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1 Introduction

We consider the following multiobjective mathematical programming with vanishing constraints
(MMPVC in brief):
MMPVC : Hlelgrll F(z):= (fi(x),..., fp(x)),

Q:={zeR" | Hi(z) >0, Gi(x)H;(x) <0,i € I}, (1)

where, the considered functions f; (for j € J:={1,...,p}), H; (for i € I := {1,...,m}), and
G; (for i € I) are convex, not necessarily differentiable, and defined from R™ to R.

If p =1, then MMPVC reduces to “mathematical programming with vanishing constraints”
(MPVC) which were introduced by Kanzow and his coauthors in 2007 [1, 9]. After defining
the MPVC, finding the optimality conditions, named stationary conditions, for it become an
interesting subject for some researchers; see [7, 8, 9, 13] in smooth case and [10, 11] in nonsmooth
case).

If Gi(z) = 0 for i € I, the MMPVC coincides to classical multiobjective programming
problem which is an important field in optimization theory. Also, the MMPVC is a direct
generalization for the following “mathematical problem with equilibrium constraints” (MPEC),

considered in a lot of papers (see [14, 16] and their references):

min  F(x)
s.t. H;(x) >0, Gi(x) >0, iel,

To the best of our knowledge, there is no work available dealing with MMPVC with nondif-
ferentiable data, and the present paper is the first to consider it. So far under differentiablity
assumption, there is only one conference paper that considered MMPVC [12].

As well as classic multiobjective optimization, we can consider different kinds of optimality
(efficiency) for MMPVC, including weakly efficient, efficient, strictly efficient, isolated efficient,
and properly efficient solutions. Some characterizing of weakly efficient solutions for MMPVCs
with smooth data are presented in [12]. In order to obtain optimality in which, given any
objective, the trade-off between that objective and some other objective is bounded, Geoffrion
[3] suggested restricting attention to efficient solutions that are proper. After Geoffrion, proper
efficiency became a very important notion in studying multiobjective optimization, and many
definitions for proper efficiency were introduced in literature, such as those introduced by Ben-
son, Borwein, Henig, Kuhn-Tucker; see [2] for a comparison among the main definitions of this
notion. Here, we will consider the newest definition of proper efficiency that is introduced in
[4], and will characterize it for nonsmooth convex MMPVC. This characterization is made for
the first time, even for MMPVCs with smooth data.

Since the product function of two convex functions is not necessarily convex, the feasible set
Q) is not necessarily convex. Consequently, to set optimality conditions for properly efficient so-
lutions of MMPVC, we can select different normal cones for S. Here we focus on Mordukhovich
normal cone of . This kind of optimality condition has been studied in [7, 8, 9, 14, 16] for
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MPVCs and MPECs. We would mention that all mentioned references to MPVC have con-
sidered the problems with continuously differentiable functions, and the present paper extends
their results to MMPVC with nondifferentiable functions.

The structure of this paper is as follows: Section 2 contains some definitions and theorems
from convex analysis and non-smooth analysis. In section 3, we will introduce a new constraint
qualification for MMPVC, and will present a necessary condition for properly efficient solutions
of MMPVC. Then, we will show our necessary condition is also sufficient under some weak

assumptions.

2 Preliminaries

In this section we present some preliminary results on convex analysis and nonsmooth analysis
from [6, 15]. Suppose that g : R® — R is a convex function, and zg € R™. The subdifferential

of g at x¢ is defined as

9g(wo) == {C € R" | g(2) — g(x0) = ((,x — wo), Vo cR"}.

Notice that if g1 and go are two convex functions from R™ to R, and « is a non-negative real

number, then ag; + g2 is convex and

d(ag1 + g2)(z0) = adgi(zo) + dga(wo).

Let ¢ : R” — R be a locally Lipschitz function. The Mordukhovich subdifferential of ¢ at zq
is defined as

Onvp(xo) := lim sup {E € R" | lim inf oly) — ele) = <§,y — x> > 0}.

T—x0 y—z ly — |

We observe that if ¢ is a convex function, then darg(zo) = dg(xo) and O (—g)(xo) = —0g(xo).
Also, for two locally Lipschitz functions ¢; and @9 from RP to R, and for an arbitrary real

number «, we have
Om (ochl + <p2)(x0) C adnp1 (o) + Oz (o).

