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Abstract. Guaranteed cost control (GCC) is an impressive method of
controlling nonlinear systems, incredibly uncertain switched systems. Most
of the recent studies of GCC on uncertain switched linear systems have been
concerned with asymptotic stability analysis. In this paper, a new robust
switching law for time-delay uncertain switched linear systems is designed.
First, the switching law is designed, and second, a state-feedback controller
based on Lyapunov-Krasovskii Functional (LKF) is designed. Also, using
Linear Matrix Inequality (LMI) particular condition for the existence of a
solution of obtained switching law and controller is achieved. Consequently,
in the presented theorems, the exponential stability of the overall system
under switching law and controller is analyzed. Finally, theoretical results are

verified via presenting an example.
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1 Introduction

Switched systems, as a wide class of hybrid systems, are divided into two classes of
systems: continuous and discrete-time subsystems. Generally, there is a switching
strategy that selects a subsystem between other subsystems. In recent years, switching
theory and its application have been extended to adaptive control to overcome dis-
advantages in the system’s stability, where there are some difficulties in the proof of
stability [1, 2, 3, 4, 5]. Some important problems in the concept of design procedures
and stability analysis of switched systems have illustrated in [6].

There are many approaches in switched systems especially, looking for suitable
switching; to stabilize the system even when the systems are unstable [7]. Also,
dwell-time and its average concept have been studied for stabilization problems in the
switched system with especial switching strategy has been performed [8, 6]. In recent
past decades, time-delay systems have been concerned with expert researchers. These
kinds of systems have many applications in electronics systems, transmission systems,
chemical process systems, and power systems and, so on [9]. Delay mainly exists in some
sensors and measurement units and frequently occurs in control systems [10]. Gener-
ally, since sensors and transducers are used in control systems to measure all or some
important states, then, some delays may occur in these measurements. Switched sys-
tems with a time delay are a class of switched systems that has been focused on recent
researches. In most studies on the time-delay switched systems, delay with a certain
upper bound is assumed. Knowing such this upper bound can guarantee the stability
of these kinds of systems. In this area, some rigorous researches have been achieved in
recent years [11, 12, 13]. In [12], using Common Lyapunov Function (CLF), the stabil-
ity of switching systems composed some finite linear subsystems which are described
with time-delay differential equations has been performed. In [13], the Authors studied
sufficient conditions for asymptotic stability analysis of a class of switched linear sys-
tems. Moreover, many types of research in the field of switched systems concentrate on
the asymptotic behavior that reflects the system treatments in a limited interval time
[14, 15]. In the concept of control a plant, designing a controller must guarantee not
only the asymptotic stability of the system but also guarantee acceptable performance.
Considering a quadratic performance index is a solution to formulate this problem. This
method is named guaranteed cost control (GCC) [16]. In this approach, it is tried to
provide an upper bound for a given cost function in the presence of uncertainties, and,
based on this goal, the controller is designed [17, 18, 19, 20, 22]. Based on this approach,
some significant researches have been reported on this topic in [20, 21, 23, 24, 25]. Some
acceptable results have been reported for uncertain switched linear systems. In these

studies, using CLF or Multiple Lyapunov Functions (MLFs), switching laws and state
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feedback controllers are designed. Moreover, for switching strategy design, a subsystem
with minimum LF is chosen. When the switched system has only a switching signal to
be designed, this approach provides asymptotic or exponential stability. Especially, to
design switching laws using CLF, the designer must find some unknown matrices with
solving some complex Linear Matrix Inequalities (LMIs) to be constructed via some
theorems [26, 21, 23, 24, 25]. In more recent studies, some important researches on
the exponential stability analysis and design of GCC for time delay switched systems
has been performed [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 41, 42, 43, 44]. In [31],
using some extracted LMIs for switched time-delay systems, a sufficient condition for
exponential stability analysis and GCC problem with the weighted form is obtained.
Also, in [38] and based on dwell time and piecewise Lyapunov function approach ex-
ponential stability is studied, and its condition is derived. Besides, in [38], and based
on the LKF method, to guarantee exponential stability and obtain the upper bound of
the determined cost function, a new time delay condition is proposed. In this paper,
by considering a complete form of uncertain time-delay switched systems containing
delays both in states and control inputs, a new robust switching law is designed. To do
this, motivated by the min-projection switching strategy [39] and Lyapunov-Krasovskii
function (LKF), switching law and control are designed. The main contributions are

listed in the following:

(i) Designing a new robust switching law to guarantee exponential stability of the

switched system.

