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1 Introduction

Conjugate gradient (CG) and quasi-Newton (QN) methods contain a class of unconstrained
optimization algorithms, with some great properties such as low memory requirements and
strong global convergence [34], which make them famous for engineers and mathematicians

engaged in solving large-scale problems, as follows:

min f(x)
x € R" (1)

where f : R® — R is a smooth nonlinear function, and its gradient is available. The iterative
formula of a CG method leads to a sequence of the approximate solutions, as {x,} with the

following recursive formula:
Tht1 = Tk + Sk, Sk =opdr, k=0,1,2,... (2)
where g € R™ is an initial solution and dj, is the search direction with following formula:
do=—go, drt1=—grt1+ Prde, k=0,1,2,... (3)

where g = Vf(xr) and Bi is a scalar called the CG (update) parameter. In Eqn (2) the
«a parameter is the step length at current iteration along di. Inexact line searches satisfy
some certain line search conditions [22]. Among them, the so-called Wolfe conditions [22]
have attracted particular attention in the convergence analyses and the implementation of CG

methods, requiring that:

flan + ondi) — f(ay) < doug) di, (4)
g(xp + apdy) T dy, > ogi dy, (5)

where 0 < § < 0 < 1. These conditions guarantee that s{yk > 0, where yx = gx+1 — gk, and si
is defined in (2).

Different choices for the CG parameters lead to different CG methods. In early CG meth-
ods, the conjugate condition is based on the quadratic objective function and the exact line
search, which is d;‘ggk“ = 0. These methods lead to the classical linear CG methods such
as Fletcher-Reeves (FR) [23], Hestenes-Stiefel (HS) [21], Polak-Ribie ‘re-Polyak (PRP)[9, 13]
and Dai-Yuan (DY)[36]. Classic methods have same performance for linear CG methods, al-
though they have different global convergence properties and numerical performance for general
nonlinear objective functions or inexact line search (see [32]).

New nonlinear CG methods are presented with different approaches such as constructing
descent or sufficient descent directions, new extended conjugacy conditions or a hybrid with
QN methods. For example, Zhang et al. [18], construct some descent classic CG directions as
three- terms CG, TTCG, methods. For instance in a special case, they proposed a three-term
HS, TTHS, with the following search direction [18]:

diTis = g1 + B dk — Opsryi, (6)
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where
HS _ iy 1Yk Oy — k10 o
¥ ALy’ ALy

It is also clear that if the exact line search is used, then 17 = 0, and the TTHS method
is converted to the classic HS method. By replacing the HS method with other linear CG
methods, some new descent methods, such as TTPR and TTFR can be achieved (see [18]).
An attractive feature of these methods is that the direction has sufficient descent conditions,
ie. dFgr = —|lgrl* (||.]] is the Euclidean norm), which is independent of line search [18]. In
addition, Babaie-Kafaki and Ghanbari [28] apply the idea of TTHS method, Eqns (6)-(7), using
a modified BFGS, proposed by Li and Fukushima [6], and introduce a modified TTCG, named
MTTHS, as follows:

AT = gy + BT dy, — 0 2, (8)
where
MITS _ Gear®k vt _ G 9)
dlz k dlz
and
2k = g1 — gk + cllgr sk = yr + cllgrll" sk, (10)

where > 0 and ¢ > 0 are some constants, in Eqn (10), z; plays a vital role in the global
convergence of the MBFGS method for nonconvex function [17]. Similarly, Sugiki et al. [15]
proposed another modified TTCG method, using a TTCG method, proposed by Narushima et
al. [37] and a general form of the modified secant conditions, which generate a search direction
with sufficient descent conditions.

