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1 Introduction

Identification of real systems are required for many problems of control engineering, physics,
chemistry, biology, medical engineering and economics [13]. Due to the existence of uncertainties
in real systems, the obtained information is always imperfect. Unfortunately, most of the
current methods are not capable of modeling these systems with uncertain data. During the
last decades, the new field of science, granular computing on the base of interval analysis, fuzzy
sets and rough sets have been developed to deal with imperfect information [33]. Rough set
theory, established by Pawlack [32], is dealing with uncertainty by the usage of upper and
lower approximations for a rough set. Nowadays, rough set theory is an appealing approach in
solving different problems such as data mining[41, 29], feature selection [42] and data prediction
[38, 31]. Also, some useful generalizations of rough sets are proposed in the literature [24].

One of the most important approaches in system identification is the employment of neural
networks because of their abilities in function approximation, suitability for parallel computa-
tion and avoidance of the curse of dimensionality [26, 27]. On the base of rough set theory,
the rough neural networks (R-NNs) are proposed by Lingras [17], for dealing with uncertainty
and vagueness in neural networks. R-NNs are neural structures with rough neurons. A rough
neuron is a pair of conventional neurons that are called the upper and lower bound neurons
where the information is exchanged between them. Different structures of R-NNs are proposed
in the literature, such as rough multilayer perceptron [17], fuzzy rough-neural network [18, 1],
rough radial basis function neural network [16, 7] and rough extreme learning machines [3].
R-NNs are applied for solving different problems, such as traffic volume prediction [17], image
classification [11], medical diagnostic support system [39], system identification [5, 2], social
networks [9], machine translation [10] and so on.

Apart from the structure of a neural network, its learning algorithm is another important
issue that affects the performance of the neural network. Emotional learning is a training
strategy for neural networks which facilitates the error convergence by making it possible to
use the last information of the neural network. This is done by increasing the memory depth
of neural network. Because of this property, the emotional learning can be very effective in the
identification and control of nonlinear dynamics. Emotional learning is formulated by the usage
of an emotional signal which displays the emotions about the total performance of system [21].

Emotional learning has been introduced by Balkenius and Morén [6] in 2001 as a com-
putational model for Amygdala, then it is modified and reformulated in some papers in the
literature [36, 22, 21]. In recent years, emotional learning, under the terminology of brain emo-
tional learning-based intelligent controllers (BELBIC) has been used in different applications
such as designing PID controllers [34], aerospace launch vehicle controllers [25], decoupling of
nonlinear multi-input multi-output distillation columns [8]. In addition, emotional learning has
been utilized to improve the results in chaotic time series prediction [30], online prediction of
geomagnetic activity indices [19], visual object recognition [20], system identification [4], etc.

Since R-NNs are designed for modeling of uncertainties, their structures are more complex
than conventional neural networks. Therefore, the training of R-NNs is an important issue in
the applications. In this paper, the emotional learning strategy is applied to achieve a new
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stable learning algorithm for R-NN which is called online Lyapunov-based emotional learning
(OL-BEL). In some recent works, the emotional signal is defined as a linear combination of
identification error and its first derivative [21, 36, 4]. Here, a new mathematical description of
emotional signal as a linear combination of identification error and its differences of different
order is presented. Then, it is used to construct an energy function that results in a new
learning algorithm for R-NNs. OL-BEL results in increasing the memory depth of R-NNs and
improving the identification accuracy. R-NN with OL-BEL is utilized to identify some examples
such as the cement rotary kiln (CRK). CRK is the most important part of the cement factory
which produces the clinker of cement after some physical and chemical reactions on the input
materials. The results are compared with some well-known models in the literature.

Recently, the sinusoidal R-NN (SR-NN) is used to identify the nonlinear systems [2]. In
that paper, an online Lyapunov-based learning (OL-BL) algorithm is proposed for training the
SR-NN [2]. In the current work, on the base of emotional learning strategy, a new mathematical
description of the identification error is proposed. Based on this formula, a higher order OL-BEL
algorithm is developed to train the R-NN. OL-BEL facilitates the error convergence of R-NN
in the system identification. The superiority of the proposed algorithm OL-BEL in contrast to
OL-BL is shown through some examples.

The paper is organized as follows. Section 2 introduces the main concepts that are used in
this paper. Section 3 describes the structure of R-NN. The rough-neural identifier for nonlinear
systems is described in section 4. The higher order OL-BEL algorithm for R-NN is proposed
in section 5. Section 6 gives the simulation results and the experiment. Finally, the conclusion
is drawn in section 7.

2 Main Concepts

This section is devoted to the main concepts which are used in the current paper. The notions
of rough neuron, Lyapunov-based learning and emotional learning are described in sections 2.1,
2.2 and 2.3, respectively.

2.1 Rough Neuron

Rough set theory investigates the uncertainty by employing a boundary region of a set. If the
boundary region is empty, then the set is crisp, otherwise it is rough [28]. In fact, rough set
theory expresses the vagueness by defining a lower approximation and an upper approximation
for a rough set. The notion of rough neuron has been introduced by Lingras [17], on the base
of rough set theory, to utilize the abilities of neural networks for dealing with rough patterns
such as the weather and traffic volume.

