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Abstract. Let S = {e1, e2,..., en} be an ordered subset of edges of a connected
graph G. The edge S-representation of an edge set M C FE(G) with respect to S is
the vector re(M|S) = (d1, da, ..., dm), where d; = 1 if e; € M and d; = 0 otherwise,
for each ¢ € {1,...,k}. We say S is a global forcing set for maximal matchings of
G if re(M1|S) # re(M2|S) for any two maximal matchings My and Mz of G. A
global forcing set for maximal matchings of G with minimum cardinality is called a
minimum global forcing set for maximal matchings, and its cardinality, denoted by
Pgm, is the global forcing number (GFN for short) for maximal matchings. Similarly,
for an ordered subset F' = {v1, va,..., vk} of V(G), the F-representation of a vertex
set I C V(G) with respect to F' is the vector r(I|F) = (d1, da, ..., di), where d; =1
if v; € I and d; = 0 otherwise, for each i € {1,...,k}. We say F' is a global forcing
set for independent dominatings of G if r(D1|F) # r(D2|F) for any two maximal
independent dominating sets D and D2 of G. A global forcing set for independent
dominatings of G with minimum cardinality is called a minimum global forcing set
for independent dominatings, and its cardinality, denoted by ¢g4i, is the GFN for
independent dominatings. In this paper we study the GFN for maximal matchings
under several types of graph products. Also, we present some upper bounds for this

invariant. Moreover, we present some bounds for ¢y, of some well-known graphs.
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1 Introduction

All graphs considered in this paper are connected and simple. For a graph G we denote by Vg
the set of its vertices and by E¢ the set of its edges. The number of vertices of G is the order
of G and the number of edges of G is the size of G.

Let G = (Vg,Eg) be a graph. A subset Mg of Eg is called a matching of G if no
two edges of M are adjacent. The vertices incident to the edges of a matching Mg are said
to be saturated(or Mg-saturated) by Mg; the others are said to be unsaturated (or Mg-
unsaturated). If there does not exist a matching M, in G such that |Mq| < |[M{|, then M is
called a maximum matching of G, and its cardinality is denoted by v(G). A matching Mg
is maximal if it cannot be extended to a larger matching in G, see [17]

The concept of forcing set is one of the most applicable graph-theoretical concepts which
was first introduced by Klein and Randi¢ in [10]. One can see [19, 20] for application of forcing
set in large-scale computations. Also, [6, 10] are recommended to get information about relation
between the innate degree of freedom in mathematical chemistry and the forcing set in graph
theory. On the other hand, several purely graph-theoretical literatures on forcing set, such as
[1, 2, 14, 16, 22], show importance of this parameter in graph theory. Recently, Vukicevi¢ et
al. [13] have extended the concepts of global forcing set and global forcing number to maximal
matchings as follows.

Let S = {ey, ea,..., ey} be an ordered subset of edges of a connected graph G. The
edge S-representation of an independent edge set M C E(G) with respect to S is the vector
re(M|S) = (d1, da, ..., dm), where d; = 1 if e; € M and d; = 0 otherwise, for i € {1,...,k}.
We say S is a global forcing set for maximal matchings of G if r.(M;|S) # r.(Ms|S) for
any two maximal matchings M; and Ms. A global forcing set for maximal matchings of G with
minimum cardinality is called a minimum global forcing set for maximal matchings,
and its cardinality, denoted by @4, is the global forcing number (GFN) for maximal
matchings.

A set of non-adjacent vertices of a graph G is called independent set. The size of a largest
independent set is called the independence number of G and denoted by a(G).

For a graph G = (Vg, Eg), wesay D C Vi is an independent dominating set in G if Dg
is a set of non-adjacent vertices and each vertex of Viz \ D¢ is adjacent to at least one vertex
in Dg. The independent domination number of G, denoted by i(G), is the minimum
cardinality of an independent dominating set of G, see [18]. If we drop the requirement of
independence, we obtain dominating sets, and the smallest cardinality of a dominating set
in G is the domination number of G, denoted by v(G), see [8].