At first time, Perry [3] to find more efficient CG methods, incorporated the standard secant
equation to conjugacy condition and proposed his method to approximate the directions of CG

to QN direction, as in the following:

dkPH = —0gk+1+ B;fdk = _Qkp+1gk+1a (11)

where Qkp 1 1s the direction matrix, as a nonsymmetric matrix which approximates the inverse
Hessian of the objective function at current iteration, and 87 is the Perry CG parameter, which
are defined as follows:

_ g}{+1yk B gg+15k

6P - 9 QP =1I-

T T
SkYi SkSg
Yi sk i sk

(12)

As mentioned, from Wolfe conditions in means (4)-(5), we have s}y, > 0, so the matrix in (12)
is well-defined. In Perry approach, the direction matrix, Qf 11, 18 not symmetric and also does
not satisfy the secant equations [5]. To overcome these defects, Shanno [5] combined the Perry
method and memoryless BFGS method to introduce a new CG direction as follows:

Arsky%‘+>yks£‘%f(1g% yfyk)sks{)

Jk+1 (13)
stk sFy,” sEys,

df+1 = *Qf+19k+1 =-(
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In 2001, Dai, and Liao [35] extended the Perry conjugate condition and introduced the new

nonlinear CG method as follows:

dety = —ges1 + BP dr = —QP gk 41, (14)
where
DL _ ng+13/!< _ 9/§+15k QPL — S%yk B tsZSk (15)
¥ ALy dfyr kL Sfyk Styr’

where t is a nonnegative DL parameter. Note that if t =0, then ﬁ,? reduces f;, 1S Eqn(7), if
t =1, then BPF reduces to Bf, Eqn(12).
For extending the global convergence properties of general objective functions, Dai, and

Liao [35] considered a truncated form of the DL method, with an extended DL parameter,

namely BD L+ and the following direction:
Ghs 1 Uk 9 415k
dffl = —gri1 + BEETdy = —grgr + | max{ k+1 ,0} — k;l dy, (16)
k yk dk Sk

As a famous descent CG method, independent from a type of line search, Hager and Zhang
(HZ) [31] introduced the following CG parameter:

HZ _ ngHyk el ngﬂdk
. =g — —2 (17)
dk Yk dk Yk dk Yk

HZ method is an adaptive version of the DL parameter corresponding to ¢ = 2% in Eqn
(15). Another adaptive DL parameter is based on scaled memoryless BFGS, suggested by Dai
and Kou (DK) [33], as follows:

I?

T
DK (1) = Tk1Yk —(r Iyl skyw )9k+15k

3 18
dlTyx sty lIsell?” dEye (18)

In which 7 is a parameter corresponding to the scaling factor in the scaled memoryless BFGS
method.

Although the setting of the DL parameter is an open problem in CG methods [2], many
efforts have been made by researchers to adjust it. As instance, in descent approach based on
an eigenvalue study, the authors in [25] proposed a descent class of DL method, namely, DDL.
An exciting feature of the proposed class is that the HZ and DK methods are individual cases
of it, as efficient nonlinear CG methods. The DDL search direction is as follows [25]:

i yi _tpqdksk

APl = —ge1 + BPd = —(1 + ATy, % dTys )Gk+1, (19)
k
where ¢'? is DL parameter as follows:
2 T
tpaq — ||yk|| Sk Yk (20)

—q
sty llskll®

where p and q are nonnegative constants, which p < i and q > i. For more information about
setting the DL parameter, see [16, 24, 27, 29, 38].
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Another conjugacy approach in CG methods is based on the different types of modified
secant equations instead of standard secant equation in DL method. To review the different
types of modified secant equations see the Introduction section of [25].

Here, motivated by DL+ approach, similar to [17, 13, 10, 11], we apply the modified secant
equation proposed by Li et al. [10], named MSL, for a new extended conjugacy condition
and then using two approaches, similar to DL+, we adjust its parameter. Therefore, the
advantages of the new proposed nonlinear CG method are using the second-order information
of the objective function, by a modified secant equation, and setting the DL+ parameter to
improve in the search directions, simultaneously.

The remainder of this paper is organized as follows. In Section 2, we introduce a new
extended conjugacy condition based on MSL [10]. Then we discuss two approaches to setting
the parameter. In the first approach, we use the MTTHS descent method (8)-(9). In second
approach, we try to match the direction matrix of the CG method to the Shanno quasi-Newton
direction matrix, Qf +1, Eqn (13). Then, we discuss their global convergence. In Section 3, we
numerically compare our methods with the DL, HZ, and DK methods and report comparative

testing results. Finally, we make conclusions in Section 4.

