk−1∥

≤ ζ + ζ

ε2
Lαk−1∥dk−1∥2 + |tk|

ζ

ε2
∥dk−1∥Lαk−1∥dk−1∥

= ζ +
ζ

ε2
Lαk−1∥dk−1∥2 + |tk|

ζ

ε2
Lαk−1∥dk−1∥2. (37)

Finally, we have three cases:
Case (i): In N3TCG, we have tk = 1, then

∥dk∥ ≤ ζ +
2Lζ

ε2
αk−1∥dk−1∥2.

Case (ii): If Γk ̸= 0 and (gTk dk−1)(g
T
k yk−1) ≥ 0, then |tk| ≤ τ1

∥dk∥ ≤ ζ +
(1 + τ1)Lζ

ε2
αk−1∥dk−1∥2.

Case (iii): If Γk ̸= 0 and (gTk dk−1)(g
T
k yk−1) < 0, then |tk| ≤ τ2

∥dk∥ ≤ ζ +
(1 + τ2)Lζ

ε2
αk−1∥dk−1∥2.

Since τ2 ≤ 1 ≤ τ1, for all cases, we have

∥dk∥ ≤ ζ +
(1 + τ1)Lζ

ε2
αk−1∥dk−1∥2. (38)

Similar to the proof of Lemma 3.1 in [35], there exists a positive constant M such that

∥dk∥ ≤M, ∀k ≥ 0.

Moreover, for k := l(k)− 1, it is clear that∑
l(k)−1

1

∥dl(k)−1∥2
≥
∑

l(k)−1

1

M2
= +∞.

Hence, Lemma 3 implies that
lim
k→∞

inf ∥gk∥ = 0.
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4 Numerical Experiments

In this section, we compare N3TCG and MN3TCG with the LS conjugate gradient method [22], the
hybrid conjugate gradient method (HLSFR) [6] and the sufficient descent LS conjugate gradient
method (MMLS) [21] to solve the unconstrained optimization problems. In our experiments, all
codes are written in Matlab 2017a programming environment on a 2.3Hz Intel core i3 processor
laptop and 4GB of RAM with the double precision data type in Linux operations system. We
selected a number of 150 test functions of nonlinear unconstrained optimization problems from
the CUTEst [4] library. The parameters are chosen as ξ := 0.15, ρ := 0.01, τ1 := 5, τ2 := 0.99

and N := 10. The parameter ηk is updated by

ηk :=

η0/2, if k = 1,

(ηk−1 + ηk−2)/2, if k > 1,

in which η0 := 0.15. All algorithms are stopped when ∥gk∥ ≤ 10−6 or the total number of
iterates exceeds 10000.

Figures 1-3 show the performance of LS, HLSFR, MMLS, N3TCG and MN3TCG to solve the
unconstrained optimization problems, which are evaluated using the profiles of Dolan and Moré
[7]. In these figures, Ni, Nf, Ng and Ct indicate the total number of iterations, the total number of
function evaluations, the total number of gradient evaluations and CPU times, respectively. Also,
we will plot the fraction P (τ) of optimization minimization problems for which the algorithm is
within a factor τ of the best time. Figure 1 shows that MN3TCG has the best performance about
the number of iterations since it can solve about 37% of the test problems with the smallest
number of iterations. It is easy to see from Figure 2 MN3TCG is more competitive than LS,
HLSFR, MMLS and N3TCG since this algorithm can solve 38% of test problems better than others
in terms of Nf + 3Ng. Finally, we can obtain from Figure 3 that N3TCG method is better than
LS, HLSFR, MMLS and MN3TCG methods about 43% of the most wins in terms of Ct. Thus, the
modified three-term conjugate gradient method turns out to be practically efficient.
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Figure 1: The performance profile in terms of Ni for HLSFR, MMLS, LS, N3TCG and MN3TCG
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Figure 2: The performance profile in terms of Nf + 3Ng for HLSFR, MMLS, LS, N3TCG and MN3TCG
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Figure 3: The performance profile in terms of Ct for HLSFR, MMLS, LS, N3TCG and MN3TCG

5 Conclusions

We have presented two modifications of the LS conjugate gradient algorithm to solve uncon-
strained optimization problems. Also, we have shown that the generated directions by the new
three-term conjugate gradient methods satisfy the sufficient descent condition. Furthermore,
the conjugate gradient parameter is obtained using the eigenvalue analysis for an approxima-
tion of the inverse Hessian matrix. We have established the global convergence of our methods
under mild conditions. The numerical results have indicated that the proposed methods are
efficient and robust to solve the unconstrained optimization problems.
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چکیده

مسائل حل برای لیو-استوری مزدوج گرادیان روش پایه بر تعمیم یافته سه جمله ای مزدوج گرادیان روش دو مقاله، این در
آنالیز پایه بر کاهشی جستجوی جهت های تولید جدید، روش های اصلی و مهم ویژگی است. شده ارائه نامقید بهینه سازی
فرض های برخی تحت شده ارائه جدید الگوریتم های سراسری همگرایی است. خطی جستجوی نوع از مستقل و ویژه مقادیر
و کارا نامقید بهینه سازی مسائل حل برای پیشنهادی روش های که می دهند نشان عددی نتایج است. شده اثبات مناسب

هستند. قوی
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