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1 Introduction

Switched systems, as a wide class of hybrid systems, are divided into two classes of
systems: continuous and discrete-time subsystems. Generally, there is a switching
strategy that selects a subsystem between other subsystems. In recent years, switching
theory and its application have been extended to adaptive control to overcome dis-
advantages in the system’s stability, where there are some difficulties in the proof of
stability [1, 2, 3, 4, 5]. Some important problems in the concept of design procedures
and stability analysis of switched systems have illustrated in [6].

There are many approaches in switched systems especially, looking for suitable
switching; to stabilize the system even when the systems are unstable [7]. Also,
dwell-time and its average concept have been studied for stabilization problems in the
switched system with especial switching strategy has been performed [8, 6]. In recent
past decades, time-delay systems have been concerned with expert researchers. These
kinds of systems have many applications in electronics systems, transmission systems,
chemical process systems, and power systems and, so on [9]. Delay mainly exists in some
sensors and measurement units and frequently occurs in control systems [10]. Gener-
ally, since sensors and transducers are used in control systems to measure all or some
important states, then, some delays may occur in these measurements. Switched sys-
tems with a time delay are a class of switched systems that has been focused on recent
researches. In most studies on the time-delay switched systems, delay with a certain
upper bound is assumed. Knowing such this upper bound can guarantee the stability
of these kinds of systems. In this area, some rigorous researches have been achieved in
recent years [11, 12, 13]. In [12], using Common Lyapunov Function (CLF), the stabil-
ity of switching systems composed some finite linear subsystems which are described
with time-delay differential equations has been performed. In [13], the Authors studied
sufficient conditions for asymptotic stability analysis of a class of switched linear sys-
tems. Moreover, many types of research in the field of switched systems concentrate on
the asymptotic behavior that reflects the system treatments in a limited interval time
[14, 15]. In the concept of control a plant, designing a controller must guarantee not
only the asymptotic stability of the system but also guarantee acceptable performance.
Considering a quadratic performance index is a solution to formulate this problem. This
method is named guaranteed cost control (GCC) [16]. In this approach, it is tried to
provide an upper bound for a given cost function in the presence of uncertainties, and,
based on this goal, the controller is designed [17, 18, 19, 20, 22]. Based on this approach,
some significant researches have been reported on this topic in [20, 21, 23, 24, 25]. Some
acceptable results have been reported for uncertain switched linear systems. In these
studies, using CLF or Multiple Lyapunov Functions (MLFs), switching laws and state
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feedback controllers are designed. Moreover, for switching strategy design, a subsystem
with minimum LF is chosen. When the switched system has only a switching signal to
be designed, this approach provides asymptotic or exponential stability. Especially, to
design switching laws using CLF, the designer must find some unknown matrices with
solving some complex Linear Matrix Inequalities (LMIs) to be constructed via some
theorems [26, 21, 23, 24, 25]. In more recent studies, some important researches on
the exponential stability analysis and design of GCC for time delay switched systems
has been performed [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 41, 42, 43, 44]. In [31],
using some extracted LMIs for switched time-delay systems, a sufficient condition for
exponential stability analysis and GCC problem with the weighted form is obtained.
Also, in [38] and based on dwell time and piecewise Lyapunov function approach ex-
ponential stability is studied, and its condition is derived. Besides, in [38], and based
on the LKF method, to guarantee exponential stability and obtain the upper bound of
the determined cost function, a new time delay condition is proposed. In this paper,
by considering a complete form of uncertain time-delay switched systems containing
delays both in states and control inputs, a new robust switching law is designed. To do
this, motivated by the min-projection switching strategy [39] and Lyapunov-Krasovskii
function (LKF), switching law and control are designed. The main contributions are
listed in the following:

(i) Designing a new robust switching law to guarantee exponential stability of the
switched system.

(ii) Proving that the proposed LKF satisfies the presented theorems.

Notation: Throughout the paper, m is an arbitrary positive integer that indicates the
number of switched system’s subsystems, and λ(A) indicates eigenvalues of matrix A.
the notation P > 0 denotes that P is a positive definite matrix.