A rough neuron r is defined as a pair of conventional neurons, one for the upper bound
called r and the other for the lower bound called r where the information exchanged between
them [17]. Let us denote the inputs of r and r by i and i, respectively. Further, let us denote
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the outputs of r and r by o and o, respectively. Then,

o = min
(
ϕ(i), ϕ(i)

)
, o = max

(
ϕ(i), ϕ(i)

)
(1)

where ϕ is the activation function for r and r.

2.2 Lyapunov-Based Learning

To design the Lyapunov-based learning algorithm, the candidate discrete Lyapunov function
vk is chosen. Then, the parameters of neural network are adjusted to make ∆vk < 0. There-
fore, according to the Lyapunov stability theory, vk is a true Lyapunov function and has a
single global minimum point. Asymptotically, convergence of the identification error to zero is
proved and the boundedness of predictions and parameters are shown. In the gradient-based
learning algorithms, along a cost function in the parameter space, the global minimum point
is searched, but in the Lyapunov-based learning algorithms, an energy function with a single
global minimum point is constructed through the parameter adjustment as time approaches
infinity [23].

2.3 Emotional Learning

The algorithm OL-BEL is developed using the emotional learning. Emotional learning is a
training strategy for neural networks which facilitates the error convergence by making it pos-
sible to use the last information of neural parameters. It is done by increasing the memory
depth of neural network. Emotional learning is formulated by the usage of an emotional signal
which displays the emotions about the total performance of system. In this method, the signal
is replaced by an emotional one which can be interpreted as an intellectual estimation of the
present state in view of objectives [21]. In fact, emotional learning increases the memory depth
of the neural network which results in fast training.

Here, we want to replace the state error ek = [e1k, e
2
k, · · · , e

q
k]

T at time index k with an
emotional signal rk = [r1k, r

2
k, · · · , r

q
k]

T that we call it the emotional error of the system identi-
fication. We suppose that the emotional error rk at the time index k is a linear combination of
ek,∆ek,∆

2ek, · · · ,∆p−1ek (p ≤ q):

rk = c1ek + c2∆ek + c3∆
2ek + · · ·+ cp∆

p−1ek (2)

where

∆ek = ek − ek−1,

∆2ek = ∆ek −∆ek−1 = ek − 2ek−1 + ek−2,

...
∆p−1ek = ∆p−2ek −∆p−2ek−1,
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and c1, c2, · · · , cp are some constant numbers that should be selected empirically. In this work,
they have been chosen from the interval [−1, 1]. For p = 3 we have

rk = c1ek + c2∆ek + c3∆
2ek

= (c1 + c2 + c3)ek − (c2 + 2c3)ek−1 + c3ek−2. (3)

In the emotional learning, the energy function is constructed by the usage of emotional error
rk instead of conventional state error ek.

Remark 1. The main objective of this paper is utilizing the emotional learning to provide
accurate identification of nonlinear systems. This method increases the memory depth of the
neural model. Therefore, this idea is useful for the identification and control of dynamic systems.

3 The Structure of R-NN

Figure 1: The structure of R-NN. In the Figure, rk denotes the emotional error which is used for the
training of R-NN.

R-NN is a neural structure with rough neurons in the hidden layer [2]. Consider the R-
NN with n rough neurons in the hidden layer and q conventional neurons in the output layer,
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as shown in Fig. 1. Let ŷk+1 be the output vector of R-NN and xk be the input vector
of R-NN (k represents the discrete time index). Suppose that V k, V k, W k and W k be the
weights of connections between all inputs and hidden lower bound neurons, the weights of
connections between all inputs and hidden upper bound neurons, the weights of connections
between the hidden lower bound neurons and output neurons, and the weights of connections
between the hidden upper bound neurons and output neurons, respectively. In addition, let ϕ
be the activation function of hidden neurons.

Further, let Ok and Ok be the outputs of hidden lower bound neurons and the outputs of
hidden upper bound neurons, respectively. Then, according to (1), we have

Ok = min
(
ϕ
k
, ϕk

)
, Ok = max

(
ϕ
k
, ϕk)

)
(4)

where ϕ
k
= ϕ(V kxk) and ϕk = ϕ(V kxk) and the output vector ŷ of R-NN is given by

ŷk+1 =W kOk +W kOk

=W k min
(
ϕ
k
, ϕk

)
+W k max

(
ϕ
k
, ϕk

)
(5)

For convenience, we try to substitute the operations min and max in (5) by the algebraic
operations. Let us to introduce the vectors

δk = (δ1k, · · · , δ
n
k ), δk = (δ

1

k, · · · , δ
n

k )

such that
δjk, δ

j

k = 0 or 1, δjk + δ
j

k = 1, j = 1, 2, · · · , n (6)

and
min(ϕj

k
, ϕ

j

k) = δjkϕ
j

k
+ δ

j

kϕ
j

k, max(ϕj
k
, ϕ

j

k) = δ
j

kϕ
j

k
+ δjkϕ

j

k, j = 1, 2, · · · , n (7)

