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1 Introduction

In recent years, fractional order calculus has an effective role in many areas such as modeling
and simulation, optimization, signal processing and control. Therefore the theory of fractional
differential equations has attracted the attention of scientists in many fields. Due to continuous
order on fractional calculus, it will bring about more accurate and concise behavioral descrip-
tion of many practical processes and plants such as finance and hydrology, bioengineering [1],
diffusion and stochastic processes [2] mobile sensor [3], electrochemistry [4], optimal control
systems [5] and fractional delayed systems [6]. The authors would like to refer the interested in
the context of fractional calculus to the books [7, 8] and several published articles on optimal
control [9, 10, 11, 12]. One of the astounding contexts of the fractional calculus is the fractional
optimal control problem (FOCP). An FOCP definitely states the problem aims at finding an
input function on the fractional differential equation governing the dynamics of the system
that minimizes the performance index in terms of the state and control variables [13, 14, 15].
It defines different types of FOCPs depending on the types of fractional derivative. Here, we
consider the Caputo fractional derivative. The procedure to find the solution of an FOCPs
can be treated similarly like ordinary optimal control problems by two approaches, indirect
or direct. In the first approach, we form a Hamiltonian system then the arising two-point
boundary value problem is solved. In the other approach, the given FOCP is solved directly by
discretizing the unknown functions [16, 17, 18]. Since both of the right-left fractional deriva-
tives appear in the Hamiltonian system [19], therefore, the numerical solution of FOCPs using
the direct method has been studied by many authors [20, 21]. The presence of the noise sig-
nals in system modeling are inevitable. Recently, a finite horizon linear quadratic (LQ) OCP
for a discrete-time linear fractional system (LFS) imposed by multiplicative and independent
random perturbations is studied [22, 23]. Moreover, the OCP of continuous-time systems with
general noises, according to sampled data, is surveyed in the literature [24]. In this paper,
a FOCP with a noise function on the system dynamics is considered. In order to find the
solution of the resulted problem, an extended Bernstein fractional operational matrix [25, 26]
is formed to estimate the integer-fractional order derivatives of the basis. As instances, the
Bernstein polynomials over a finite domain is beneficial for applicable computations, because of
their geometrical outlook [27] as well as their intrinsic numerical stability [28]. The Bernstein
polynomials also provide us with explicit approximations to a given continuous function in
which the approximate sequence converges uniformly to that function. These polynomials have
also compensating “shape-preserving” properties such as mapping a convex function to another
convex function as well [29]. After approximating the unknown functions using the proposed
basis and by enforcing the necessary optimality conditions, a system of nonlinear algebraic is
achieved. Meanwhile, the convergence discussion about the operational matrix is provided as
well. The rest of the paper is constructed in the following way. In Section 2, some prerequisites
and a new operational matrix of the Bernstein polynomials are briefly reminded. In Section 3,
the main problem and the proposed numerical scheme are mentioned. Furthermore, we state a
new operational matrix with its error upper. In Section 4, the applicability of the new method
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is illustrated by providing two examples. Finally, the important achievements of the paper are

briefed in Section 5.

2 The Fractional Derivative and the Bernstein Basis Functions

In this part, several preliminary definitions, such as fractional derivative as well as the Bernstein
polynomials are stated. In the remaining part, an approximation of a function is given using
the basis.

Definition 1. Let o > 0, be a real number and n be an integer number. The fractional order
Riemann-Liouville and Caputo derivative of the function f are explained as follows, respectively
[30]
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Definition 2. The Bernstein polynomials of degree m > 0 are stated as [25]

m

Bim(t) = ( >ti(1 )™ 0< i <my;

7

The Bernstein polynomials of degree 5 are as follows:

Bos(t) = (1 —1)°, B15(t) = 5t(1 — ), Bo5(t) = 10£3(1 — t)?,
Bas(t) = 10t3(1 — )%, Bas(t) = 54 (1 —t), Bs.5(t) = t°.

In Figure 1, the Bernstein polynomials of order 5 are plotted. These polynomials have some
interesting properties that all of them are positive and have unity summation on every degree
of them. These properties make them useful for probability purpose and stochastic systems
usage [31].

The Bernstein polynomials are dense in the space L?[0,1] [32]. Moreover, every polynomial
of degree m like Py, (t) can be displayed in terms of the Bernstein polynomials, that is, there

are real numbers c; such that

Pult) = 3 ¢85ml(t): (1)
§=0

Now we try to approximate a function in L = L?[0,1] in terms of the Bernstein poly-
nomials. The space spanned by the first m Bernstein polynomials are denoted by Y,, =
{Bo.msB1,ms -+ Bm,m}. Let f be a given function in the space L. Because Y,, is a finite-
dimension, there exists the best estimation element out of Y, like fo(t) = Z;nzo AjBjm(t) in
which

lf = folle < |If —gll, forall ge€Y,. (2)

Here one may write the following theorem for the polynomial estimations:
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Figure 1: Plots of several Bernstein polynomials (m = 5).