2 Problem Formulation and Preparations

In this paper, the following general form of time-delay uncertain switched linear system
is considered

ẋ = (Aσ (x,t) +∆Aσ (x,t))x(t) +Adσ (x,t)x(t − d)

+ (Bσ (x,t) +∆Bσ (x,t))u(t) +Wσ (x,t)u(t − h),

x(t) = ϕ(t), t ∈ [−t0, 0], t0 ≜max{d, h}, (1)

where, x(t) ∈ Rn and u(t) ∈ Rq are the state and control input vectors. d > 0 and
h > 0 are delay constants in the states and inputs and σ (x, t) ∈ m is switching signal
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which is piecewise constant that determines the active subsystem. Ai ∈ Rn×n, Bi ∈ Rn×q,
Adi ∈ Rn×n and Wi ∈ Rn×n, i ∈ m are subsystem matrices and ∆Ai and ∆Bi , i ∈ m, are
additive uncertainties. The following notice shows the nature of uncertainties.

Notice 1. ∆Ai and ∆Bi in equation (1) are time-varying uncertain matrices and satisfy
the following condition

[∆Ai ∆Bi] =NiFi[Ci Di], i ∈m, (2)

where Ci , Di and Ni are known matrices and Fi , i ∈ m, are unknown matrices with
Lebesgue measurable elements such that the following inequality holds

FTi (t)Fi(t) ≤ I, i ∈m. (3)

Throughout the paper, our goal is to minimize the following performance index for
the uncertain system (1)

J =
∫ ∞
0

(xTQx+uTRu)dt, (4)

where Q ∈ Rn×n and R ∈ Rq×q are symmetric positive definite matrices. The main goal
of the paper is to find switching law σ (x, t) and state-feedback controller u = Kix(t),
where Ki ∈ Rq×n, i ∈ m such that, the the system (1) to be exponential stable and
the cost function (4) satisfies J ≤ J∗ where J∗ is a guaranteed cost value, which is
defined in Definition 1. Before presenting our main results, we introduce some necessary
definitions, lemmas, and theorems.

Definition 1. [20] For all uncertainties satisfying (2) and (3), state-feedback control
u∗(t) and switching law σ ∗(x, t) are said to be guaranteed cost value (GCV) and guar-
anteed cost control law (GCCL), if the closed-loop system (1) to be asymptotic (or
exponential) stable and the value of cost function (4) satisfies J ≤ J∗, where J∗ is a
positive scalar.

Definition 2. [24, 33] The system (1) under switching law σ (x, t) and control u = Kix(t)

is said to be exponential stable if the norm of state vector x(t) satisfies (5)

∥x(t)∥ ≤ k1e−k2t∥x(0)∥, (5)

where k1 > 0 and k2 > 0, and ∥x(0)∥ is initial value at time t = 0 .

Lemma 1. [26] For matrices L, P and Q > 0, the following inequality holds P L

LT −Q

 < 0⇐⇒ P +LQ−1LT < 0. (6)
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Lemma 2. [33] Consider D, E, and F be real matrices, and matrix F satisfies FT F ≤ I .
For any positive scalar ε, the following inequality holds

DFE+ET FTDT ≤ ε−1DDT+εET E (7)

Lemma 3. [25] For any symmetric matrix Y , arbitrary matrices M and N and for all
F satisfying FT F ≤ I, i ∈m, the following inequality holds

Y +MFN +NT FTMT < 0.

if and only if there exists positive scalar ε such that

Y + εNTN + ε−1MTM < 0,

Lemma 4. [40] For any real symmetric matrix A ∈ Rn×n

λmin(A)∥x∥2 ≤ xTAx ≤ λmax(A)∥x∥2, (8)

where λmin(A) and λmax(A) are the smallest and largest eigenvalues of matrix A.

Theorem 1. For the system (1), if there exist matrices P > 0, P1 > 0 and P2 > 0,
positive scalar α and positive definite scalar function V (x(t)) as a Lyapunov function
for system (1) such that

V̇ (x(t)) ≤ −α∥x∥2, (9)

then, the switching law (10) can stabilize the switched system (1) exponentially.