(ii) Proving that the proposed LKF satisfies the presented theorems.

Notation: Throughout the paper, m is an arbitrary positive integer that indicates the
number of switched system’s subsystems, and A(A) indicates eigenvalues of matrix A.

the notation P > 0 denotes that P is a positive definite matrix.

2 Problem Formulation and Preparations

In this paper, the following general form of time-delay uncertain switched linear system
is considered
X—(A (x,t) +AA (x,t) ) (t)+Adaxt (t_d)
+(B o(x,t) +AB xt) () (t—h),
x(t) = ¢(t), te[—ty 0], tog= max{d, h}, (1)

where, x(t) € R"” and u(t) € R1 are the state and control input vectors. d > 0 and

h > 0 are delay constants in the states and inputs and o(x,t) € m is switching signal
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which is piecewise constant that determines the active subsystem. A; € R"™", B; € R™4,
Ag; € R and W; € R™" i € m are subsystem matrices and AA; and AB;, i € m, are

additive uncertainties. The following notice shows the nature of uncertainties.

Notice 1. AA; and AB; in equation (1) are time-varying uncertain matrices and satisfy
the following condition

[AA; AB;]=N;F;[C; Dj], iem, (2)

where C;, D; and N; are known matrices and F;, i € m, are unknown matrices with

Lebesgue measurable elements such that the following inequality holds

FI(F(t)<I, iem. (3)

Throughout the paper, our goal is to minimize the following performance index for

the uncertain system (1)

J= Jw(xTQeruTRu)dt, (4)
0

where Q € R and R € R7*1 are symmetric positive definite matrices. The main goal
of the paper is to find switching law o(x,t) and state-feedback controller u = K;x(t),
where K; € R?*" i € m such that, the the system (1) to be exponential stable and
the cost function (4) satisfies ] < J* where J* is a guaranteed cost value, which is
defined in Definition 1. Before presenting our main results, we introduce some necessary

definitions, lemmas, and theorems.

Definition 1. [20] For all uncertainties satisfying (2) and (3), state-feedback control
u*(t) and switching law o”(x,t) are said to be guaranteed cost value (GCV) and guar-
anteed cost control law (GCCL), if the closed-loop system (1) to be asymptotic (or
exponential) stable and the value of cost function (4) satisfies J < J*, where J* is a

positive scalar.

Definition 2. [24, 33] The system (1) under switching law o(x, t) and control u = K;x(t)

is said to be exponential stable if the norm of state vector x(t) satisfies (5)
()]l < kye ™2 |x(0)]], (5)
where k; >0 and k, > 0, and ||x(0)|| is initial value at time t =0 .

Lemma 1. [26] For matrices L, P and Q > 0, the following inequality holds

P
LT -Q

]<0<=>P+LQ‘1LT<O. (6)
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Lemma 2. [33] Consider D, E, and F be real matrices, and matrix F satisfies FTF < 1.

For any positive scalar ¢, the following inequality holds

DFE+ETFTDT <e'DDT+¢ETE (7)

Lemma 3. [25] For any symmetric matrix Y, arbitrary matrices M and N and for all

F satisfying FTF <1,i € m, the following inequality holds
Y +MFN +NTFTMT <.
if and only if there exists positive scalar ¢ such that

Y+eNIN+eTMTM <0,

Lemma 4. [40] For any real symmetric matrix A € R™"
Amin(A)lIxlI? < 2T Ax < Anax(A)lI?, (8)
where Apin(A) and Ay, (A) are the smallest and largest eigenvalues of matrix A.