In (7), ϕj
k

and ϕ
j

k are the jth components of ϕ
k

and ϕk, respectively. In fact, if we have
min(ϕj

k
, ϕ

j

k) = ϕj
k
, then δjk = 1, δ

j

k = 0, and if min(ϕj
k
, ϕ

j

k) = ϕ
j

k, then δjk = 0, δ
j

k = 1.
Therefore, we have

min
(
ϕ
k
, ϕk

)
= diag(δk)ϕk + diag(δk)ϕk (8)

max
(
ϕ
k
, ϕk

)
= diag(δk)ϕk + diag(δk)ϕk (9)

Now, by introducing

Ck =W kdiag(δk) +W kdiag(δk), Dk =W kdiag(δk) +W kdiag(δk) (10)

the output vector ŷk+1 of R-NN is given by

ŷk+1 = Ckϕ(V kxk) +Dkϕ(V kxk) (11)

In this paper, R-NN is used for system identification in the nonlinear autoregressive exogenous
(NARX) Configuration. In this configuration, the delayed inputs and outputs of plant are the
inputs of neural model [27]. Fig. 1 shows the R-NN in NARX configuration. R-NNs have the
ability to work with interval data. In Fig. 1, the inputs uik−1, i = 1, 2, . . . ,m, the intervals
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[yj
k−1

, ylk−1], l = 1, 2, . . . , q, and the input 1 for biases of hidden neurons form the input layer.
The rough neurons form the hidden layer of R-NN. The output layer consists of conventional
neurons. The model error ek and its differences ∆ek,∆

2ek are used to formulate the emotional
error rk which is used for training the parameters matrices V k, V k,W k and W k.

Remark 2. The input vector xk of R-NN includes ui, i = k − 1, · · · , k − nu, yi, i = k −
1, · · · , k − ny and y

i
, i = k − 1, · · · , k − ny where y and y are the upper and lower bounds of

y, respectively. The numbers nu and ny show the system dynamics.

4 The Rough-Neural Identifier

A general discrete dynamic nonlinear system (DDNS) can be described by

zk+1 = f(zk, zk−1, · · · , zk−nz+1,uk,uk−1, · · · ,uk−nu+1) (12)

where zi (i = k, · · · , k − nz + 1) and ui (i = k, · · · , k − nu + 1) represent the states and inputs
of DDNS, respectively. Suppose that f is continuously differentiable and satisfies the Lipschitz
condition that guarantees the existence and the uniqueness of the solution of difference equation
(12) [15]. By adding and subtracting Azk, (12) can be stated as:

zk+1 = Azk + g(zk, zk−1, · · · , zk−nz+1,uk,uk−1, · · · ,uk−nu+1) (13)

where g represents the system nonlinearity, and A is a Hurwitz matrix. Assume that R-NN
can model g with an accuracy of ϵk and using the parameters C⋆, D⋆, V ⋆ and V ⋆. Then, the
equation (11) is used to write the following relation:

zk+1 = Azk + C⋆ϕ (V ⋆xk) +D⋆ϕ
(
V ⋆xk

)
+ ϵk (14)

In (14), the input vector of R-NN is

xk = [uk, · · · ,uk−nu+1, zk, · · · , zk−nz+1, zk, · · · , zk−nz+1, 1]
T (15)

By attention to (14), parametric model of (12) can be developed by

ẑk+1 = Aẑk + Ĉkϕ
(
V̂ kxk

)
+ D̂kϕ

(
V̂ kxk

)
(16)

where Ĉk, D̂k, V̂ k and V̂ k represent the estimates of C⋆, D⋆, V ⋆ and V ⋆ at the time index k,
respectively. According to the structure of R-NN in Fig. 1, the estimated vector ẑk+1 is crisp.

According to the results in [2], the state error of (12) is given by

ek+1 = zk+1 − ẑk+1

= Aek + C̃kϕk + Ĉkϕ
′

k
Ṽ kxk + D̃kϕk + D̂kϕ

′

kṼ kxk + ζk (17)

where
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Ṽ k = V ⋆ − V̂ k, Ṽ k = V ⋆ − V̂ k, D̃k = D⋆ − D̂k, C̃k = C⋆ − Ĉk, (18)
ζk = R2 +R2 + ϵk (19)

In these expressions, R2 and R2 are Taylor expansion reminders. In (19), ζk is the bounded
unmodeled dynamic of the DDNS.