σ (x, t) = argmin
i∈m
{xT P fi(x)}. (10)

Proof. In ([39]) using the min-projection switching strategy this theorem has been
proved for nonlinear switched systems in the form of ẋ = fi(x), i ∈ m .To extend this
theorem in switched systems (1), the following Lyapunov-Krasovskii function is pro-
posed

V (x(t)) = xT (t)P x(t) +
∫ 0

−d
xT (t + τ)P1x(t + τ)dτ

+
∫ 0

−h
xT (t + τ)P2x(t + τ)dτ,

and it is proved to reach exponential stability, there exist positive scalars k1 =√
λmax(P )
λmin(P )

and k2 =
α

2λmax(P )
satisfy the exponential definition (5).
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3 Main Results

Theorem 2. System (1) under the following switching law is to be exponentially stable

σ (x, t) = argmin
i∈m
{x̄TZi x̄}, (11)

where

Zi =


θi S1 PWiKi
ST1 −P1 0

KTi W
T
i P 0 −P2

 ,
x̄ =

[
x(t),x(t − d),x(t − h)

]′
, (12)

and

χi = Ai +∆Ai +BiKi +∆BiKi ,

θi = χ
T
i P + P χi + P1 + P2 +Q+KTi RKi ,

S1 = PAdi ,

if there exist symmetric positive-definite matrices P , P1 and P2, and matrices Ki , i ∈m,
such that the following inequality holds:

m∑
i=1

[
xT (t)θix(t) + x

T (t)S1x(t − d) + xT (t − d)ST1 x(t)

+ xT (t − h)KTi W
T
i P x(t) + x

T (t)PWiKix(t − h)

− xT (t − d)P1x(t − d)− xT (t − h)P2x(t − h)
]
< 0, (13)

In addition, GSV is J∗ = ϕ(0)T Pϕ(0) +
∫ 0
−dϕ

T (τ)P1ϕ(τ)dτ +
∫ 0
−hϕ

T (τ)P2ϕ(τ)dτ.

Proof. Clearly from switching (11) and inequality (13), it is resulted that
∑m
i=1Zi < 0

and consequently, there exists an index i ∈ m such that x̄TZi x̄ < 0 for an augmented
state vector x̄ ∈ R3n, x̄ , 0 . Now the following function is preposed as a Lyapunov-
Krasovskii function, where P , P1 and P2 are symmetric positive definite matrices

V (x(t)) = xT (t)P x(t) +
∫ 0

−d
xT (t + τ)P1x(t + τ)dτ (14)

+
∫ 0

−h
xT (t + τ)P2x(t + τ)dτ,

Time derivation of V (x(t) and substituting u(t) = Kix(t) into system equations (1) and
using Notice 1, results
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V̇ (x(t)) = ẋT (t)P x(t) + xT (t)P ẋ(t) + xT (t)P1x(t)− xT (t − d)P1x(t − d)

+ xT (t)P2x(t)− xT (t − h)P2x(t − h) = xT (t)(Ai +∆Ai)
T P x(t)

+ xT (t)P (Ai +∆Ai)x(t) + x
T (t − d)ATdiP x(t) + x

T (t)PAdix(t − d)

+ xT (t)KTi (Bi +∆Bi)
T P x(t) + xT (t)P (Bi +∆Bi)Kix(t)

+ xT (t − h)KTi W
T
i P x(t) + x

T (t)PWiKix(t − h) + xT (t)P1x(t)

− xT (t − d)P1x(t − d) + xT (t)P2x(t)− xT (t − h)P2x(t − h)

= xT (t)
[
P (Ai +BiKi) + (Ai +BiKi)

T P + PNiFi(Ci +DiKi)

+ (Ci +DiKi)
T FTi N

T
i P + P1 + P2

]
x(t) + xT (t − d)ATdiP x(t)

+ xT (t)PAdix(t − d) + xT (t − h)KTi W
T
i P x(t) + x

T (t)PWiKix(t − h)

− xT (t − d)P1x(t − d)− xT (t − h)P2x(t − h) (15)