2 New Nonlinear Conjugate Gradient Methods

In this section, based on MSL [10], we first introduce a new extended, modified conjugate

condition for CG methods, and then we describe two methods for calculating the parameter.

2.1 Conjugacy condition based on MSL

Using modifies secant equations are common in CG and QN methods for solving unconstrained
optimization problems. For example Zhang et al. [13] and Zhang and Xu [14] proposed new
QN methods based on a modified secant equation. Moreover, Yube, and Takano [11] applied
this equation for a nonlinear CG with global convergence properties. New versions of this
modified secant equation can be seen in [26, 20, 12]. Zhang and Zhou [17] applied a modified
BFGS method for a nonlinear CG method, which is proposed by Li and Fukushima [6]. Li
et al. [10] used with the modified secant equation in [39, 40]. Suugiki et al. [15], unify the
above-modified secant equations as a general form and proposed a TTCG method with sufficient
descent property.

As special case, here, we apply the conjugacy condition proposed by Li et al. [10], which
further studied by [39, 40]. This condition is based on the modified secant equation, MSL, as
follows [10]:

Bii1sk =Yg, Y = Y + Apug, (21)

where Bj1 is an approximation of the Hessian matrix of the objective function, uy € R™ is a

vector that satisfies sfuk #%0and A, = Sf’;k where 0, = max{0;,0} and 0y is as follows:
k
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Ok = 2(fx — frt1) + (g + grs1)" sk (22)

The modified secant equation in Eqn (21), is based on a revised form of the modified secant
equation proposed in [39, 40]. According to (3), similar to DL conjugate condition [35], the new

extended conjugacy condition based on (21) is presented as follows:
d£+1?k = *tDLJrngHSk» (23)

which is named DL+ conjugate condition. Using CG direction in (3) and (23), we have the
following CG parameter:

DIt 91Uk LT 15k

K = T e — (24)
A Y e Uy
For tPE+ = 0, the DL+ method is converted to the MHS method in Eqn (9). By replacing the

(24) in (3) and rearranging the vectors, we have the following new search direction:

DLT DLT SiUk _ DL 5k 5k
diyy = —Qpiy g1 =—(I + o ! —F—)Gk+1 (25)
&Yk Sk Yk
Then the associate CG method is called DL+ and its parameter, X+ is called DL+ (update)
parameter.
Now similar to DL+ parameter, the setting of the DL+ parameter is an vital issue. In following,

we use two approaches to set it.

2.2 Setting DL+ parameter

To set the DL+ parameter, we apply two approaches. The first is based on the descent direction,
and the second is based on the QN approach.

2.2.1 Descent approach

In linear search methods, the descent direction is vital to convergence analysis. Since the DL+
direction may not satisfy the descent condition, similar to [25] for DL method, here we try to
satisfy the descent condition of DL+ method using the MTTHS direction in (8)-(9), [28]. For
this purpose, consider the following subproblem:

min |5 = dii i (26)

Using simple algebraic calculations, we get the DL+ parameter as following;:
DLF* _ i(al —as +
kl a2 3 |

()
Wdfzk), (27)

where
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T = T
a = Ji+1Yk 0 — k+15k
1 — T— ’ 2 — T—
Ay Y, di, Yy,
T T
a5 = Ik+1%k ay = i1k
d{zk ’ d;{zk ’

where zj, and 7, are defined in Eqns (10) and (21), respectively. After some simplification, the

Eqn(27) can be written as follows:

=T
DL Yk 9k+1
tkl = T (28)
Sk 9k+1
However, the parameter tle L+* should be nonnegative. So, we use the following modified form
of this parameter given:
tl?lL** = max{t,?lLJr*, 0} (29)

So, by replacing (29) in (14), we get a new nonlinear DL direction as following:

T T
k4196 DLy« Jk+15k

gNDL-1 _
ALy m Al ye

kt1 —gk+1 + (

)l (30)

where t,gLH is defined in Eqn (29). The CG method based on the search direction d]kvﬁL_l,
called "NDL-1"” method.