Theorem 1. Suppose that f € L2[0,1] is estimated by f,, with the Bernstein functions
{Bim (8)}iZ like

Fn(8) = XiBim(8)- (3)
=0

where \; = fol f(t)d;m(t)dt and d; ,,,(t) are the dual Bernstein polynomials. They are de-
fined with respect to the Bernstein polynomials. The duals of the Bernstein polynomials are
orthonormal to them. If e,,(f) = fol (f(t) — fm(t))?dt then

lim e, (t) =0. (4)

m—0o0

Proof. See [26]. O

Theorem 2. Suppose that m € N and we have the Bernstein polynomials set as

{Bo.m(t), B1,m(t), .., Bm.m(t)} . The dual basis {dom (t), d1,m(t), ..., dmm(t)} of the Bernstein
basis by a proper inner product, has the Bernstein-Bazier presentation as follows

dpn(t) =Y cpgBym(t), p=0,1,....m, (5)
q=0

where
(—1)pta B9 mA i1\ (m— g\ (mti+ 1\ (m—j
Cpa = (Y (2j+1)< o >><< 3 )( . )( 3 ) (6)
(D) = m—p m—p)\ m-q J\m-q

Also, the dual polynomials satisfy the following relation

1
Briom(8), dym(8)) = / B (1) m (D)L = 51, (7)

where ¢ is the Kronecker function.
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Proof. See [33]. O
Remark 1. The Bernstein functions and their duals have the following orthonormality property
[33]:
! L, i=y,
[ Bt =4 0
0 0, i+#j.
Next, a new fractional Bernstein operational matrix congruous with the proposed method is

formed to ease the computational complexity. First of all, expanding the Bernstein polynomial
Bim(t) yields

Bim(t) = <Z )tl (1—tm 2 ( > ( )(1)”“”%7"’“, 0<i<m. (9)

Multiplying both sides of Eqn. (9) to ¢t* and taking the fractional derivative implies

Sor B =5 () (")

k=0
min(m—i,m+s—[a]—1) m m— i
> ()
— k!
(5 +m k) ts+mfk7a. (10)

D(s+m—-—k—a+1)

By approximating t5T™ %~ by m + 1 items of the Bernstein polynomials of degree m, we get

ts+m7k7a Z ]/8] m (11)

7=0

where the coefficients can be computed according to Theorem 1 as

1
b; = / grrm=k=eg, L (t)dt
0

22 (s o) ()

q=0 r
m-—q m—r+j 1
-1 J . 12
T )( ) s+2m—a—r—k+1 (12)

—gqmin(j,q)
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Hence, we have

S D& (t° Bi.m (1) Zbajﬂjm (13)

7=0

where b; is the(, j)- entry of the operational matrix computed as

b = < EDR B () i) >
q

min(m+s—[a]—1, m—i)

k=0 q=0 r=0 =0 (T)
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ECEC)
% C:ié) (mr—q) (s+2m—a—r£8k++n;)_rfs);tm—k—a+1)7

0<i,j<m. (14)

To calculate the integral appeared in the performance index, the Legendre-Gauss quadrature

law is used as

1 ¢ )
| a5 Y w g (15)
=1

where {w;}{_, and {r;}{_, are the Legendre-Gauss weights and nodes, respectively,

2 (hu(m)? (16)

Y e

3 The Main Problem and the Numerical Approach

3.1 The Numerical Spectral Method

Stated by the researchers, the dynamics of many systems can be presented more accurately
regarding the fractional order derivative than just the integer ones [7, 34]. As an instance, one
can address modeling the system of "light amplification Erbium-doped fiber amplifier”. This
kind of amplifier is one of the best ordinary used types of fiber amplifiers having applications
in metro optical networks [35]. Our considered problem is similar to this one. Hence, regarding
the application of the proposed problem, the following FOCP is considered:

min  J[u] = /0 F(t, £(t), u(t))dt, (17)
s.t.
M)+ N §Dg () = h(t, (1)) + n(t) + u(t), (18)

f0) = fo, f(0O)=f1 or f(0)=fo, f(1) = fa,

where 0 < o < 2 is the fractional order and two kinds of initial or initial-boundary conditions
are given. The parameters M and N are real numbers. The function n(t) is an independent
random perturbation function applied to the system. Commonly, the appeared perturbation
function in the dynamic system is as small as possible. On the other hand, in order not to
chatter the system dynamics, the perturbation function appearing in the system is assumed to
be ||n|| < min{||f||, [|u||}. Moreover, h is a differentiable function with respect to its parameters
and f is a continuously differentiable function with the provided initial-boundary conditions. In
order to execute the numerical method, first, the basis vector is constructed using the Bernstein
polynomials as