Applying Lemma 2, we have

PNiFi(Ci +DiKi) + (Ci +DiKi)
T FTi N

T
i P

≤ εiPNiNT
i P+ε

−1
i (Ci+DiKi)(Ci+DiKi)

T . (16)

Rewritten equation (15) results

V̇ (x(t)) ≤ xT (t)
[
P (Ai +BiKi) + (Ai +BiKi)

T P + ε−1i (Ci +DiKi)(Ci +DiKi)
T

+ εiPNiN
T
i P + P1 + P2

]
x(t) + xT (t − d)ATdiP x(t) + x

T (t)PAdix(t − d)

+ xT (t − h)KTi W
T
i P x(t) + x

T (t)PWiKix(t − h)− xT (t − d)P1x(t − d)

− xT (t − h)P2x(t − h). (17)

By defining

θi = P (Ai +BiKi) + (Ai +BiKi)
T P + ε−1i (Ci +DiKi)(Ci +DiKi)

T

+ εiPNiN
T
i P + P1 + P2 +Q+KTi RKi

S1 = PAdi ,

and adding xT (t)(Q+KTi RKi)x(t) to (17), results

V̇ (x(t)) + xT (t)(Q+KTi RKi)x(t) ≤ x
T (t)θix(t) + x

T (t)S1x(t − d)

+ xT (t − d)ST1 x(t)− x
T (t − d)P1x(t − d) + xT (t − h)KTi W

T
i P x(t)

+ xT (t)PWiKix(t − h)− xT (t − h)P2x(t − h). (18)

Consequently inequality (18) can be written as

V̇ (x(t)) + xT (t)(Q+KTi RKi)x(t)

≤


x(t)

x(t − d)
x(t − h)


T 

θi S1 PWiKi
ST1 −P1 0

KTi W
T
i P 0 −P2




x(t)
x(t − d)
x(t − h)
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= x̄T (t)


θi S1 PWiKi
ST1 −P1 0

KTi W
T
i P 0 −P2

 x̄(t). (19)

Now, it is concluded that there exist an i ∈m such that x̄TZi x̄ < 0. Therefore, selecting
switching law (11) for any time t ∈ R, results that x̄TZi x̄ < 0 and

V̇ (x(t)) + xT (t)(Q+KTi RKi)x(t) ≤ x̄
T (t)Zi x̄(t) < 0. (20)

So,

V̇ (x(t)) < −xT (t)Qx(t)− xT (t)(KTi RKi)x(t)

= −xT (t)(Q+KTi RKi)x(t), (21)

Obviously, it is concluded that Gi =Q+KTi RKi is positive-definite matrix for any i ∈m.
Therefore, using Lemma 4, ∀x ∈ Rn, i ∈m the following inequality holds:

−λmax(Gi)∥x∥2 ≤ −xTGix ≤ −λmin(Gi)∥x∥2. (22)

Now, by choosing

γ = λmin(G) = min
i∈m

(λmin(Gi)), (23)

Then, applying Theorem 1 results that switched system (1) is exponentially stable.

Remark 1. We need to find unknown matrices P , P1 ,P2 and control gains Ki to
realize the switching law (11). Also, positive scalars εi are designing constants and
can be selected by the designer arbitrarily or by some optimization methods. In the
Theorem 2 and using Lemma 1 it is shown that (13) is equal to a set of LMIs (24).

Theorem 3. If there exist invertible symmetric positive definite matrix X, P2 and
matrices Mi and Vi for some positive scalars εi , i ∈m, such that the following LMI to
be satisfied 

Ψi Adi WiVi XT MT
i XT MT

i C̄i
T

ATdi −I 0 0 0 0 0 0

V T
i Wi 0 −I 0 0 0 0 0

X 0 0 −I 0 0 0 0

Mi 0 0 0 −P −12 0 0 0

X 0 0 0 0 −Q−1 0 0

Mi 0 0 0 0 0 −R−1 0

C̄i 0 0 0 0 0 0 −ε−1i I


< 0, (24)

where
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Ψi = (AiX +BiMi)
T +AiX +BiMi + ε

−1
i NiN

T
i ,

C̄i = CiX +DiMi ,

and then, inequality (13) holds and switching strategy (11) for the system (1) can be
implemented.