Now, the emotional error rk+1 is derived using the state error ek+1 as expressed in (17),
∆ek and ∆2ek, as described in (3):

rk+1 = [c1 + c2 + c3]ek+1 − [c2 + 2c3]ek + c3ek−1

= Ark + [c1 + c2 + c3]C̃kϕk − [c2 + 2c3]C̃k−1ϕk−1
+ c3C̃k−2ϕk−2

+ [c1 + c2 + c3]Ĉkϕ
′

k
Ṽ kxk − [c22c3]Ĉk−1ϕ

′

k−1
Ṽ k−1xk−1 + c3Ĉk−2ϕ

′

k−2
Ṽ k−2xk−2

+ [c1 + c2 + c3]D̃kϕk − [c2 + 2c3]D̃k−1ϕk−1 + c3D̃k−2ϕk−2

+ [c1 + c2 + c3]D̂kϕ
′

kṼ kxk − [c2 + 2c3]D̂k−1ϕ
′

k−1Ṽ k−1xk−1 + c3D̂k−2ϕ
′

k−2Ṽ k−2xk−2

+ [c1 + c2 + c3]ζk − [c2 + 2c3]ζk−1 + c3ζk−2 (20)

5 Online Lyapunov-Based Emotional Learning Algorithm

A positive definite, decrescent, and radially unbounded [12] function is used to construct the
algorithm OL-BEL for R-NN in the identification of DDNSs.

Remark 3. The trace of a square matrix An×n, denoted by tr(A), is the sum of diagonal
elements in A. In addition, the smallest eigenvalue of A is denoted by λmin(A). We know that
the eigenvalues of positive definite matrices are some positive numbers.

Theorem 1. Consider the system (12) and the rough-neural identifier (16). Suppose that the
R-NN is trained by the following relations:

Ŵ k+1 = Ŵ k + P (Ark + rk+1){(c1 + c2 + c3)[min(ϕ
k
, ϕk)]

T

− (c2 + 2c3)[min(ϕ
k−1

, ϕk−1)]
T + c3[min(ϕ

k−2
, ϕk−2)]

T }Γ−1
1 (21)

Ŵ k+1 = Ŵ k + P (Ark + rk+1){(c1 + c2 + c3)[max(ϕ
k
, ϕk)]

T

− (c2 + 2c3)[max(ϕ
k−1

, ϕk−1)]
T + c3[max(ϕ

k−2
, ϕk−2)]

T }Γ−1
2 (22)

V̂ k+1 = V̂ k + Γ−1
3

(
(c1 + c2 + c3)(ϕ

′

k
)T ĈTk P (Ark + rk+1)xT

k

− (c2 + 2c3)(ϕ
′

k−1
)T ĈTk−1P (Ark + rk+1)xT

k−1

+c3(ϕ
′

k−2
)T ĈTk−2P (Ark + rk+1)xT

k−2

)
(23)

V̂ k+1 = V̂ k + Γ−1
4

(
(c1 + c2 + c3)(ϕ

′

k)
T D̂T

k P (Ark + rk+1)xT
k

− (c2 + 2c3)(ϕ
′

k−1)
T D̂T

k−1P (Ark + rk+1)xT
k−1

+c3(ϕ
′

k−2)
T D̂T

k−2P (Ark + rk+1)xT
k−2

)
(24)
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where the matrices Γ1, Γ2, Γ3, and Γ4 are the gains of learning, and P is the matrix solution
of Lyapunov equation ATPA− P = −Q where Q is a positive definite matrix. If

λmin(Q)∥rk∥2
(|c1|+ 2|c2|+ 4|c3|)(∥A∥∥rk∥+ ∥rk+1∥)∥P∥

> Mk (25)

where Mk is an upper bound for the unmodeled dynamics ζk, ζk−1 and ζk−2 which are given
in (19). Then the emotional error rk converges to zero as k tends to infinity.

Proof. Consider the candidate discrete Lyapunov function

vk = rTk Prk +
1

2
tr
(
W̃ kΓ1W̃

T

k

)
+

1

2
tr
(
W̃ kΓ2W̃

T

k

)
+

1

2
tr
(
Ṽ

T

k Γ3Ṽ k

)
+

1

2
tr
(
Ṽ

T

k Γ4Ṽ k

)
. (26)

Then, with some computations we have

∆vk = vk+1 − vk
= −rTkQrk + [c1 + c2 + c3]rTkATPζk − [c2 + 2c3]rTkATPζk−1

+ c3rTkATPζk−2 + [c1 + c2 + c3]ζ
T
k Prk+1

− [c2 + 2c3]ζ
T
k−1Prk+1 + c3ζ

T
k−2Prk+1

+ tr
(
[c1 + c2 + c3]P (Ark + rk+1)[min(ϕ

k
, ϕk)]

T W̃
T

k

− [c2 + 2c3]P (Ark + rk+1)[min(ϕ
k−1

, ϕk−1)]
T W̃

T

k−1

+c3P (Ark + rk+1)[min(ϕ
k−2

, ϕk−2)]
T W̃

T

k−2 +∆W̃ kΓ1W̃
T

k

)
+ tr

(
[c1 + c2 + c3]P (Ark + rk+1)[max(ϕ

k
, ϕk)]

T W̃
T

k − [c2 + 2c3]P (Ark + rk+1)

[max(ϕ
k−1

, ϕk−1)]
T W̃

T

k−1 + c3P (Ark + rk+1)

