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Abstract. Conventional model predictive control (MPC) methods are usually
implemented to systems with discrete-time dynamics laying on smooth vector
space R”. In contrast, the configuration space of the majority of mechanical
systems is not expressed as Euclidean space. Therefore, the MPC method in
this paper has developed on a smooth manifold as the configuration space of
the attitude control of a 3D pendulum. The Lie Group Variational Integrator
(LGVI) equations of motion of the 3D pendulum have been considered as the
discrete-time update equations since the LGVI equations preserve the group
structure and conserve quantities of motion. The MPC algorithm is applied to
the linearized dynamics of the 3D pendulum according to its LGVI equations
around the equilibrium using diffeomorphism. Also, as in standard MPC
algorithms, convex optimization is solved at each iteration to compute the
control law. In this paper, the linear matrix inequality (LMI) is used to solve
the convex optimization problem under constraints. A numerical example

illustrates the design procedure.
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1 Introduction

Model Predictive Control (MPC) is based on predicting the behavior of a system using its
dynamical model and optimizing the prediction to have the best decision. Due to this reason,
the dynamic models of the system play an essential role in solving MPC problems. A control
system is considered as a family of vector fields, and the dynamical system is the flow generated
by this vector field [1, 2]. Differential geometry is a new language of Lagrangian and Hamiltonian
Mechanics. In differential geometry, the state space of the system is modeled as manifolds, which
are locally diffeomorphic with Euclidean space. As a result, this method is a coordinate-free
method that applies to infinite-dimensional systems. Since mechanical systems are symmetric,
the states of the system do not change under a certain transformation; this criterion is expressed
by Lie group actions [3]. A Lie group that is a smooth manifold with a group structure, is a
mathematical concept appropriate for describing continuously varying groups of transformation
[3]. In [4], geometric mechanics of rigid bodies on a Lie group is expressed based on the
Euler/Lagrange equation of mechanical systems that are developed according to Hamilton’s
principle. A so-called Lie Group Variational Integrator (LGVI) method has been produced for
systems with a Lie group configuration space. The main target of LGVI is implementing an
exponential map representing the variation of a curve on a Lie group in terms of Lie algebra
element. This method is developed to acquire the discrete-time dynamic equations of the
system that preserves the Lie group structure. The main result of this method is that the
achieved update discrete-time equations are coordinate-free, namely, there is no need to choose
a specific local coordinate. This totally avoids ambiguity and singularity associated with local
coordinates [4, 5]. Considering the LGVI method to model the discrete-time update equations
of motions, preserves the conserved quantities of motion and therefore provides a more realistic
prediction model. As other standard integrating methods such as Runge-Kutta do not use
the group structure so that they are deprived of this property. The LGVI method updates
the rotational matrix by multiplying two matrices in SO(3), which guarantees the rotational
matrix still remains on SO(3) and preserves the conservative motion. [7, 6] provide other
types of variational integrator methods. The conventional MPC methods are usually applied
to systems with discrete dynamics on R” vector space. However, the configuration space of the
majority of systems is smooth manifolds which are not diffeomorphic to R". For designing the
predictive dynamics of such systems, the manifolds with limited dimensions are embedded in R”,
then standard integrating methods are implemented until the discrete updating equations are
achieved. Different methods of integrating system dynamics on manifolds have been developed,
see [7, 8, 9] for example. Development of the model predictive control design for dynamics
evolving on smooth manifolds is considered in [10, 11]. The method of linearizing and embedding
the system in R” has been used in these papers. Implementing the MPC-based LMI approach
is a technique for controlling plants with uncertainties. Since the optimization-based LMI
method can be solved in polynomial time, it is applicable to implement it in on-line optimization
problems [12]. Solving an optimization problem at each sampling time within a receding horizon
is the main contribution of MPC algorithms so that the development of optimization methods

improves the ability to solve MPC problems. In such issues, an optimization problem that is