Proof. Define the following matrix

Y =



Ω̄i P TAdi PWiVi I KTi I KTi
ATdiP −P1 0 0 0 0 0

V T
i W

T
i P 0 −I 0 0 0 0

I 0 0 −P −11 0 0 0

Ki 0 0 0 −P −12 0 0

I 0 0 0 0 −Q−1 0

Ki 0 0 0 0 0 −R−1


, (25)

where

Ω̄i = (Ai +BiKi)
T P + P T (Ai +BiKi).

Using Lemma 2, the matrix inequality (13) is equal to the following

Y +
[
Φi 01×6

]T
FTi (t)

[
NT
i P 01×6

]
+
[
NT
i P 01×6

]T
Fi(t)

[
Φi 01×6

]
< 0 (26)

where

Φi = Ci +DiKi .

By rewriting inequality (26), we have

ψ1i P TAdi PWiVi I KTi I KTi
ATdiP −P1 0 0 0 0 0

V T
i W

T
i P 0 −I 0 0 0 0

I 0 0 −P −11 0 0 0

Ki 0 0 0 −P −12 0 0

I 0 0 0 0 −Q−1 0

Ki 0 0 0 0 0 −R−1


+

 CTi +KTi D
T
i

06×1

[ FTi (t)NT
i P 01×6

]
+

 P TNi06×1

[ Fi(t)Ci +Fi(t)DiKi 01×6
]
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=



ψ2i P TAdi PWiVi I KTi I KTi
ATdiP −P1 0 0 0 0 0

V T
i W

T
i P 0 −I 0 0 0 0

I 0 0 −P −11 0 0 0

Ki 0 0 0 −P −12 0 0

I 0 0 0 0 −Q−1 0

Ki 0 0 0 0 0 −R−1


< 0, (27)

where

ψ1i = (Ai +BiKi)
T P + P T (Ai +BiKi)

ψ2i = (Ai +BiKi)
T P + P T (Ai +BiKi) +C

T
i F

T
i (t)N

T
i P

+KTi D
T
i F

T
i (t)N

T
i P + P TNiFi(t)Ci + P

TNiFi(t)DiKi ,

By simple calculations in

Y + εi
[
Φi 01×6

]T [
Φi 01×6

]
+ ε−1i

[
NT
i P 01×6

]T [
NT
i P 01×6

]

=



ψ1i P TAdi PWiVi I KTi I KTi
ATdiP −P1 0 0 0 0 0

V T
i W

T
i P 0 −I 0 0 0 0

I 0 0 −P −11 0 0 0

Ki 0 0 0 −P −12 0 0

I 0 0 0 0 −Q−1 0

Ki 0 0 0 0 0 −R−1


+

 εi(Ci +DiKi)T (Ci +DiKi) 01×6
06×1 06×6


+

 ε−1i P TNiNT
i P 01×6

06×1 06×6



=



ψ3i P TAdi PWiVi I KTi I KTi
ATdiP −P1 0 0 0 0 0

V T
i W

T
i P 0 −I 0 0 0 0

I 0 0 −P −11 0 0 0

Ki 0 0 0 −P −12 0 0

I 0 0 0 0 −Q−1 0

Ki 0 0 0 0 0 −R−1


< 0, (28)

where
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ψ3i = (Ai +BiKi)
T P + P T (Ai +BiKi)

+ εi(Ci +DiKi)
T (Ci +DiKi) + ε

−1
i P

TNiN
T
i P .

Now, from the Lemma 1, inequality (28) is equal to (29)

Ωi P TAdi P TWiVi I KTi I KTi ΦT

ATdiP −P1 0 0 0 0 0 0

V T
i W

T
i P 0 −I 0 0 0 0 0

I 0 0 −P −11 0 0 0 0

Ki 0 0 0 −P −12 0 0 0

I 0 0 0 0 −Q−1 0 0

Ki 0 0 0 0 0 −R−1 0

Φi 0 0 0 0 0 0 −ε−1i I


, (29)

where

Ωi = Ω̄i + ε
−1
i PNiN

T
i P ,

Multiplying both sides of (29) by diag{P −T , P −11 , I , I , I , I , I , I} and diag{P −1, P −11 , I , I , I , I , I , I}
yields

=



P −T 0 0 . . . 0
0 P −11 0 . . . 0
0 0 I . . . 0
...