B?n (t) = [/BO,Tﬂ(t)7 Bl,’rn(t)a cee 7/8m,'m(t)]T7 (19)
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Using the basis functions (19), the state function is estimated as
F() = w(t) X B (t) + v(1), (20)

where X,, € R™*! is the real unknown coefficients to be computed, the functions w and v
are the auxiliary trial functions and must be selected to impose all the given conditions. The
function w and v shall be selected to impose homogeneous conditions (i.e., w(0) = v(0) = 0
or w(0) = v(1) = 0, depending on the given initial conditions). Depending on the type of
just initial or initial-boundary conditions, we put w(t) = t? or w(t) = t? — t, respectively. A
right candidate to satisfy the conditions is the Hermite or common interpolating polynomials
as v(t) = fo +tf1 or v(t) = fo + (fo — fo)t, respectively.

To proceed with the numerical procedure, we consider the trial functions for the just first
case. The other one can be dealt in a similar manner. By calculating the control parameter
from the system dynamics (26), utilizing the fractional operational matrix (13) and then by

substituting the consequent approximate functions to the cost functional, we get

1
min J[X,,] = / F(t,tQX,EBm(t)Hfl(tH fo, M(XE DY Bo(t) + f1)
0

fltlfa

N(XTpD>2 B (#) 4+ ——
+V( (Hr(z—a)

m~m,m

)~ Bt 2XEBon(t) + thi + fo) — n<t>)dt. (21)

Using the quadrature law (15) in order to approximate the integral appeared in (21), an un-
constrained nonlinear optimization problem is obtained. To find the optimal solution, the

optimization toolbox of Matlab 2019 software is used.

Remark 2. It is worth noting that the noise function that appeared in the system description is
finally conveyed to the cost functional through the system dynamics. Hence, the optimization
process of the proposed algorithm is updated such that the control function neutralizes the

perturbation affection on its optimal situation.

3.2 Bound for the Error of the Operational Matrix

In this section, a topmost bound for the error of the operational Bernstein matrix is provided.
Let z1,29,...,2m be some elements in the Hilbert space H, the Gram determinant of them is

determined as

(z1,21)  {z1,22) - (21,%m)
G(21, 22, 2m) = (29,21)  (22,22) -+ (22,2m)
(Zm,21)  (Zmy22) - {(Zms 2Zm)

Theorem 3. Let H be a Hilbert space and M is a finite dimensional subspace of H. Suppose

that {z1,292,...,2,} is a basis for M. For an arbitrary element z in H and its best unique

approximation zg, we have

G(Z, 213 R25 -0, Z?n)
G(z1,29,...,2m)

Iz — 20|53 = (22)
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Proof. See [36]. O

Let us define the error matrix as follows
Eg® = DS Bp(t) — § Dy (£ Bp(t)) = ~ (23)

Referring to (11) and considering Theorem 1, we get

m s+tm—k—a 1/2
657 = 3 by B (B2 = (G“ - ’ﬂo’m(”’ﬂlvm(t)’""5?“"'””“))) |

G (ﬁO,nL (t)a /Bl,m (t)a HE a/B’m,nL (t))

Jj=0

By considering the relations (11) and (12) , we conclude that

leginllz = 1§ Dg (¢ Bim (1) Zﬁ *Bim ()2

<min(m z,irs [a]f) m\ [ — i ()i (s+m—k)!
< 2 i k I's+m—-—k—a+1)

STM—R—«& 1/2
% G(t + k aﬁO,m(t)7ﬁl,m(t)a-~-a6m,m(t)) 0<i<m.
G(/Bo,m(t))/gl,m(t)v"-7/8m,m(t)) o

(24)

therefore, an error upper bound is provided. Hence regarding Eq. (24), it is obvious that the

error vector (23) tends to zero by raising the number of the Bernstein basis,.

4 Illustrative Test Problems of FOCP

Example 1. Let the following FOCP with variable fractional order adopted from [37] with
a dynamical system constraint affected by a noise function and the given initial-boundary

conditions as

min  Ju] = / (4 2) f(t) — tu(t))?dt, (25)
0
s.t.
f()+ §Df(t) = u(t) + 2 + 0.01sin(1.5¢t), (26)
2
f(0)=0, f(1)= TGta)

where 0.01sin(1.5¢) is the noise function applied to the system.