2.2.2 QN approach

Since QN methods apply the second derivative information in search directions, so they are
useful in solving large scale unconstrained optimization problems. Therefore, to access the CG
direction matrices to approximate the inverse Hessian matrix, similar to [3] in the QN method,
we enhance the efficiency of CG method. For this reason, we approach the matrix direction
of the DL+ method, QkDJrTf', to the Shanno quasi-Newton direction matrix, Qfﬂ, Eqn (13).
Therefore, Consider the following subproblem:

te T = argmin|| Q5" — Qe (31)

where ||.||r is Frobenius norm. Using the property tr(AAT) = ||A||% and after some algebraic
g F g

calculations, we have

Ui Uk _ S1 Uk

tobt = Zk2 (32)
b2 stk llskll?
Now, similar to (29), we propose the following DL parameter:
okt = {050} (33)
So, by replacing (33) in (14), we get another new DL+ direction as following:
NDL—2 Jis1Uk DT Jir15k
dk+1 = —gk+1 +( ; T Uy + )dka (34)

diy,, diyy,
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where tEZTJr* is defined in Eqn (33). The CG method based on dﬁﬂLiQ, called "NDL-2” method.
Now, we discuss the global convergence of the "NDL-1” and "NDL-2” methods. So, we need
to make the following underlying assumptions on the objective function, commonly used in the
convergence analysis of the CG methods [34].

Assumption (A):

Let the objective function f is strongly convex and V f is Lipschitz continuous on the level set
S={zeR": f(z) < f(zo)} (35)

That is there exists constants p > 0 and L such that
(Vf(@) = V) (@ —y) = plle—yl?, Ve,yes (36)
and
V(@) = Vi)l < Lllz—yll, Vryes (37)
From Eqns (36)-(37), there exists a positive constant I' such that for all z € S ; |V f(z)]| < T.

Lemma 1. [30] Let the Assumption (A) holds. Consider any CG method in the form of (2)-(3)
in which for all k£ > 0, the search direction d is a descent direction, and the step length ay, is
determined to satisfy the Wolfe conditions, (4)-(5). If

1
ZW:OO (38)

then the method converges in the sense that
liminf [|gx|| =0 (39)
k—o0

Theorem 1. Let the Assumption (A) holds for the objective function f in (1). Consider a
CG method in the form of (2)-(3) with the CG direction defined by (30), "NDL-1” method, in
which the step length ay is computed such that the Wolfe conditions (4)-(5) are satisfied. If
the objective function f is uniformly convex on S, then the method converges in the sense that
(39) holds.

Proof. For any uniform convex differentiable function f, there exists a positive constant p such
that (see Theorem 1.3.16 of [30])

Vi sk 2 pollsell? (40)

Also similar inequality can be proved by replacing y, with ¥,. For this purpose we have

;
) s = s{ye + maa {0, 0} 2 sty > pllsi? (41)
k Uk

Uiske = (yk +
Note that, from the second equation of the Wolf conditions, Eqn (4), we have:

G di > ogildy, (42)
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On the other hand, from (21) we have:

ykxll < Nyl + | Awurl = lyell + llwll (43)

where wy, = Agup and Ay is defined in (21). Now we show that ||g,|| < Lil|/sx||. For this

purpose, first of all, using Taylor expansion of 6y in Eqn (22), we have:

10| < M| sk (44)

Then, considering the Eqn(21), we have two cases for wy, [10]: wy = ‘ﬁjﬁ or wy = Z%Z’Z , which
k
0y is defined in (21). In the first case, from Equs (37), (43) and (44),we get:

_ |0 1|5
Gl < llyell + Tkl (L + M)[sg]l = Mu|[sl], (45)

where M; = L+ M. In the second case, from (37), (40) and (44) we have:

ML||sk |

1Zell < llyell +
: pllsell®

M
<L(1+;)H5k” = Ma|[skl], (46)
where My = L(1 + %) Now, let Ly = max {My, M2}, then we have:

[kl < Lallskll (47)