...
...

. . . 0
0 0 0 . . . 0



×



φi P TAdi ωi I KTi I KTi ΦT
i

ATdiP −P1 0 0 0 0 0 0
ωi 0 −I 0 0 0 0 0
I 0 0 −P −11 0 0 0 0
Ki 0 0 0 −P −12 0 0 0
I 0 0 0 0 −Q−1 0 0
Ki 0 0 0 0 0 −R−1 0
Φi 0 0 0 0 0 0 −ε−1i I



×



P −1 0 0 . . . 0
0 P −11 0 . . . 0
0 0 I . . . 0
...

...
...

. . . 0
0 0 0 . . . 0


,

where

φi = (Ai +BiKi)
T P + P T (Ai +BiKi) + ε

−1
i P

TNiN
T
i P ,
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ωi = P
TWiVi .

So we have

P−T (Ai +BiKi )
T + (Ai +BiKi )P

−1

+ε−1i NiN
T
i AdiT

−1 WiVi I P−T KTi P−T P−T KTi P−T (CTi +KTi D
T
i )

T−1Adi −P−11 0 0 0 0 0 0

V Ti W
T
i 0 −I 0 0 0 0 0

P−1 0 0 −P−11 0 0 0 0

KiP
−1 0 0 0 −P−12 0 0 0

P−1 0 0 0 0 −Q−1 0 0
KiP
−1 0 0 0 0 0 −R−1 0

(Ci +DiKi )P
−1 0 0 0 0 0 0 −ε−1i I


< 0. (30)

In summary, to obtain σ (x, t), u(t) and J∗, the following steps are required to per-
form.

Step 1: Select positive scalars εi , i ∈m.

Step 2: Solve LMIs (24) in Theorem 3 (Via LMI commands in the Matlab software or
YALMIP toolbox) and obtain invertible symmetric positive-definite matrices X,
P2 and matrices Mi , i ∈ m. Note that X = P −1, Mi = KiX and consequently.
P = X−1, Ki = MiX

−1. Positive definite matrix P1 can be given from inequality
x̄TZi x̄ < 0 in Theorem 2.

Step 3: Obtain State feedback u(t) = Kix(t).

Step 4: Calculate Zi , i ∈m in Theorem 2.

Step 5: Obtain switching law σ (x, t) = argmini∈m{x̄TZi x̄}.

Step 6: Calculate guaranteed cost control J∗.

4 Illustrative Example

Example 1. Consider the following uncertain time-delay switched linear system with
two subsystems.

ẋ = (Aσ (x,t) +∆Aσ (x,t))x(t) +Adσ (x,t)x(t − d),

+ (Bσ (x,t) +∆Bσ (x,t))u(t) +Wσ (x,t)u(t − h),

x(t) = ϕ(t), t ∈ [−t0, 0], t0 ≜max{d, h}, (31)

for i = 1,2, and the following matrices

A1 =

 −2 −1
3 −4

 , A2 =

 −4 1
0.5 −1

 ,
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B1 =

 2 0
0 2

 , B2 =

 0 2
2 0

 ,
Ad1 =

 0 0.2
0.2 0

 , Ad2 =

 0.2 0
0 0.2

 ,
W1 =

 0.3 0.2
0.2 0.4

 , W2 =

 0.4 0.3
0.3 0.5

 ,
N1 =

 0.4 0.3
0.3 0.6

 , N2 =

 0.2 0.7
0.6 0.3

 ,
C1 =

 0.6 0.2
0.3 0.6

 , C2 =

 0.4 0.2
0.6 0.4

 ,
D1 =

 0 0.4
0.4 0

 , D2 =

 0 0.2
0.2 0

 ,

d = 2 and h = 1 and

x(t) = [et − et]T , t ∈ [−2 0],

Also, weighted matrices Q and R are selected as

Q = R =

 1 0
0 1

 . (32)