Theorem 1. For the system (1), if there exist matrices P > 0, P; > 0 and P, > 0,
positive scalar a and positive definite scalar function V(x(t)) as a Lyapunov function

for system (1) such that
V(x(1)) < —allxl?, (9)
then, the switching law (10) can stabilize the switched system (1) exponentially.

o(x,t)= argn%in{xTPfi(x)}. (10)

Proof. In ([39]) using the min-projection switching strategy this theorem has been
proved for nonlinear switched systems in the form of x = f;(x), i € m .To extend this
theorem in switched systems (1), the following Lyapunov-Krasovskii function is pro-
posed

0
V(x(t)) = xT (£)Px(t) + J xT(t+1)Px(t + 1)dt
—d

0
+ J- xT(t +7)Pyx(t + 1)dT,
~h

and it is proved to reach exponential stability, there exist positive scalars k; =
ATi’ld}C(I—))

and k, =
/\min(P) g

a
——— satisfy the exponential definition (5). O
2 P) ®)
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3 Main Results

Theorem 2. System (1) under the following switching law is to be exponentially stable

o(x,t) = argmin{x! Z; %), (11)
iem
where
0; S, PWK;
zZi=| st - 0 |
k'wfp o  -P,

f:[ x(t),x(t —d), x(t - h) ] , (12)

and

Xi= Ai + AAI +BZ'K1‘ +ABiKil
0; = x'P+Px;+P +P,+Q+K/RK;,

if there exist symmetric positive-definite matrices P, P; and P,, and matrices K;, i € m,
such that the following inequality holds:

m

Z[xT(t)Gix(t) +xT(1)S1x(t —d)+ xT(t —d)ST x(t)

i=1
+xT(t =K WTPx(t) + xT (t)PW; K;x(t - h)

—xT(t—d)Px(t—d)—xT (t —h)Pyx(t—h)| <0, (13)

In addition, GSV is J* = p(0)TPH(0) + [, pT (0)Pip(x)dt + [, T (1)Pap(v)d .

Proof. Clearly from switching (11) and inequality (13), it is resulted that Y ", Z; <0
and consequently, there exists an index i € m such that £ Z;x < 0 for an augmented
state vector ¥ € R, £ =0 . Now the following function is preposed as a Lyapunov-

Krasovskii function, where P, P, and P, are symmetric positive definite matrices

0
V(x(t)) :xT(t)Px(t)JrJ- xT(t+1)Px(t +1)dt (14)
-d

0
+ j xT(t +7)Pyx(t + 1)dT,
~h

Time derivation of V(x(t) and substituting u(t) = K;x(t) into system equations (1) and
using Notice 1, results
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V(x(t) = 2T (1)Px(t) + xT (£)Px(¢) + xT (£)Pyx(t) = xT (t —d)Pyx(t — d)
xT t)Pox(t) — xT (t —h)Pyx(t —h) = xT (t)(A; + AA;)T Px(t)
xT(H)P(A; + AA;)x(t) +xT (t = d)AL Px(t) + xT (t)PAgix(t - d)

)KT(B; + AB;)T Px(t) + xT (t)P(B; + AB;)K;x(t)

+xT(t =K W Px(t) + xT (1) PW;K;x(t — h) + xT (£)Pyx(t)

—xT(t—d)Pyx(t —d) + xT (£)Pyx(t) — xT (t — h)Pox(t — h)

(
(
T(t
(
(

= XT(t) P(Al + BiKi) + (Al + Bl‘Ki)TP +PNiFi(Ci + DiKi)

+(Ci+ D;K)TFINTP + P+ Py |x(t) + xT (t - d)AL Px(t)
+xT(t)PAgix(t —d) +xT (t = h)K] WT Px(t) + xT (£)PW;K;x(t - h)
—xT(t=d)Px(t—d)—xT(t = h)Px(t — h)

Applying Lemma 2, we have

PN;F;(C; + D;K;) + (C; + D;K;)TET NI P
< Sl‘PNiNiTP+Ei_1 (Ci+DiKi)(Ci+DiKi)T.