For stating our results, we need to expand the concept of forcing independent spectrum of
graphs which was introduced in [15] as follows.

Let F' = {vy, va,..., vk} be an ordered subset of vertices of a connected graph G. The F-
representation of an independent set I C V(G) with respect to F' is the vector r(I|F) =
(di, da, ..., dy), where d; = 1 if v; € I and d; = 0 otherwise, for ¢ € {1,...,k}. We say F
is a global forcing set for independent dominatings of G if 7(D1|F) # r(Dz|F) for any
two maximal independent dominating sets D; and Dy. A global forcing set for independent
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dominatings of G with minimum cardinality is called a minimum global forcing set for in-
dependent dominatings, and its cardinality, denoted by ¢g;, is the GFN for independent
dominatings.

According to this fact that computing GFN even for quite restricted classes of graphs is
algorithmically difficult, we are interested in studying this invariant via graph products. As
applications of our results, we compute the GFN for maximal matching number of some fullerene
graphs. We also present some upper bounds for this invariant by line and the GFN of maximal
independent dominatings.

We remind that all notations and terminologies are standard here and taken mainly from
the standard books of graph theory. For instance, as usual we denote the maximum degree
and the minimum degree of a graph G by A (or Ag) and d (or d¢g), respectively. Also, the
hypercube @, is a graph in which vertices are n-tuples (¢, ta,. .., t,) where t; € {0,1} and two
vertices are adjacent when their n-tuples differ in exactly one coordinate. Moreover, we denote

the path and cycle graphs of order n by P, and C,,, respectively.

2 Main Results

For stating our results, we need the below results:

Proposition 1. [13] Let S C Eg be a set of edges such that the graph induced by F¢g \ S has
only one maximal matching. Then S is a global forcing set for maximal matchings.

Corollary 1. [13] Let M be any matching in G. Then FEg \ M is a global forcing set for

maximal matchings in G.

Theorem 1. [13] Let G be a simple graph on n vertices and m edges. Then ¢4, (G) < m—v(G).

2.1 Generalized hierarchical product
Let G and H be two graphs and U be a nonempty subset of Viz. The generalized hierarchical
product of G and H, G(U) M H, is a graph whose vertex and edge sets are defined as follow:

Vewynm ={(9,h) | g € Ve and h € Vir},
Ecw)nm = {(9,h)(g',h') | (99’ € Ec and h=1") or (9 = ¢’ € U and hh' € En)}.

This product has several applications in other branches of science such as computer science.
We refer interested readers to study [3, 9, 12].

Theorem 2. If G and H are two graphs with n and m vertices, respectively, and U is a

nonempty subset of Vi, then

pem(GU) M H) <m|Ee| +|Ul|Bn| — max{mv(G — X) + U\ Vg x)[v(H)}-
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Proof. Let X C U, Mg—_x be a maximum matching of G — X (which has minimum meet with
U among all maximum matchings of G — X), and My be a maximum matching of H. Set

M ={(g,h)(g',h) | (99’ € Mg_x and h € Vi) or (g =g € X and hh’' € Mg}.

It is clear that M is a matching in G(U) M H. We claim M is maximal. To prove our claim,
let e = (g,h)(¢’,h’) be an edge of G(U) M H which is not in M. Thus, e can be in the following

two possible forms:

case 1. g=¢' € U and hh' € Eg. In order to e is not in M then hh' € Egy \ (My) and so hh/
cannot be added to My for constructing a larger matching, and consequently e cannot

be added to M to obtain a larger matching.

case 2. h =1 and g¢g’' € Eg. Since e is not in M, then g¢9’ € Eg \ Mg_x. Thus Mg cannot
be extended to Mg_x U {gg'} as a matching for G, and so M cannot be extended to
M U {e} as a matching in G(U) M H.