Note that all subsystems of system (31) are stable and unknown matrices Fi(t) in Notice
1 are considered as a diagonal random time-varying matrices such that FTi (t)Fi(t) ≤ I .
The aim is to find guaranteed cost controller u=Kix( t),i ∈ {1,2}, switching signal σ (x, t)
and guaranteed cost J∗ of the switched system (31) with weighted matrices (32). We
perform the following steps.

step 1: Scalars ε1 and ε2 are selected as

ε1 = 0.1, ε2 = 0.1,

step 2: Solving LMIs (24) we obtain

X =

 2.8359 −0.9024
−0.9024 1.2247

 ,
M1 =

 −2.5784 0.0004
−0.0003 −2.5774

 ,
M2 =

 −0.5288 −2.0491
−3.1068 0.5289

 ,



Robust Switching Law Design .../ COAM, 4 (2), Autumn - Winter 201914

-2 0 2 4 6 8 10
Time (Sec)

-1

-0.5

0

0.5

1
Sy

st
em

 S
ta

te
s

x1
x2

Figure 1: States x1(t) and x2(t).
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Figure 2: Control input u1(t) of each subsystem.

and thus

P = X−1 =

 0.4606 0.3394
0.3394 1.0667

 ,
K1 =

 −1.1876 −0.8747
−0.8750 −2.7493

 ,
K2 =

 −0.9391 −2.3652
−1.2516 −0.4904

 ,
System states start from an initial condition x0 and Figure 1 shows the state x1(t)

and x2(t) and, Figure 2, Figure 3 and Figure 4 show control inputs u1(t) and u2(t)

of each subsystem and switching signal σ (x, t). It can be seen that theoretical results
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Figure 3: Control input u2(t) of each subsystem.
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Figure 4: Switching signal σ (x, t).

in the Theorem 2 and Theorem 3 which state that uncertain switched system (1) is
exponentially stable under applying proposed switching strategy, are coincide with the
simulation’s results.

5 Conclusion

In this paper, a robust switching law for the GCC problem of a general form of uncertain
time-delay switched system is designed. The presented method is based on using the
LKF technique and extension of the min-projection switching strategy in this type
of switched system. Also, uncertainties in each subsystem’s dynamics are considered
randomly and are additive. Besides switching law, guaranteed linear control is obtained
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via the solution of extracted LMIs in the presented theorems. Finally, simulation verifies
the theorem’s results.
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چکیده

قطعیت عدم دارای کلیدزنی سیستم های ویژه به غیرخطی سیستم های کنترل در موثر روش های از یکی تضمینی هزینه کنترل
تحلیل روی بر قطعیت عدم دارای کلیدزنی سیستم های تضمینی هزینه کنترل مسیله در اخیر تحقیقات از بسیاری است.
دارای کلیدزنی سیستم های کنترل برای جدید مقاوم سوییچ قانون یک مقاله این در است. تمرکزیافته مجانبی پایداری
اساس بر خطی حالت فیدبک کننده کنترل سپس و کلیدزنی قانون ابتدا در می شود. ارایه زمانی تاخیر و قطعیت عدم
وجود برای ویژه شرایط ماتریسی، خطی نامساوی های از استفاده با همچنین می گردد. طراحی لیاپانوف−کراسوفسکی تابع
کل نمایی پایداری شده، ارایه قضایای اساس بر و همزمان می آید. دست به خطی کننده کنترل و کلیدزنی قانون در جواب
تحلیلی نتایج شبیه سازی، با و انتها در می گردد. اثبات و تحلیل حالت فیدبک کنترل و کلیدزنی قانون اعمال تحت سیستم

می شوند. داده نشان نمایی پایداری

کلیدی کلمات

خطی نامساوی لیاپانوف−کراسوفسکی، تابع تضمینی، هزینه کنترل زمانی، تاخیر قطعیت، عدم دارای کلیدزنی سیستم های
نمایی. پایداری ماتریسی،
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