Notice that if ¢ is a minimizer of ¢ on RP, then 0, € dar¢(xo), where 0, denotes the zero
vector of RP.
The Mordukhovich normal cone of a closed subset A C RP at x¢ € A is defined by N (A, o) :=

OnmZa(xo), where
0 r €A
Ia(z) = ’
r(2) { +0o0 z ¢ A
It is not difficult to show that for given A; C RP and () € A;, i =1,..., s, we have

Nag (A1 Ay (20,2 ) ) = Nag (Mg, 2) - x Nag (A, 2). 2)

If h(y) = (h1(y), ..., hs(y)), where h;s are locally Lipschitz from R™ to R, and «* = (7, ..., z%),
then the Mordukhovich coderivative of h is defined as
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D*h(y)(z*) = On <Z xzhk(y)> (¥)-
k=1

Let II : R" = R*® be a set-valued function, and Z € II(g). We say that II is calm at (g, T) if
there exist some L > 0 and neighborhoods U and V around T and ¥, respectively, such that
drg)(r) < Llly —7ll,for all y € V and 2 € U N1I(y), where dryy) () denotes the distance
between x to II(7).

Theorem 1. [5, Theorem 4.1] Suppose that the set-valued mapping f : Rl = R¥ is defined as
Fy):={xeC|g(x)+yecE}

where the function g : R¥ — R is locally Lipschitz and (C, E) C R* x R! is closed. If [ is calm
at (0,T) € GphF , then

N (F(0),7) C U D*g(Z)(y") + Nu(C, 7).
y*ENM(E,9(T))

Theorem 2. [5, Corollary 3.4] Consider the set-valued function f : RP = R¥,
F(y) = {z €R | g(z,y) € B},

where g : R¥ x RP — RY is locally Lipschitz and £ C R? is closed. Let (,%) € GphF . Further,

assume the following qualification condition holds,

U [Ou (2", 9)(@,9)], = 0.

2*€Nm(E,9(Z,9))\{0}

where [ ], denotes projection onto the x-component. Then, F is calm at (7, Z).

For two vectors z,y € RP, the inequality < y stands for x; < y; for all i € {1,2,...,p}.
The inequality z < y means z < y and x # y. Furthermore, x < y stands for x; < y; for all

ie{1,2,...,p}.

3 Main Results

At the start of this section, we recall that the feasible solution set of MMPVC which is defined
in (1) is denoted by Q. Also, we recall the following definition from [4, pp. 110].

Definition 1. A feasible point zy € € is called a properly efficient solution to MMPVC when

there exists a vector A > 0, such that
(N, F(x0)) < (\, F(x)), Yo € .
Throughout this paper, we fix a feasible point z € €2, and divide the index set I as

I :={ieI|H#) >0}, and Iy:={iel|H; &) =0}
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Also, we divide these two index sets as
10 = {i e I | Giy(2) = 0}, I = {i eIy | Giz) <0},
IS_ = {Z el | Gt(.f?) > 0}, Ig = {’L el | Gl(f) = O},
107 = {’L el | Gl(i‘) < 0}

Now, we introduce a new constraint qualification for MMPVC that plays a key rule in this

section.

Definition 2. The MMPVC is said to be satisfy to (€9) at & if there are not, non-zero together,
scalars oy and B; for i € I, satisfying a; > 0 for ¢ € Ig U 13, Bi > 0forie Iy, a8 = 0 for
1€ I87 and

ieIQuIf i€lp

We should mention that (€Q) is a generalization of a constraint qualification that is de-
fined by Ye [16] for mathematical programming with equilibrium constraints (MPEC), named
“No Nonzero Abnormal Multiplier Constraint Qualification”. This constraint qualification was
extended to nonsmooth MPECs by Movahedian and Nobakhtian [14], and is considered for
MMPVC, for the first time, in the present paper.