This problem without considering the noise function has the following exact solution

2to¢+2 2to¢+1

u(t) =

Flat2) @)

fr@t) = T(a+3)
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in which its optimal value of the cost functional without considering the noise function is J* = 0.
Approximating the state function and utilizing the dynamical system (25) to estimate the input

function, we obtain

2 T 2
fm(t) = (7 = 1) X, B (t) + mt7 (28)
U () = frn(t) + § D fr(t) — t2 — 0.01 sin(1.5¢), (29)

Table 1 displays the error of the state variable without a noise function along with the approx-
imate solution. Moreover, Table 1 shows the cost functional for variable values orders of the
basis by taking o = 1.5 in the presence of the noise function. Figure 2 depicts plots of the
exact [without any noise function] and numerical [with the noise function] solution for various

amounts of the fractional order.

Table 1: Absolute error of the state function (exact [without noise] and estimated [with noise]) for

« = 1.5 on the selected nodes with different basis orders.

t m=1 m=3

[0.5ex] 0.1 3.72x107% 1.38x10~*

0.2 4.33x1073  2.75x10~*
0.3 3.06x1073  4.23x1074
0.4 0.89x1072 5.55x1074
0.5 1.42x1072  6.41x1074
0.6 3.29x1072  6.61x1074
0.7 4.30x1073  6.07x1074
0.8 4.15x1073  4.78x10~4
0.9 2.73x1073  2.77x1074

Table 2: Optimal cost functional (J*) for Example 1 in presence of noise function for (o = 1.5).

Polynomial Order m=1 m =2 m=7

Optimal cost functional 8.90x107%4 3.98x107% 1.48x10~!3

Also, in Table 3, a comparison between the current paper results is made to the results of
[37]. The estimated optimal performance index of the current paper for o = 0.5 is better than
the results of [37].

Example 2. Assume the following FOCP with nonlinear dynamical system constraint having

a sinusoidal noise function given by
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Figure 2: Plots of exact [without noise] and estimated [with noise] state and control input (o = 1.5)

in the presence of noise function for Example 1.

1
t
min J = / [7261+t2+f(t) 4 2HHF(D) 4 %}[u(t) — (2sin(1 + %) — 4t)u(t)
T

0
+u?(t) + 17& + 412 + 4sin(f(2))(t — 2\?) + ij;?/%
f@)+ §DEPf(t) = sin(f () + u(t) — 0.1 cos(12t)e ™,

£(0) = —1, f(0) = 0.

+sin?(1 + %) + 1]dt, (30)
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Table 3: Optimal cost function (J*) for Example 1 in the absence of a noise function for (a = 1/2).

The Method The method of [37](N =3) Current study (m = 3)
Optimal cost functional 2.4503x10~4 1.6857x107°
where the function n(t) = —0.1 cos(12¢)e~" is the imposed noise function. The exact solution

of the function without considering the noise function is as follows

4t
frt)=—t* =1, w*(t) =sin(1+ ) — 2t — \/\;
We intend to apply the proposed method to solve this FOCP. Therefore, the unknown functions
are estimated as

@) =t*XLB,,(t) — 1 (31)
U (1) = frn(8) + § D} frn(£) — sin fo (¢) + 0.1 cos(12t)e " (32)

Applying the Bernstein operational matrix to compute fractional derivatives on the input func-

tion implies

i (t) = 26X, B () + X (Dyi” + D> By (1)
—sin(t? X2 B, (t) — 1) + 0.1 cos(12t)e".

By substituting the approximate state function(31)and control input (4) into the performance
index (1) yields an optimization problem. In order to find the solution of the resultant problem,
a well-known algorithm can be applied. We use the “Matlab 2012” software to simulate the
numerical results. By applying the optimization toolbox and fminunc function, the unknown
coefficients are determined. Table 4 shows the performance index improvement versus the
polynomial order. Figure 3 depicts the noise function imposed on the system dynamics. In
Figure 4, the control and state functions for both of the exact [without considering any noise

function] and the computed solutions [with the noise function] are plotted.

Table 4: Optimal performance index for Example 2.

Polynomial Order m=1 m=3

Optimal cost functional 8.094x1073 1.744x107°

5 Conclusion

This paper shows a numerical scheme to find a solution to a class of FOCPs having a noise

function in the system dynamics. The motivation of the proposed problem is its application in
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Figure 3: The imposed noise function to the system dynamics for Example 2.
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Figure 4: Exact [without noise] and estimated [with the noise] state and control functions in presence
of the noise function n(t) for Example 2 (m = 6).

the real system modeling. To proceed wiht the numerical method, the Bernstein polynomial
basis is used. The fractional derivatives of this Bernstein basis can be easily computed. Addi-
tionally, a novel fractional operational matrix is formed to simplify the numerical complexity.
A theoretical analysis for the operational matrix convergence is provided as well. Our numer-
ical examples verify theoretical results. Moreover, by taking small numbers of the basis, good
results for the proposed FOCP in the presence of the noise function, are obtained.
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