Rewritten equation (15) results

V(x(t)) < xT(t)[P(AZ- +B;K;)+ (A; + BiK;))" P+ ¢71(C; + D;K;)(C; + D;K;)T

+&PN;NTP+ P, + P, |x(t) + xT (t = d)AL Px(t) + xT (t)PAgix(t — d)

+xT(t =K WTPx(t) + xT (t)PW;K;x(t — h) — xT (t - d)Pyx(t — d)
—xT(t=h)P,x(t - h).
By defining
0; = P(A; + B;K;) + (A; + BiK;)T P+ ¢;1(C; + D;K;)(C; + D;K;)"
+&PN;N/P+P, +P,+Q+KIRK;
Sl = PAdil
and adding xT (£)(Q + KiTRKl-)x(t) to (17), results
V(x(t) + xT(£)(Q+ K RK)x(t) < xT (£)0;x(t) + xT (1)S1 x(t — d)
xT(t-d)S{x(t)—xT(t—d)Pyx(t —d) + xT (t = h)K W Px(t)
xT () PW;K;x(t — h) - xT (t — h)Pyx(t — h).

Consequently inequality (18) can be written as

V(x(t) +xT(£)(Q+ KT RK;)x(t)
Xt 1T 6 s, PWK [
<| x(t-d) st -P, 0 x(t—d)
x(t—h) KI'wrp 0 -P, x(t—h)
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0; S1  PWK,;
=T (t) sT -P 0 |x(t). (19)
k'wip o -p,

Now, it is concluded that there exist an i € m such that 1 Z;% < 0. Therefore, selecting
switching law (11) for any time t € R, results that £ Z;% < 0 and

V(x(t) +xT(£)(Q+ KT RK;)x(t) < X (t)Z;%(t) < 0. (20)
So,

V(x(t) < —xT(£)Qx(t) - x (t)(K] RK;)x(t)
= —xT(£)(Q+ K] RK;)x(t), (21)

Obviously, it is concluded that G; = Q+KiTRKl- is positive-definite matrix for any i € m.
Therefore, using Lemma 4, Vx € R",i € m the following inequality holds:

_/\max(Gi)Hx”2 < _XTGix < _/\min(Gi)HXHZ' (22)
Now, by choosing
Y= /\min(G) = r}yﬂ?(/\min(Gi))f (23)

Then, applying Theorem 1 results that switched system (1) is exponentially stable. [

Remark 1. We need to find unknown matrices P, P; ,P, and control gains K; to
realize the switching law (11). Also, positive scalars ¢; are designing constants and
can be selected by the designer arbitrarily or by some optimization methods. In the

Theorem 2 and using Lemma 1 it is shown that (13) is equal to a set of LMIs (24).

Theorem 3. If there exist invertible symmetric positive definite matrix X, P, and
matrices M; and V; for some positive scalars €;, i € m, such that the following LMI to
be satisfied

v Ay wiv xToM!T xT MT &

A, -1 0 0 0 0 0 0

viw, o -1 o0 0 0 0 0

X 0 0 I 0_1 0 0 0 <0, (24)
M; 0 0 0 -P 0 0 0

X 0 0 0 0 -Q1' o 0

M; 0 0 0 0 0 -R' 0

GG 0 o0 0 0 0 0 —&'I

where
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W = (A; X+ B;M;)T + A;X + B;M; +&;'N;NT,
Ci = CiX + DiMi'

and then, inequality (13) holds and switching strategy (11) for the system (1) can be

implemented.

Proof. Define the following matrix

Q; PTA; PWV; I k' I k'
Alp  -P 0 0 0 0 0
viwip 0 -1 0 0 0
Y = I 0 I . 0 0 | (25)
K; 0 0 0o -t 0 0
I 0 0 0 0 -Q!' o
K; 0 0 0 R |
where
Qi =(A; +B,'Ki)TP +PT(A1‘ +BiKi)'
Using Lemma 2, the matrix inequality (13) is equal to the following
T
Y+[ D; 0146 ] FlT(t)[ NiTP O1x6 ]
T
+[ NTP 0146 | Fit)] @ 0146 | <0 (26)

where
(Di = Ci + D;K;.