[max(ϕ
k−2

, ϕk−2)]
T W̃

T

k−2 +∆W̃ kΓ2W̃
T

k

)
+ tr

(
[c1 + c2 + c3]xk(Ark + rk+1)

TP Ĉkϕ
′

k
Ṽ k − [c2 + 2c3]xk−1

(Ark + rk+1)
TP Ĉk−1ϕ

′

k−1
Ṽ k−1 + c3xk−1

(Ark + rk+1)
TP Ĉk−2ϕ

′

k−2
Ṽ k−2 +∆Ṽ

T

k Γ3Ṽ k

)
+ tr

(
[c1 + c2 + c3]xk(Ark + rk+1)

TP D̂kϕ
′

kṼ k − [c2 + 2c3]xk−1

(Ark + rk+1)
TP D̂k−1ϕ

′

k−1Ṽ k−1 + c3xk−2

(Ark + rk+1)
TP D̂k−2ϕ

′

k−2Ṽ k−2 +∆Ṽ
T

k Γ4Ṽ k

)
(27)

Now, according to the relations (21)-(24), we have

∆vk = −rTkQrk + [c1 + c2 + c3]rTkATPζk − [c2 + 2c3]rTkATPζk−1

+ c3rTkATPζk−2 + [c1 + c2 + c3]ζ
T
k Prk+1

− [c2 + 2c3]ζ
T
k−1Prk+1 + c3ζ

T
k−2Prk+1 (28)
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Then, we have

∆vk = −rTkQrk + [c1 + c2 + c3](Ark + rk+1)
TPζk

− [c2 + 2c3](Ark + rk+1)
TPζk−1 + c3(Ark + rk+1)

TPζk−2

= −rTkQrk + (Ark + rk+1)
TP ([c1 + c2 + c3]ζk − [c2 + 2c3]ζk−1 + c3ζk−2)

≤ −λmin(Q)∥rk∥2 + (∥A∥∥rk∥+ ∥rk+1∥)∥

P∥(|c1 + c2 + c3|∥ζk∥+ |c2 + 2c3|∥ζk−1∥+ |c3|∥ζk−2∥)

≤ −λmin(Q)∥rk∥2 + (∥A∥∥rk∥+ ∥rk+1∥)∥P∥(|c1|+ 2|c2|+ 4|c3|)Mk (29)

According to the equation (25), we have ∆vk < 0. Therefore, (vk) is a decreasing sequence. This
fact, together with boundedness of (vk) implies that this sequence is convergent, resulting to
(rk) ∈ ℓ∞, Because vk is a function of rk. Therefore, (ek) ∈ ℓ∞, and assuming the boundedness
of system states zk, we have (ẑk) ∈ ℓ∞. From (29), we have

0 <
∞∑
k=0

λmin(Q)∥rk∥2 −
∞∑
k=0

(∥A∥∥rk∥+ ∥rk+1∥) ∥P∥(|c1|+ 2|c2|+ 4|c3|)Mk

≤ −
∞∑
k=0

∆vk = v0 − v∞ <∞ (30)

which implies (rk) ∈ ℓ2. Combining these results, we conclude that (rk) ∈ ℓ∞ ∩ ℓ2. Using a
special case of Barbalat’s lemma, we have rk → 0 as k →∞ [12].

Remark 4. R-NNs are designed for dealing with uncertainties and noises in the modeling
of nonlinear systems. The inputs of R-NNs can be uncertain values if their upper and lower
bounds be available. In the conventional neural networks, we have to compute the average of
uncertain data. In this case, some of the available information is ignored [17].

Remark 5. In theorem 1, on the base of emotional learning, some learning laws are proposed
for adjusting the parameters of R-NN. This is done with increasing the memory depth of R-NN.
In fact, the identification error ek is replaced with the emotional signal rk and then, the learning
laws are derived. Consequently, accurate models are identified for nonlinear systems. This is
the main contribution of this paper in contrast to the recent works such as [2].

6 Simulation Results

In this section, some neural and rough-neural structures such as multilayer perceptron (MLP),
sinusoidal neural network (SNN), rough MLP (RMLP) and SR-NN are used to identify some
DDNSs and cement rotary kiln (CRK) where the parameters are adjusted by the proposed
algorithm OL-BEL. The aforementioned structures trained by the proposed algorithms OL-
BEL are compared with themselves where they are trained by the algorithm OL-BL. These
models are used in series-parallel (NARX) configuration. The performance metric is the one-
step ahead prediction mean squared errors (MSEs). All these simulations are done with the
software MATLAB.
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In sections 6.1 and 6.2, the tenfold cross validation method is used [27]. In these sections,
a data set of size 10000 is used. In each running, a data set of size 9000 is used for training
and a data set of size 1000 is used for testing the neural network. To achieve an estimate of the
identifier performance, all the training and testing errors are averaged.