Next we can show that ||zx| < Lal|sg|, where zj is defined in (10). From the eqns (10) and
(37), we have:

lzkll = llyx + cllgell"sell < llyxll + cllgell" skl < Lilskll + cllgrll"[Isk |l
< (L + ISkl = La|[skll, (48)
where Ly = L + ¢I'". Moreover, from (40) and (10) we have:
sk 2k = st (y + cllgrll"sk) = sfyr + cllgrll” skl

> (u+ cllgel)Iskll? > pllsell?, (49)

which implies that s}z, > /s ?>. Hence from this inequality and Eqns (41), (47), (48), (49),
(5) and Cauchy-Shwartz inequality we have:

|tﬁ*\ A Ghi1Tk | Gk | Ghpad
k - —
' g5k \ diyy, Sp 2k | d [|?
[EANEAl (||9k+1||yk| N gt 1]l 2] N ||91«+1||Sk||)
~ ollgrallliskll \ Ellskll? skl l|sk]2
L L L
§1(1+2+1) (50)
o\ p

That is tle L+* i3 bounded for uniformly convex objective function. So, if we use the Wolfe
conditions, (4)-(5), similar to Theorem (2.1) in [25], the search directions are bounded away,

which with Lemma 1 complete the proof. O



68 Two Settings of the Dai-Liao Parameter .../ COAM, 3(2), Autumn-Winter 2018

Theorem 2. Let Assumption (A) holds for the objective function f in (1). Consider a CG
method in the form of (2)-(3) with the CG direction defined by (34), "NDL-2” method, in
which the step length «j, is computed such that the Wolfe conditions (4) and (5) are satisfied.
If the objective function f is uniformly convex on S, then the method converges in the sense
that (39) holds.

Proof. Counsidering the Assumption (A) and the assumptions of Theorem 1, from eqns (36),
(41), (45), (47) and definition of tkDQL+*, Eqn (33), we have:

(DEFe p 4 DO S0 g Il 15k
k2 - —

sty lskll? st llskll®
Llsell> | lsellllgell L3
<1+ 32 =1+L;+2L (51)
[l sk |I? sk J

So, similar to Theorem 1, the search directions are bounded away, and the proof is complete. [J

In order to ensure the global convergence of the proposed CG methods, "NDL-1” and "NDL-
2” methods, for general functions, we modify the CG parameter in Eqn (24), similar to [35, ?],

as follows:
BE 91T BT It 15k
BTt = maa (L o) — PR =109 (52)
dk Yk ¢ dk Yk

where tkDiL+*, i = 1,2 is defined in (29) and (33), respectively. Theorem 3.6 of [35] ensures the

global convergence of the methods, which are named DL+, for general functions, if the search

directions satisfy the sufficient descent condition.

3 Numerical Experiments

In this section, we present some numerical experiments, obtained by applying a MATLAB
8.8.0.1 (R2013a) implementation of the proposed nonlinear CG methods, "NDL-1” and "NDL-
27. The numerical results are compared with the DL+ [35] with parameter ¢ = 0.1 and DK [33]
with parameter 7, = % We perform the implementations on a computer, Intel(R) Core
(TM) A10-8700P CPU 3.20 Gigahertz 64-bit desktop with 8 Gigabyte RAM. Our experiments
have been done on a set of test problems of unconstrained optimization problems of CUTEr
collection [1]. Although the descent property may not always hold for the proposed method, the
upward search direction seldom occurred in our experiments; when encountering, we restarted
the algorithm with Powell Restart [30], which is |g% gkt1] < 0.2 gk+1]]-

Moreover, we used the active approximate Wolfe conditions described in (4)-(5) with pa-
rameters o = 0.9 and p = 104, The same stop condition is considered for all methods, which
are ||gx|looc < 107 and the maximum number of iterations is limited to 1000. Table 1, shows
our comparing data contains the test problems, dimensions (n), the total number of function
evaluations (f,) and the total number of gradient evaluations (g, ), respectively.
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performance

Figure 1: Performance profiles based on the number of iterations for "NDL-1", "NDL-2”, DL+ and
DK methods.

performance

p()

w

Figure 2: Performance profiles based on CPU time for "NDL-1”, "NDL-2”, DL+ and DK methods.
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p(w)

performance

Figure 3: Performance profiles based on ny + 3ng for ’NDL-1", "NDL-2”, DL+ and DK methods.