Therefore, M is a maximal matching in G(U) M H. So, according to Corollary 1, Eqynm \ M
is a global forcing maximal matching in G(U) M H. On the other hand, the cardinality of M is
equal to mv(G — X) + |U \ Va(ug_x)|lv(H). Thus, by Theorem 1,

pem(GU) M H) <m|Ee| +|Ul|Bg| — max{mv(G — X) + U\ Vaue_x)[v(H)},

which completes our proof. O

Corollary 2. Let G and H be two graphs with n and m vertices, respectively, and U be a
nonempty subset of V. If G has a maximum matching which has no meet with U, then

Pom(GU) M H) < m(|Eg| - v(G)) + |U(|Er| — v(H)).

A Zig-Zag Polyhex Lattice, H, 2.1, is a planar graph with 2¢ 4+ 1 rows of hexagonals
such that there are r and r — 1 hexagonals in each row, alternatively. Look at Figure 1 for more
illustration.

Let Parq1 := v1,02,...,V2,41 be a path. The graph H, ; is isomorphic to P41 (U) M Py

where U = {v; € Vp, ., | i is an odd number}. Thus, the function f = 2v(Pyrq1 — X) +|U \
VP2r+1(MP2T+1—X)|’ from the power set of U to N, attains its maximum at X = {v;}; because v,
is the just vertex of Ps,+1 which is not saturated; on the other hand, v(H, 1 — X) is decreasing
when |X| is increasing. Therefore, by replacing v(Pa,+1) = 7 and X = {v;} in Theorem 2, we
have @gm (Hy1) < 3r.
Parts (a) and (b) of Figure 1 show H7 1 and H7 3, respectively. Black vertices in these figures are
elements of U and bold edges in this figure are elements of the global forcing set for maximal
matchings of H7; and Hry 3, respectively, which is defined in the proof of Theorem 2. By
replacing r = 7 in @y, (Hy 1) < 37, we have g, (H,. 1) < 21; on the other hand, one can check
that the exact value of g, (H; 1) is equal to 21. This shows the presented upper bound for
@gm (Hy,1) is sharp.

Corollary 3. For every positive integer number r and t € {2¢ — 1},

o(Hy 2641 S6rf+57“+t+1—2l09;+1 2r +1).
,2t+
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Figure 1: Graphs Hr 1 and Hz 3 with their global forcing set for maximal matchings.

Proof. Tt is not difficult to check that H, 9,41 = H,,(U) M Py. Then, by Theorem 2,

Pom(Hr2t11) = ogm(Hrt(U) N Py) < 2|Eh, | + U]
— e (20(Hy = X) 4 |0\ Vi, ol
So, it is enough to obtain |Ey, ,|, v(H,;) and X. Consider the function f = 2v(H,; — X) +
|U\ Va(ary, ,—x)ls from the power set of U to N. Function f is decreasing; because if the size
of X increases, then v(H,,; — X) decreases (as much as |U\ Vg, ,_y)| increases). Therefore,
[ attains its maximum at X = . On the other hand, |Ey, | = 3rt + 2r + 1 and v(H, ;) >
20092 ~1(2p 4+ 1) which completes our proof. O

(©

Figure 2: Graphs G7,1, G7,2 and A7 g with their global forcing maximal matching.

A Zig-Zag Polyhex Lattice-like, G, is a planar graph with 2* — 1 rows of hexagonals
such that there are » and r + 1 hexagonals in each row, alternatively, and there is a pendent
vertex at both ends of its first and last level. See parts (a) and (b) of Figure 2. In part (a),
G7,1 has one row of hexagonals and two levels (note that each row is formed by two levels).
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Armchair graph A, ; is a tube whose surface is covered with hexagonals such that there
are k rows of hexagonals on it such that there are r and r+1 hexagonals in the rows, alternately.