In the Tables 1 and 2, the training and testing MSEs of models with three learning al-
gorithms OL-BL, OL-BEL (with two and three parameters) are shown. For each model, the
performance of these learning algorithms are comparable. These simulations show that the
proposed algorithm OL-BEL provides more accurate models. In addition, increasing the mem-
ory depth of the neural network (with increasing p in (2)) brings better performances for the
models. On the other hand, according to the results in these Tables, the rough models are
comparable with their corresponding conventional models. For example, the MSEs of SR-NN
are less than SNN. It must be noted that nh for conventional models shows the number of
hidden neurons and for rough models shows the number of hidden rough neurons. The number
of trainable parameters in rough models is less than their corresponding conventional models.

6.1 Identification of a Periodic MIMO Nonlinear System

Table 1: The performance comparison of models in the identification of (31). The column nh denotes
the number of hidden (rough) neurons.

Model Learning nh Para. c1 c2 c3 Train MSE Test MSE

MLP OL-BL 8 56 - - - 0.0088 4.7(-4)
MLP OL-BEL 8 56 1 0.2 0 0.0066 2.9(-4)
MLP OL-BEL 8 56 1 0.2 0.3 0.0055 2.3(-4)
SNN OL-BL 8 56 - - - 0.0019 2.1(-4)
SNN OL-BEL 8 56 1 0.2 0 0.0016 1.4(-4)
SNN OL-BEL 8 56 1 0.2 0.3 0.0011 1.6(-5)
RMLP OL-BL 3 54 - - - 0.0065 3.4(-4)
RMLP OL-BEL 3 54 1 0.2 0 0.0050 1.4(-4)
RMLP OL-BEL 3 54 1 0.2 0.3 0.0055 7.3(-5)
SR-NN OL-BL 3 54 - - - 0.0014 8.1(-5)
SR-NN OL-BEL 3 54 1 0.2 0 0.0012 2.1(-5)
SR-NN OL-BEL 3 54 1 0.2 0.3 7.9(-4) 8.9(-6)

Consider the DDNS: z
1
k+1 = sin(

z1
k

1+(z2
k)

2 + u1k)

z2k+1 = cos(1− z1
kz

2
k

1+(z2
k)

2 − u2k)
(31)
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where z0 = [0, 0]T [14]. Identification of (31) is done by MLP, SNN, RMLP and SR-NN
with OL-BEL and OL-BL algorithms where the excitation signals are of the form uk =

[sin (2πk/10) cos (2πk/10)].
The initial values of the parameters are some random numbers between -0.5 and 0.5. The

input vector of the models MLP and SNN is

xk = [u1k, u
2
k, z

1
k, z

2
k, 1]

T (32)

and the input vector of the rough-neural models RMLP and SR-NN is

xk =
[
u1k, u

2
k, z

1
k, z

1
k, z

2
k, z

2
k, 1
]T (33)

The design parameters of OL-BL and OL-BEL are A = 0.1I2×2, Q = I2×2 and Γi = 10I3×3

(i = 1, 2, 3, 4).

Figure 2: The true states z1, z2 of (31), the estimated states ẑ1, ẑ2 and the errors e1, e2 in testing of
SR-NN with 3 hidden rough neurons where the parameters are adjusted by OL-BL.

Table 1 shows the MSEs of the identification of (31) using the aforementioned structures
and learning algorithms in training and testing. Figs. 2 and 3 show the results of identifying
(31) by SR-NN with OL-BL and OL-BEL, respectively. The true states z1, z2, the estimated
states ẑ1, ẑ2 by SR-NN and the identification errors e1, e2 are shown in these Figures. As it is
illustrated in the Figures, OL-BEL provides more accurate model in contrast to OL-BL.

From the comparison of Figs. 2 and 3, we see that the identification error of SR-NN trained
by OL-BEL is less than the identification error of SR-NN trained by OL-BL. From the Table
1 and the Figs. 2 and 3, we can conclude that in the identification of (31), the performances
of identifiers with OL-BEL are better than their performances with OL-BL. In addition, the
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Figure 3: The true states z1, z2 of (31), the estimated states ẑ1, ẑ2 and the errors e1, e2 in testing
of SR-NN with 3 hidden rough neurons where the parameters are adjusted by OL-BEL (c1 = 1, c2 =

0.2, c3 = 0.3).

performances of identifiers with the higher order OL-BEL (c1 = 1, c2 = 0.2, c3 = 0.3) are better
than their performances with the OL-BEL (c1 = 1, c2 = 0.2, c3 = 0).

6.2 Identification of Another MIMO Nonlinear System

In this section, the MIMO DDNS:z1k+1 =
15u1

kz
2
k−1

2+50(u1
k)

2 + 1
2u

1
k − 1

4z
2
k−1 +

1
10

z2k+1 =
sin(πu1

kz
1
k−1)+2u2

k

3

(34)

where z0 = [0, 0]T [40], is identified by the proposed methodology. The identification of (34) is
done by MLP, SNN, RMLP and SR-NN with OB-BEL and OL-BL where the excitation signals
are of the form uk = [cos (2πk/10) sin (2πk/10)].