For more comparison on our numerical results, we apply the performance profile introduced

by Dolan and More” [8].

Table 1: Experiments results of the proposed methods about the total function evaluations (f,) and

gradient evaluations (g )

DL+ DK NDL -1 NDL -2
Problem n fa\gn fo \ gn fa\gn fa\gn
AKIV A 2 2\ 2 2\ 2 2\ 2 2\ 2
ALLINITU 4 451\ 313 626 \ 408 622\ 404 421\ 326
ARGLINA 200 17\ 17 18\ 18 T\ 7 11\ 11
ARGLINB 200 45267\ 2003 33853\ 766 33853\ 766 41262\ 1258
ARGLINC 200 76960 \ 3407 153903 \ 3479 153903 \ 3479 35670 \ 1081
ARWHEAD 5000 8136\ 1077 36169 \ 3122 71908\ 6014 668 \ 7225 \ 669
BARD 3 6018 \ 2672 23350\ 8756 22325\ 8326 4163\ 1749
BDQRTIC 5000 19057 \ 1820 142535 \ 10001 143643 \ 10001 22755\ 1717
BEALE 2 3490 \ 1413 2753 \ 949 2719\ 946 990 \ 421
BIGGS6 6 4271\ 3784 1670\ 1319 7928 \ 7719 530\ 429
BOX 10000 11453\ 1123 115065 \ 10001 119587 \ 10001 6361 \ 587
BOX3 3 60\ 59 29\ 28 54\ 53 1016 \ 998
BRKMCC 2 455\ 179 3087\ 965 3103\ 970 1496 \ 599
BROWNAL 200 85271\ 10001 122892\ 8870 139672\ 10001 24583 \ 1892
BROWNDEN 4 23116 \ 1816 70244 \ 5015 29466 \ 2129 16501 \ 1286

Continued on next page
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Table 1 — Continued from previous page

DL+ DK NDL -1 NDL -2
Problem n fn\ gn fn\ gn fn\ gn fn\ gn
BROYDNTD 5000 34827\ 7796 49687\ 10001 48910\ 10001 26146 \ 6441
BRYBND 5000 4336\ 1063 1845\ 495 1779\ 511 2659 \ 702
CHAINWOO 4000 21411\ 2385 54444\ 6153 91905\ 10001 16734\ 1961
CHNROSNB4 50 13102\ 1757 67274\ 8503 66035\ 8374 10379\ 1464
CHNRSNBM 50 15446 \ 20934 54485\ 7030 47455\ 6218 10953 \ 1571
CLIFF 2 32270\ 10001 10037\ 10001 13987\ 10001 37944\ 10001
CUBE 2 3891\ 739 81088 \ 100014 81353\ 10001 2893\ 575
CURLY 10 10000 104174 \ 10001 108942\ 10001 108925 \ 10001 100641 \ 10001
CURLY?20 10000 122180\ 10001 127249\ 10001 127199 \ 10001 121138\ 10001
CURLY 30 10000 132988\ 100014 138686 \ 10001 138608 \ 10001 130225 \ 10001
DECONVU 63 18656 \ 5170 6881\ 1898 8575\ 2421 11110\ 3554
DENSCHNA 2 25\ 25 33\ 33 26\ 26 27\ 27
DENSCHNB 2 16\ 16 17\ 17 10\ 10 12\ 12
DENSCHNC 2 1642\ 651 2146 \ 1417 3643\ 1164 867\ 439
DENSCHND 3 2354\ 283 741\ 96 100410 \ 3841 3038\ 288
DENSCHNE 3 21\ 18 21\ 18 12\ 9 16\ 13
DENSCHNF 2 6528 \ 1158 2136\ 375 12319\ 2203 5669 \ 1006
DIXMAANC 3000 20\ 184 19\ 17 14\ 12 15\ 13
DIXMAANA 3000 17\ 16 18\ 17 11\ 10 13\ 12
DIXMAANB 3000 19\18 18\ 17 11\ 10 14\ 13
DIXMAANC 3000 20\18 19\ 17 14\ 12 15\ 13
DIXMAAND 3000 609\ 76 21\ 17 16\ 12 3717\ 289
DIXMAANE 3000 279\ 278 1313\ 1312 1093 \ 1092 143\ 142
DIXMAANF 3000 760\ 759 625\ 624 393\ 392 496 \ 495
DIXMAANG 3000 219\ 217 425\ 423 276\ 274 794\ 792
DIXMAANH 3000 9281\ 863 13364 \ 1332 157256 \ 10001 5123\ 553
DIXMAANI 3000 302\ 287 117\ 116 75\ 74 546 \ 156
DIXMAANJ 3000 1191\ 1188 580\ 579 367\ 366 630\ 629
DIXMAANK 3000 322\ 320 414\ 412 254\ 252 626 \ 624
DIXMAANL 3000 107360\ 10001 6648\ 616 136154 \ 10001 147794 \ 10001
DIXMAANM 15 231\ 231 172\ 172 810\ 810 199\ 199
DIXMAANN 15 207\ 206 1299 \ 1298 754\ 753 174\ 173
DIXMAANO 15 203\ 201 1309\ 1307 74T\ 745 171\ 169
DIXMAANP 15 194\ 191 1309 \ 1306 742\ 739 176 \ 173
DIXON3D@ 10000 208\ 208 286\ 281 1218\ 1218 1003\ 1003
DJTL 2 13213\ 606 36052 \ 1461 30600 \ 1246 11650 \ 532
DQDRTIC 5000 11776\ 2069 27788\ 4556 27788\ 4556 8663 \ 1591
DQRTIC 5000 13757\ 843 8647 \ 693 5849 \ 398 14899 \ 993
EDENSCH 2000 3449\ 797 3215\ 1299 3762\ 1361 3509 \ 1182