By rewriting inequality (26), we have

v PTA; PW,v; I KT I KT
ALPp  -P 0 0 0 0 0
viwip 0 | 0 0 0 0
I 0 o -pPt 0 0 0
K; 0 0 0o -P' 0 0
I 0 0 0 0 -Q' o
K 0 0 0 0 0 -R'
+[ G +Ki D | ET6NTP 0156 |
O6x1 : '
PTN;

+

0 [ Fi(t)Ci + Fi(t)D;K;  O1x6 ]
6x1
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vy PTA; PW VI KT I Kt
Alp  -p 0 0 0 0 0
viwlp o -1 0 0
= I 0 0o -p! 0 0 <0, (27)
K; 0 0 0 -P' 0 0
I 0 0 -Q! o0
K; 0 0 0 0 0 -R!

where

¥1i = (A + B;K;)TP + PT(A; + BiK)
o = (Aj + B;K;))TP+ PT(A; + B;K;)+ CTFI (t)NT P
+ KI'DIFI(t)NI P+ PTN;F;(t)C; + PTN;F;(t)D;K;,

By simple calculations in

Y e @ 0y ]T[ D 01 |

v [ NTP 016 | [ NTP 016 ]

v PTAy; PWV; I KT I KT
ALPp  -P 0 0 0 0 0
viwip 0 | 0 0 0
= I 0 (S . 0 0
K; 0 0 o -p!' 0 0
I 0 0 0 0 -Q' o0
K 0 0 0 -R'!
+[ &i(Ci + DiKj)T(Ci + DiK;)  O1y6 l
O6x1 O6x6
ef ! PTN;NTP olx6l
Ogx1 O6x6
vs;  PTA; PW,v; I KT I KT
ALP  -P 0 0 0 0 0
viwip 0 | 0 0 0
= I 0 o -pt 0 0 0 |<o, (28)
K; 0 0 o -p~!' 0 0
I 0 0 0 0 -Q' o
K; 0 0 0 0 0 -R!

where
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3 = (A; + B;K;)"P + PT(A; + BiK;)
+&;(C; + DiK;)T(C; + DiK;) + 7' PTN; NI P.

Now, from the Lemma 1, inequality (28) is equal to (29)

Q; PTA;; PTWVv, 1 KT I kl of
Alp  -p 0 0 0 0 0 0
vIwrIp 0 -1 0 0 0 0 0
I 0 0 -0 0 0 0
1 »(29)
K; 0 0 0 -P 0 0 0
I 0 0 0 0o -Q' o0 0
K; 0 0 0 0 0 -R! 0
@ 0 0 0 0 0 0 —&'I|

where
Q;=Q;+&'PN;,NTP,

Multiplying both sides of (29) by diag{P~T,P;',1,1,1,1,1,I} and diag{P~',P[',I,1,1,1,1,1}
yields

prT 0 o0 0 |
o pr'o 0
=l 0 0 I 0
: 0
0 0 0 .. 0]
¢; PTA; w; I KT I kf of
AP -p 0 0 0 0 0 0
w; 0 -I 0 0 0 0 0
MR 0 o -P'oo0 0 0 0
K; 0 o o -pP' o0 0 0
I 0 0 0 0o -Q1! o 0
K; 0 0 0 0 0 -R! 0
D; 0 0 0 0 0 0 —&'I |
rt o0 o0 0
o ptoo 0
x| 0 0 I 0|,
: 0
0 0 0 0 |

where

@; = (A; +B;K;)TP+ PT(A; + BK;) + ' PTN;N/ P,
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w; = PTW, V.
So we have
I P T(a;+B;k)T +(4; +B;K;)P7!
+erIN;NT Ay T W, V; o p Tkl pT p Tk Pl +kID])

T 1Ay -py! 0 0 0 0 0 0

vIwl 0 - 0 0 0 0 0
p-1 0 o -t 0 0 0 0 <0. (30)

K;P~! 0 0 0 -py1 0 0 0

p-1 0 0 0 0 onl 0 0

K;p~L 0 0 0 0 0 -r! 0

(C; +DijK;)P~L 0 0 0 0 0 0 -7l

0

In summary, to obtain o(x,t), u(t) and J*, the following steps are required to per-

form.
Step 1: Select positive scalars ¢;, i € m.

Step 2: Solve LMIs (24) in Theorem 3 (Via LMI commands in the Matlab software or
YALMIP toolbox) and obtain invertible symmetric positive-definite matrices X,
P, and matrices M;, i € m. Note that X = P~!, M; = K;X and consequently.
P =X"' K; =M;X"!. Positive definite matrix P, can be given from inequality
%#1Z;% <0 in Theorem 2.

Step 3: Obtain State feedback u(t) = K;x(t).
Step 4: Calculate Z;, i € m in Theorem 2.
Step 5: Obtain switching law o(x,t) = argminiEm{iTZif}.