Example 1. Let
Q={rcR? |2y > —x9, x2(xy +23) <0},

and & = 0y € Q. This set can be considered as feasible set of a MMPVC with following data:
Hy(xz1,x2) = x1 + 22, and  Gi(x1,x2) = zo.
Obviously, Ip = {1}, 0H1(2) = {(1,1)} and G (&) = {(0,1)}. A short calculation shows that
02 € 10G1(Z) — f10H1(£), a1 >0, 1 >0 = a3 =p1 =0,
and so, the €9 holds at .
The following theorem presents the first main result of this section.

Theorem 3. Let & be a properly efficient solution to MMPVC. If (¢£) holds at &, then there
exist scalars ﬂf, pl and pé, for j € J and i € I, such that:

p m
On €Y nf0fi(@) + Y [uf0Gi(2) — pffoH,(2)] , (3)
j=1 i=1
pd >0, ieIyuIl; pd =0,ielfuly UIL, 4
pi® free, i € IJ U I, p >0, iely; pl =0, iely,

pitug =0, i€l
(11 - pmh) > 0,
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Proof. Since & is a properly efficient solution to MMPVC, Definition 1 concludes that there
exist some positive scalars uf > 0, for j € J, such that 2 is a minimizer to the following

weighted problem:
P
minZMJFfj (x)  subject to € Q.
j=1

Therefore, J 1 Hj fj + Zg attains its global minimum at Z. Hence,

p p
On € Ou | D ulfi+Za|( Z Ponf;(@) + 0mZTa(t)
j=1 =1
p
§j 15 0F;(&) + Nar(Q, 7). (8)

For estimating of Nj(Q,2), for all i € I take ©;(z) := (Gi(z), H;(z)), and let O(z) :=
(©1(2),...,0m(x)). Also, set

X, = {(v",v*) € R? | v? > 0 and v'v? <0},

and X = {(v1,...,0m) € (R?)™ | v; := (v},v?) € X\, Vi€ I}. Since X =[]", X, then

Ny (X, 0(2) HW&ﬂW, 9)

i=1

by (2). On the other hand, the following equality has been proved in [7, Lemma 3.2]:

X, for i€l
{0} x R for iel
Ny (X, 0:(%)) = {0} x R_ for i€l (10)
Ry x {0} for iell
{0} x {0} for iel;.

Owing to (9)-(10), the (€Q) at & implies that for each p = (p¥, pi7, ..., pS, pH) € Nas (X, 0(2))
we have
On € Y [pF0Gi(2) + pl 0Hi(2)] = p = Ozm.
iel
Thus,
On ¢ U [0 ((p,©(x) +y)) (&, 0m)], -

O2m #PENM (X,0(T))

From this and Theorem 2 we conclude that the set-valued function Q(.) is calm at (&,0,,),
where Q(y) := {z € R | O(z) +y € X} for each y € R2™. Since Q(0,,) = €, Theorem 1
deduces that
Nu(@i)c | DO@O + Nu®R" ). (11)
AEN M (X,0(2))

On the other hand, by(2), for each X := (M, XY, ..., A2 AC) € R*™ we have

m?'m
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D*O(&)(\) = dur (N, 0(.))(2) lz (! HﬁA?Gi)] (2)

=> [\ oH (&) + AF0G;(2)] .
i=1

According to above equality,(11) and the fact that Ny (R™, 2) = {0,}, we get tho following
estimate for N (Q, £):

Ny (€, ) C U lzm: (A\oH;(2) + A\{0G;(2))

AENN (X,0(&))

i=1

Hence, the last inclusion and (8) imply that

0, € ZuFaf] (%) U [Z (ATOH,(2) + AT 0Gi(#)) | -
,\eNM(X o)) Li=1
Therefore, there exists some A := (AL X\G ... AL AC) € Ny (X,0(2)) such that
P m
0> ufofi(@)+ MNoH(3) + AF0G:(2)] - (12)
j=1 i=1

From (10) and A € Np(X,O(%)), we can conclude that AY > 0 for i € IJ U I, A{ = 0 for
i€ If ULy UIY, M s free for i € INU IS, A < 0forie Iy, \f =0foriellul,

and AIAY = 0 for i € IJ. Taking uf := A for i € I, == —2H for i € I, pll .= \H for
i € I'\ I3, and considering (12), the result is justified. O

It is worth mentioning that when p = 1, the relations (3)-(7), named M-stationary condition,
are proved in [7, 8] for the problems with smooth data, and in [14] for nonsmooth MPECs. The
present paper is the first that studies this kind of stationary condition for MMPVCs.