Continued on next page
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Table 1 — Continued from previous page

DL+ DK NDL -1 NDL -2
Problem n fn\ gn fn\ gn fn\ gn fn\ gn
EG2 1000 1592\ 358 8142 \ 866 6019 \ 799 1891 \ 363
ENGV AL1 5000 2434\ 1092 1308 \ 574 641\ 241 1535\ 677
ENGV AL2 3 9163 \ 1069 104609 \ 10001 104593 \ 10001 6510 \ 807
ERRINROS 50 83940 \ 10001 71123\ 10001 70231\ 10001 74704 \ 10001
ERRINRSM 50 81101 \ 10001 82952\ 10001 77688\ 10001 83878\ 10001
EXPFIT 2 4474\ 1021 10474\ 1730 11086 \ 1838 2818\ 633
EXTROSNB 1000 76398\ 10001 19469\ 2277 49393\ 5073 71250\ 10001
FLETBV3M 5000 1062\ 1062 328\ 328 1149\ 1149 136\ 136
FLETCBV3 5000 10001\ 10001 10041\ 10001 10001\ 10001 10017\ 10001
FLETCHBV 5000 10001\ 10001 10004\ 10001 10001\ 10001 10001 \ 10001
FLETCHCR 1000 74350\ 9375 83444\ 10001 83284\ 10001 75752\ 10001
FMINSRF2 5625 620\ 620 402\ 402 3670\ 3670 399\ 399
FMINSURF 5625 622\ 622 485\ 485 3678 \ 3678 443\ 443
FREUROTH 5000 16915\ 1829 77020\ 9110 97310\ 10001 11725\ 1307
GENHUMPS 5000 70178\ 10001 73098\ 10001 71091\ 10001 67735\ 10001
GENROSE 500 26425\ 3337 84050 \ 10001 83962\ 10001 32775\ 4311
GULF 3 36993\ 10001 57851\ 10001 59339 \ 10001 55008 \ 10001
HAIRY 2 12791\ 1469 8686 \ 971 9463 \ 1074 10611 \ 1287
HATFLDD 3 15526 \ 10001 14806 \ 10001 11764\ 7673 23089\ 10001
HATFLDE 3 130\ 124 1469 \ 819 1800 \ 1206 33097 \ 10001
HATFLDFL 3 769\ 290 1460 \ 487 1370\ 457 716\ 180
HEARTG6LS 6 133006 \ 9038 113591 \ 10001 118906 \ 10001 114234 \ 7332
HEARTSLS 8 10175\ 1443 84531\ 10001 82921\ 10001 12482\ 1764
HELIX 3 8600 \ 1268 14178\ 2131 11806 \ 1781 7906 \ 1207
HIELOW 3 2\ 2 2\ 2 2\ 2 2\ 2
HILBERTA 2 159\ 159 315\ 315 181\ 181 67\ 67
HILBERTB 10 126 \ 110 291\ 249 291\ 249 289\ 263
HIMMELBB 2 41\ 27 107\ 93 74\ 60 32\ 18
JENSMP 2 70\ 10 117\ 13 13111\ 857 4212\ 497
KOWOSB 4 81\ 81 99\ 80 141\ 141 27\ 25
LIARWHD 5000 4561\ 573 126596 \ 10001 129301 \ 10001 31873 \ 2659
LOGHAIRY 2 331\ 331 1748\ 1748 10001 \ 10001 10001 \ 10001
MANCINO 100 35018\ 1796 196345 \ 10001 196351 \ 10001 35270 \ 1811
MARATOSB 2 4201\ 375 11849\ 579 12329\ 602 9751 \ 807
MEXHAT 2 18659 \ 1080 62163\ 2941 77494\ 3640 12668 \ 738
NONCVXU2 5000 18932\ 10001 27496\ 10001 27503\ 10001 15803\ 10001
NONCVXUN 5000 20774\ 10001 32200\ 10001 32296\ 10001 19306 \ 10001
NONDQUAR 5000 1341\ 309 1556 \ 692 2318\ 1049 1556 \ 378
OSBORNEA 5 408 \ 45 135339\ 10001 133752\ 10001 24\ 4