Part (c) of Figure 2 shows armchair graph A7 g.

k
Corollary 4. If r is a positive integer number and k € {2011}2° | then (A, ;) < 2271095 (r41).

Proof. By the definition of generalized hierarchical product, we can say A, j isomorphic to
G ook (U) N Py where U is independent vertices of the first and last level of G ook So, by
T,00G5 L0945

applying Theorem 2, we have

Pgm(Ark) = pgm(G £ (U)NP) <2|Eq | +|U]
TleQQ 7‘,l0922
N glgﬁ{zy(Gr,logzg a X) * ‘U \ VG(MG . £ 7X)|}.
T, 092
So, it is sufficient to obtain X and compute the value of |[E¢ | and v(G ok ). On the oher
R r.log;
log? 7 loas 3 _
hand, |[Eg | =2'9 (3r+ 5) —(r+2) and v(G l £) <2099 (r+ 5) — 1, and so we obtain
. r,log;

X I f=v(G =X)+[U\Vgms  _x)lisafunction from the power set of U to N, then
r,logs o 5
sLogg

f attains its maximum at X = {v,w} where v and w are two pendent vertices of G . For

r,log?
more illustration, see part (c) of Figure 2. In this figure, there is the generalized hierarchical

product of G7 2 and P, where U is the set of all back vertices in G'7 2. Also, bold edges in A7 g
are elements of the global forcing maximal matching in A7 g which is defined in the proof of
Theorem 2. Moreover, part (a) of Figure 2 shows constructing G7,1 from P;7 and P, where U is
the set of all back vertices in Py7; similarly, part (b) of Figure 2 shows constructing G7 o from
G7,1 and P, where U is the set of all back vertices in G7 ;. O

Generalized hierarchical product of G(U)M H is known as hierarchical product where |U| =
1. The hierarchical product of G and H is usually denoted by G M H. By the previous
theorem, we can say the next result about GFN for maximal matchings of hierarchical product

of graphs.

Theorem 3. Let G and H be two graphs with n and m vertices, respectively, and U = {r} be
a nonempty subset of Viz. Then

Y

o (GIH) < m(|Eg| — v(@)) + |Eul, if v(G) —v(G —r)

m(|Eg| —v(@)) + |Eg| —v(H), ifv(G)—v(G-r)

Octanitrocubane is the most powerful chemical explosive. Let G be the graph of this

L,
0.

molecule, see Figure 2. As shown in Figure 2, G is formed by hierarchical product of P» and
Q3 where U is a vertex of P,. Since v(G) — v(G —r) = 1, then by Theorem 3, ¢4 (G) =
©gm (P2 03) < 12. On the other hand, the exact value of g, (G) is equal to 12 which shows
the upper bound in Theorem 3 is sharp.

Generalized hierarchical product of G(U) M H is known as Cartesian product where
U = V. The Cartesian product of G and H is usually denoted by G x H.
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Figure 3: Octanitrocuban with its global forcing maximal matching.

Theorem 4. Let G and H be two graphs with n and m vertices, then

pgm (G x H) <m|Bg| +n|Ex| — max {mv(G = X) + Ve \ Voug_x) [V(H)}-

3 Global Forcing Maximal Matching Number as Global Forcing Maximal

Independent Domination Number

For a graph G, the line graph of G, denoted L(G), is a graph whose vertices are edges of G
and two vertices are adjacent if and only if their corresponding edges are adjacent in G.

Tt is clear that matchings in G correspond to independent sets in L(G). Also, it is not difficult
to show that maximal matchings in a graph G are in a one-to-one correspondence with inde-
pendent dominating sets in L(G). Thus, if V' is a minimum global forcing set for independent
dominatings of L(G), then the edges corresponding to the vertices of V' form a global forcing
set E’ for maximal matchings of G. Moreover, E’ is minimum, because if there was a minimum
global forcing set E” for maximal matchings of G such that |E”| < |E’|, then the correspond-
ing vertices in L(G) would be a global forcing set V7 for independent dominatings in L(G) of

cardinality smaller than |V’|, a contradiction. Hence we can say the following result.
Theorem 5. For each graph G,

fm(G) = 0y L(G)).
Theorem 6. Let G be a simple graph on n vertices. Then ¢4, (G) < n — a(G).