We know from classic nonlinear optimization that necessary optimality conditions are also
to be sufficient under convexity assumption. These results cannot be applied for MMPVC since
the product function H;G; does not convex. The following theorem, which is our second main
result in this section, shows the sufficient condition holds for MMPVCs, under some additional

weak assumptions.
Theorem 4. Let & € €2 be a feasible solution that satisfies in (3)-(7) for some scalars uf, ph,
and uf, (i,5) € I x J.

(a): If
A= (e Id |l <0yutie )] ull =0, u >0} =0,

then Z is a local properly efficient to MMPVC.

(b): If
B=Au{iclf |pf <0}u{iell |uf =0, uf >0}=0,

then z is a global properly efficient to MMPVC.
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Proof. (a): Suppose that Z is not locally properly efficient to MMPVC. Then, for each neigh-
borhood U C R™ to &, and for each vector A = (A1,...,A,) > 0,, we can find a point
7§ € QN U such that

p p
SONE@E) > N ).
j=1 j=1

F

Notice that (7) leads us take A = p* := (uf',...,pt) in above inequality. So, the
convexity of Z§:1 uf f; implies that

p p p
(ol =) < 3 filay)) = Do wf f3(@) <0, veed| D uith | (@)
j=1 j=1

j=1

The last inequality and the fact that 0 (Z§:1 uffj) (#) = >20_, uj 0f;(2) conclude that
P
Z (g2 —2) <0, Tl eUNQ, Vg € 9f; (). (13)

On the other hand, (3) implies that

>ouiel + Z —pffel =0, (14)
j=1 i=1

for some & € df;(2), & € 9H,(&) and ¢9 € 0G(2), for (i,5) € I x J.

Let i € If. The continuity of G; concludes that there exists a neighborhood U; for &
such that G;(x) > 0 for all © € U;. Thus, G;(z) > 0, H;(z) > 0 and G;(z)H;(z) < 0,
for all # € U; N Q, which imply H;(z) = 0. Similarly, for each i € I there exists
a neighborhood U; for & such that H;(z) > 0 and G;(z) < 0. Summarizing, for all
x € QNV in which V := ﬂiel&r Uun ﬂiel&r U;, we have Gy(z) < 0 = G4(&), for i € 19,
and H;(z) = 0 < H;(#), for i € I;". Hence

(€f o —3)<0, Viel?, and (¢,o—-3)<0, Vielf.

So, owing to (4)-(6), we get

(> (ufef —ullely o —2) <0, vreQnV.

i€IQuIy

By the above inequality, convexity of functions, assumption that A = 0, (4)-(6), and a
short calculation, we deduce that

O (ufef —pllell),x—3) <0, VzeQnV. (15)
=1

Now, inner-producing two sides of (14) to 2 — & and regarding (15), we conclude that
P
S Ul (e —3) 20, VeeanV,
i=1

which contradicts (13). Thus, the proof is complete.
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(b): Emptiness assumption of B leads us to repeat the proof of (a) without considering any
neighborhood for Z.
O

Example 2. Consider the MMPVC with following data:

fi(z1,x2) = af + |22, fa(w1,x2) = 221 + 3|aa|,
Hi(z1,22) = —x2, Hy(xq,x2) = |21] + 22,
Gi(z1,22) = —1, Ga(z1,22) = —x1.

Taking & = 0z, we conclude that I, = {1} and IJ = {2}. Since the conditions (3)-(7) hold for
pt =l =1, pll = pll = % and uf = u§ = 0, and also B = (), Theorem 4 implies that & is
properly sufficient for the problem.

4 Conclusion

In this paper, we considered a new class of nonsmooth multiobjective optimization problems,
denoted by MMPVC, as an extension of the mathematical programs with vanishing constraints
from the scalar case and the multiobjective mathematical programming with equilibrium con-
straints. We introduced a suitable modification of the “No Nonzero Abnormal Multiplier Con-
straint Qualification”. We gave Karush-Kahn-Tucker type necessary optimality condition for
proper efficient solutions, and derived that this necessary condition is also sufficient for proper

efficiency under some additional assumptions in emptiness kind.
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