Continued on next page
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Table 1 — Continued from previous page

DL+ DK NDL -1 NDL -2
Problem n fn\ gn fn\ gn fn\ gn fn\ gn
PALMFERIC 8 209967 \ 10001 259169 \ 10001 259585 \ 10001 240573 \ 10001
PALMFER2C 8 173444\ 10001 223136 \ 10001 223115\ 10001 202956 \ 10001
PALMFER3C 8 156749 \ 10001 205456 \ 10001 205364 \ 10001 185655 \ 10001
PALMFERAC 8 156752\ 10001 205456 \ 10001 205364 \ 10001 185582 \ 10001
PALMFER5SC 6 2687\ 1250 1079 \ 450 1091 \ 455 1656 \ 859
PALMFER6C 8 126013 \ 10001 169991 \ 10001 170001 \ 10001 152097 \ 10001
PALMFERSC 8 128521\ 10001 173751 \ 10001 173697 \ 10001 154526 \ 10001
HIMMELBG 2 10\ 10 13\ 7 T\ 7 17\ 12
HIMMELBH 2 16\ 16 16\ 16 11\ 11 23\ 23
POWELLSG 5000 4253\ 1084 39270\ 7596 34586\ 6692 3560 \ 870
POWER 10000 35680 \ 1839 71636 \ 7038 104337\ 10001 30141 \ 1621
QUARTC 5000 13757\ 843 8647 \ 693 5849 \ 398 14899\ 993
ROSENBR 2 4068 \ 875 83000 \ 10001 83733\ 10001 2244\ 491

Figure 1, to the number of iteration, and Figure 2, to the running time, shows that the
"NDL-2” method slightly outperforms the "NDL-1”, DL+ and the DK methods. In addition,
Figure 3 shows that to the n;+3ng4, the "NDL-2” method is competitive with the DL+ method.

4 Conclusion

Here, using DL approach, we provide a new conjugacy condition by a modified secant equation

proposed in [10]. To set the parameter of the new conjugacy condition, DL+ parameter, two

approaches are used. The convergence analysis is presented for uniformly convex and general

nonlinear functions. The comparison of the new nonlinear CG methods with some well-known
methods, shows that "NDL-2” method is better in the iteration criteria and in CPU time,
although to the ny + 3n4 is comparative with DL+ method.
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