Proof. At first, we prove that if V' is a subset of Vg such that G — V' is an empty graph,
then V' is a global forcing set for independent dominatings in G. To do this, assume to the
contrary that D; and D5 are two different maximal independent dominating sets in G such that
r(D1|G = V') = r(D2|G — V'). Since Dy # D3, then there exists a vertex v; € (Vg \ V') N Dy
which is not in Dy. Thus, there must be a vertex v; in V' N Dy that v;v; € Eg, since Dy is a
dominating set; and so d; is equal to zero in r(D1|G — V’). On the other hand, d; is equal to

one in r(Ds|G — V'), since Dy is a dominating set and v; ¢ Do, a contradiction.
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By above argument G — I is global forcing independent dominating set where [ is a largest

independent set of G. Therefore, ¢4 (G) < n — a(G). O

Theorem 7. [11] If G is a graph of order n containing no clique of size ¢, then a(G) > Ajz .
Applying Theorem 6 and Theorem 7 we have:

Theorem 8. If G is a graph of order n containing no clique of size ¢, then ¢, (G) < n— Ajr—bi— .

Using Theorem 5 and Theorem 8 leads to the next theorem.

Theorem 9. If G is a graph of order n whose line containing no clique of size ¢, then ., (G) <
2m

m - ——.
Ar +4q

Theorem 10. [5, 21] If G is a graph, then

1
(92 2 Few 1

ueEVg

By Theorem 6 and Theorem 10 we can write:

Theorem 11. If GG is a graph of order n, then

0gi(G) <n—
si(C) ueZ;G dege(u) + 1
Proof. By Theorem 6, we have
0gi(G) <n —a(G) (1)

Also, by Theorem 10, we have

W)=Y — (2)

=l degc(u) +1

1

By replacing relation (2) in relation (1), ¢4i(G) <n —>_, cy.. dego(w 11"
ega(u

Combining Theorem 5 and Theorem 11 leads to the next theorem.

Theorem 12. If GG is a graph of size m, then

In following, let w(G) show the clique number of G.

Theorem 13. [11] If G is a graph of order n, then

2n

@)z Tt

According to Theorem 6 and Theorem 13 we can say:
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Theorem 14. If G is a graph of order n, then

2n

() <n—— "
Poi(G) < Ac +w(G)+ 1

Based on Theorem 5 and Theorem 14 we can conclude that:

Theorem 15. If G is a graph of size m, then

_ 2m
A +w(L(G) +1

Pgm (G) <m

Theorem 16. [7] Let G be a graph of order n. If p is an integer such that for every clique C

2
of G, there is a vertex u in C with degg(u) + |C| + 1 < p, then o(G) > iy
p

By Theorem 6 and Theorem 16 we can say:

Theorem 17. Let G be a graph of order n. If p is an integer such that for every clique C' of

2
G, there is a vertex u in C' with degg(u) + |C|+ 1 < p, then ¢4(G) < n — il
p

Using Theorem 5 and Theorem 17 we conclude that:

Theorem 18. Let G be a graph of size n. If p is an integer such that for every clique C of

2
L(G), there is a vertex u in C with degr(g)(u) + |C| +1 < p, then ¢, (G) <m — ?m

4 Concluding Remarks

Global forcing number for maximal matchings of graphs is algorithmically difficult to compute
and very applicable. In this paper we have studied this invariant under three graph products.
We have also obtained some sharp bounds. It would be interesting to study this invariant under

other graph operations such as lexicographic, splice and link.
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