Step 6: Calculate guaranteed cost control J*.

4 TIllustrative Example
Example 1. Consider the following uncertain time-delay switched linear system with
two subsystems.

xX= (Ao(x,t) + AAa(x,t))x(t) + Adtr(x,t)x(t - d)r
+ (BU(X,t) + ABa(x,t))u(t) + Wa(x,t)u(t - h),
x(t) = ¢(t), t €[ty 0], to = max{d, h}, (31)

for i = 1,2, and the following matrices
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2 2
Bl = O y BZZ 0 y
0o 2 2 0
0 0.2 0.2 O
Ag = , Ay = ,
a7 02 0 a2 { 0 02 }
0.3 0.2 0.4 0.3
Wl = , 2=
0.2 04 ] 0.3 0.5
0.4 03 | [ 0.2 0.7 ]
Ny = , N, = ,
0.3 0.6 | 0.6 0.3
0.6 0.2 [ 0.4 0.2
Cl = , C2 . »
0.3 0.6 ] i 0.6 04
0 04 ] [ 0 0.2
Dl = y D2 - y
04 O 0.2 O
d=2and h=1 and
x(t)=[e! —e']T,  te[-20],
Also, weighted matrices Q and R are selected as
1 0
=R= . 32
Q=R=| ;| ] (52)

Note that all subsystems of system (31) are stable and unknown matrices F;(t) in Notice
1 are considered as a diagonal random time-varying matrices such that F iT(t)F,-(t) <I.
The aim is to find guaranteed cost controller u=K;x( t),i € {1, 2}, switching signal o(x, t)
and guaranteed cost J* of the switched system (31) with weighted matrices (32). We

perform the following steps.
step 1: Scalars €; and €, are selected as

&1 = 01, Ey) = 01,

step 2: Solving LMIs (24) we obtain

y_| 28359 -0.9024 ]
__ -0.9024 1.2247 |’

[ —2.5784  0.0004 |

Ml = ,
| —0.0003 -2.5774 |

[ —0.5288 —2.0491 |

M, = ,
| -3.1068  0.5289 |
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—x1
—Xx2

System States
o

-0.5

1
0.5 k
\//'
2 (o] 2 4

6 8 10
Time (Sec)
Figure 1: States x1(t) and x5(t).
15r
—ul of subsys. 1
—ul of subsys. 2
1 |-
051
0k /\/\/\/\AA/\,\
VVVVVV VVVVVV YVVEY
05
1 I I I I I ]
-2 0 2 4 6 8 10
Time (Ser)

Figure 2: Control input uq(t) of each subsystem.

and thus

poxl _[ 0.4606 0.3394 }

0.3394 1.0667

[ -1.1876 —0.8747
"1 Z0.8750 -2.7493 |’

[ -0.9391 -2.3652
27| 212516 -0.4904 |’

System states start from an initial condition xy and Figure 1 shows the state x;(t)
and x,(t) and, Figure 2, Figure 3 and Figure 4 show control inputs u;(t) and u;(t)

of each subsystem and switching signal o(x,t). It can be seen that theoretical results
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—u2 of subsys. 1
—u2 of subsys. 2

AAAAA

051 7
1 | | | | |
-2 0 2 4 6 8 10
Time (Sec)
Figure 3: Control input u;(t) of each subsystem.
.
1.81 .
=
>
B 16} |
2
£
Sa1af 8
=
»
1.2 8
0 1 2 3 4 5 6 7 8 9 10

Time (Sec)

Figure 4: Switching signal o(x, f).

in the Theorem 2 and Theorem 3 which state that uncertain switched system (1) is
exponentially stable under applying proposed switching strategy, are coincide with the

simulation’s results.

5 Conclusion

In this paper, a robust switching law for the GCC problem of a general form of uncertain
time-delay switched system is designed. The presented method is based on using the
LKF technique and extension of the min-projection switching strategy in this type
of switched system. Also, uncertainties in each subsystem’s dynamics are considered
randomly and are additive. Besides switching law, guaranteed linear control is obtained
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via the solution of extracted LMIs in the presented theorems. Finally, simulation verifies
the theorem’s results.
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