The initial values of the parameters are some random numbers between -0.5 and 0.5. The
input vector of MLP and SNN is xk = [u1k, u

2
k, z

1
k−1, z

2
k−1, 1]

T , and the input vector of RMLP
and SR-NN is

xk =
[
u1k, u

2
k, z

1
k−1, z

1
k−1, z

2
k−1, z

2
k−1, 1

]T (35)

The design parameters of OL-BL and OL-BEL are A = 0.1I2×2, Q = I2×2 and Γi = 10I3×3

(i = 1, 2, 3, 4).
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Table 2 shows the MSEs of the identification of (34) using the aforementioned structures
and learning algorithms in training and testing. Figs. 4 and 5 show the results of identifying
(34) with noise (SNR=20) by SR-NN with OL-BL and OL-BEL, respectively. The true states
z1, z2, the estimated states ẑ1, ẑ2 by SR-NN and the identification errors e1, e2 are shown in
these Figures. As it is illustrated in the Figures, OL-BEL provides more accurate model.

From the comparison of Figs. 4 and 5, we see that the identification error of SR-NN trained
by OL-BEL is less than SR-NN trained by OL-BL. From the Table 2 and the Figs. 4 and 5, we
can conclude that in the identification of (34), the performances of identifiers with OL-BEL are
better than their performances with OL-BL. In addition, the performances of identifiers with
the higher order OL-BEL (c1 = 1, c2 = 0.2, c3 = 0.3) are better than their performances with
the OL-BEL (c1 = 1, c2 = 0.2, c3 = 0).

Table 2: The performance comparison of models in the identification of (34). The column nh denotes
the number of hidden (rough) neurons.

Structure Learning nh Para. c1 c2 c3 Train MSE Test MSE

MLP OL-BL 8 56 - - - 0.0196 0.0061
MLP OL-BEL 8 56 1 0.2 0 0.0158 0.0030
MLP OL-BEL 8 56 1 0.2 0.3 0.0144 0.0013
SNN OL-BL 8 56 - - - 0.0057 3.2(-4)
SNN OL-BEL 8 56 1 0.2 0 0.0040 2.3(-5)
SNN OL-BEL 8 56 1 0.2 0.3 0.0028 5.1(-6)
RMLP OL-BL 3 54 - - - 0.0097 0.0013
RMLP OL-BEL 3 54 1 0.2 0 0.0079 4.1(-4)
RMLP OL-BEL 3 54 1 0.2 0.3 0.0070 6.9(-5)
SR-NN OL-BL 3 54 - - - 0.0023 4.9(-5)
SR-NN OL-BEL 3 54 1 0.2 0 0.0020 1.0(-5)
SR-NN OL-BEL 3 54 1 0.2 0.3 0.0012 1.3(-6)

6.3 Identification of Cement Rotary Kiln (CRK)

In this section, CRK is identified using the proposed methodology. CRK is the most important
part of the cement factory which produces the clinker of cement from the input materials after
some physical and chemical reactions. In [2], CRK is identified by SR-NN and RMLP where the
algorithm OL-BL have been used for training them and the better performances of SR-NN and
RMLP against the SNN and MLP are shown. Here, to improve the identification accuracy, OL-
BEL is used to train SR-NN and RMLP in the identification of CRK. The results are compared
with SR-NN and RMLP where they are trained by OL-BL.
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Figure 4: The true states z1, z2 of (34) with noise (SNR=20), the estimated states ẑ1, ẑ2 and the errors
e1, e2 in testing of SR-NN with 3 hidden rough neurons where the parameters are adjusted by OL-BL.

Figure 5: The true states z1, z2 of (34) with noise (SNR=20), the estimated states ẑ1, ẑ2 and the errors
e1, e2 in testing of SR-NN with 3 hidden rough neurons where the parameters are adjusted by OL-BEL
(c1 = 1, c2 = 0.2, c3 = 0.3).
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The identification is done using the available data gathered from the normal operation of
Saveh white cement factory. Input variables of this system are material feed, fuel feed, kiln
speed, ID fan speed and air pressure that are shown by Mat, Fu, KS, FS and AP, respectively
[35]. Output variables of this system are kiln ampere, CO content, pre-heater temperature and
back-end temperature that are shown by KA, CO, Pre and BE, respectively. Table V in [2]
shows the input-output delays of CRK.

To prepare the gathered noisy data for the identification, some preprocessing techniques
such as shaving the spikes have been used on them. A low-pass butterworth filter of order 3
with cutoff frequency of 0.025 is used. The time sampling Ts is equal with 1 minute [35]. When
a conventional neural network is applied for the identification of CRK, a resampling is required
such that for each minute, we have one sample. In this process, some of the information is lost.
In the identification of CRK by rough-neural networks, for each minute the upper and lower
bounds of outputs are found.

Here, similar to the previous works, the MIMO system is decomposed into four MISO
system [37]. In this simulation, the activation function of hidden neurons in MLP and RMLP
is supposed to be hyperbolic tangent. Here, data sets of sizes 9000 and 3000 are used for
training and testing, respectively. This identification is done using the three previous outputs
of CRK where the identifiers are used in the NARX configuration. The initial values of the
parameters V̂ k, V̂ k are some random numbers between -0.05 and 0.05, and the initial values of
the parameters Ŵ k, Ŵ k are some random numbers between -0.5 and 0.5. The design parameters
of OL-BL and OL-BEL are chosen as follow: A = 0.1, Q = 1.

The testing MSEs of this identification are listed in Table 3. In this Table, the testing MSEs
of RMLP and SR-NN in the identification of CRK is shown where they are trained by OL-BL
and OL-BEL. The results are shown for different outputs of CRK, separately. In all cases, the
MSEs of models with OL-BEL is less than the MSEs of models with OL-BL. Figs. 6 and 7
show the results of identifying CRK by SR-NN with OL-BL and OL-BEL, respectively. In these
Figures, the true outputs of CRK and the estimated outputs by SR-NN are shown in the left
hand side where the identification errors are shown in the right hand side. As it is illustrated
in the Figures, OL-BEL provides more accurate model. From the Table 3 and Figs. 6 and 7,
we can conclude that in the identification of CRK, in testing, the performances of SR-NN and
RMLP with OL-BEL are better than their performances with OL-BL.
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Table 3: Performance comparison of RMLP and SR-NN with OL-BL and OL-BEL in the identification
of CRK. The column nh denotes the number of hidden rough neurons.

Var. Structure Learning nh c1 c2 c3 Γi Test MSE

KA RMLP OL-BL 4 - - - 100I4×4 0.2151

KA RMLP OL-BEL 4 0.5 -0.5 0.5 100I4×4 0.1240

KA SR-NN OL-BL 4 - - - 100I4×4 0.2154

KA SR-NN OL-BEL 4 0.5 -0.5 0.5 100I4×4 0.1216

CO RMLP OL-BL 4 - - - 100I4×4 1.42(-4)

CO RMLP OL-BEL 4 0.5 -0.5 0.5 100I4×4 4.50(-5)

CO SR-NN OL-BL 4 - - - 100I4×4 1.25(-4)

CO SR-NN OL-BEL 4 0.5 -0.5 0.5 100I4×4 3.58(-5)

Pre RMLP OL-BL 3 - - - 300I3×3 4.3745

Pre RMLP OL-BEL 3 0.35 -1 1 300I3×3 0.8669

Pre SR-NN OL-BL 3 - - - 300I3×3 4.3705

Pre SR-NN OL-BL 3 0.35 -1 1 300I3×3 0.8373

BE RMLP OL-BL 4 - - - 100I4×4 1.5865

BE RMLP OL-BEL 4 0.7 -0.5 0.5 100I4×4 0.6271

BE SR-NN OL-BL 4 - - - 100I4×4 1.7167

BE SR-NN OL-BEL 4 0.7 -0.5 0.5 100I4×4 0.6324
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Figure 6: The outputs of CRK, their estimates by SR-NN with OL-BL, and the errors in testing.
SR-NN with 4 hidden rough neurons is used to estimate KA, CO, and BE, and SR-NN with 3 hidden
rough neurons is used to estimate the Pre.

Figure 7: The outputs of CRK, their estimates by SR-NN with OL-BEL, and the errors in testing.
SR-NN with 4 hidden rough neurons is used to estimate KA, CO, and BE, and SR-NN with 3 hidden
rough neurons is used to estimate the Pre.
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7 Conclusion

In this paper, a higher order online Lyapunov-based emotional learning (OL-BEL) algorithm
is proposed for training the rough-neural network (R-NN) in the identification of discrete dy-
namic nonlinear systems. Emotional learning facilitates the error convergence by making it
possible to use the last information of neural network which is done by increasing its memory
depth. The proposed algorithm OL-BEL is very fast. The better performances of the identifiers
with OL-BEL in comparison with the identifiers with some well-known learning algorithms are
demonstrated in the identification of some nonlinear systems, particularly in the identification
of cement rotary kiln. In the future, we try to design the stable rough-neural controllers and
use the abilities of R-NN with OL-BEL in dealing with uncertainty in the other important
problems such as classification.
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چکیده

یادگیری مبنای بر پایدار یادگیری الگوریتم یک سیستم، شناسایی در راف-عصبی شبکه های کارایی بردن بالا منظور به
آسان را خطا همگرایی راف-عصبی شبکه های حافظه عمق به افزودن با الگوریتم این است. شده ارائه آنها برای عاطفی
برای می باشد، آن تفاضلات و شناسایی خطای از خطی ترکیبی که عاطفی سیگنال یک از منظور، این برای می کند.
پارامترهای و پیش بینی ها کرانداری و خطا همگرایی این، بر علاوه است. شده استفاده یادگیری قوانین به دستیاب١ی
با سیمان دوار کوره شامل غیرخطی سیستم چند پیشنهادی، الگوریتم کارآمدی دادن نشان برای است. شده اثبات مدل

است. شده مقایسه دیگر مدل چند با نتایج و شده  شناسایی روش این از استفاده
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