S. Mansourinasab, M. Sojoodi, S. R. Moghadasi / COAM, 4 (2), Autumn - Winter 2019 71

efficiently solvable via linear matrix inequality (LMI) can be extended to MPC. In this case, a
min-max optimization is solved, which computes the control law by minimizing a quadratic cost
function subject to constraints in worst-case at each time step. The issue of solving a min-max
optimization can be considered as a convex optimization with linear matrix inequality. Besides,
using the LMI optimization scheme with MPC at each time instant can incorporate uncertainties
as input and output constraints, and guarantees the robustness properties of the system at
the same time. Since Lie group variational integrator is one of the rigid body computational
methods that maintain Lagrangian/Hamilton structures as well as the structure of rigid body
configuration group, in this paper, the rigid body dynamics are implemented considering its
exact geometric properties using the LGVI method. As a result, the classical model predictive
control is generalized to the LGVI model of the system. The proposed method of applying
convex optimization for solving MPC problems using geometric considerations is applied to a
3D pendulum, which is a rigid body supported at a frictionless pivot acting under the influence
of uniform gravity with substantial invariant properties [13]. The novelty of this paper is using
the LMI approach for solving the MPC control of the 3D pendulum with a variational model.
This paper is organized as follows. Section II is devoted to the problem statement. Firstly, the
dynamics of a 3D pendulum using LGVT are expressed, and the linearized state-space model of
3D pendulum dynamics is extracted using infinitesimal variations of parameters evolving on a
manifold. Then, based on this linearized model of the system, a quadratic objective function is
introduced. Section III extends the standard MPC problem on Euclidean state space to smooth
manifold based on convex optimization using LMI. Simulation results are presented in section
IV to prove the efficiency of using LMI in solving MPC algorithms on smooth manifolds. A
comparison with the non-LMI method is also mentioned in this section. Finally, concluding

remarks are presented in section V.

2 Problem Statement

2.1 3D Pendulum Dynamics

The configuration space in a 3D pendulum is a SO(3) manifold. Geometric forms of Hamilton’s
equations of a 3D pendulum on the configuration manifold SO(3) using LGVI method have

been expressed in [4] as discrete-time forced Hamilton’s equation as follows

A 1

I = E(Fk]d ~JaFL), (1)
My = F{Ig+hMpgq +hBug,, (2)
Rir1 = RiFy, (3)

where Ry € SO(3) is a rotation matrix from the body-fixed frame to the initial frame denotes
the attitude of the rigid body at time k, IT; € R3 is the angular momentum of the pendulum
expressed in the body-fixed frame, Fy € SO(3) is a one-step change in Ry, J; is a non-standard

moment of inertia matrix and J; = %tmce(} )I =] where J is the standard inertia matrix. ”h”
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is the time step for the discrete system. In a 3D pendulum ./\T/lk =mgp XR£€3. The hat map

denotes : R — s0(3) that for a given vector w = ( w1, Wy, W3 ) represents the skew-symmetric

matrix
0 w3 (%)
O=| —w; 0 w1
(€] —W1 0

As in Eucliedaian spaces, a linear vector field can estimate the Hamiltonian vector field on
TSO(3) locally in an open subset of TSO(3), which is the tangent space to SO(3). Using local
coordinates in the neighboring of the equilibrium point is a method of linearizing the vector
field. To extract the linearized discrete Hamilton’s equation for 3D pendulum as discussed in
[14], a local exponential coordinate is introduced as local coordinates. The variation of the
rotational matrix R is an e-parameterized differentiable curve Ry . that takes value in SO(3), is
given by [4]

Rye = Ry exp(e ). (4)

The variation of matrix R is expressed as an exponential map that returns the variations across
the rotational axis 1 with angle €. 7(t) is a differentiable curve that has value on Lie groups of
rotational matrices and is identity in ¢y and t¢. The exp map is a local diffeomorphism between

Lie algebra and Lie group. Other parameters’ variations are also formulated as

A

Fie = Frexp(eéy),

ka = Hk + €5Hk,

where 01 is an infinitesimal variation of I'Ty. Infinitesimal variations of the motion can be

shown to be

d
ORy = —| Rp.=Ry1,
k dee:O k,e k Nk
SF, = d F..=F.¢&
k_dee:() ke — Lk Sk»
sl = 4| o - st
k—d€€:0 ke — k-

The infinitesimal variation of 0Rj,; can be expressed from two points of view. On the one
hand, the variation of Ry,; is calculated as infinitesimal variations of its parameters Ry, Fy as
follows

ORyy1 = ORgFy + RpSFy = Ry tji Fie + RiFieéy, (5)

on the other hand, its infinitesimal variation is calculated directly as

] d d .
ORyy1 = e E:ORkJrl,e =T 6:0R1<+1‘5XP(6 Ake1)
= 72| RiFrexp(eniir) = RiFes - (6)
€le=0

Then, the last parts of both equations (5),(6) can be equated, and the parameter 7;,; can be
extracted as
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ket = Ef 1 + &k (7)

Note: The relation RT#R = RTx is used. In fact, (7) is the constrained variation of the equation
Ri41 = RiFy. Since the linearized system should be in terms of the state variables [ Nk, OITg ]T7
&k should be replaced in terms of 1, and 0IT;. Due to this reason, & is calculated from (1).
Firstly, the variations of (1) are obtained as follows, since 6I1, dF) are not independent

A 1
ol = 3 (FJa~JadFy)
1 c c T
= E(Fkék]d +Ja&kFy)
1 —— .
= z(chkok]d + JaF{ Fe&p).
Note: £A+ AT# = (trace[A]lx; — A)X)
A 1 -~
olly = E((tmce(Fk]d)I3x3 = FiJa)Fiék),
i 1
ol = E(trﬂce(Fk]d)kxa = FiJa)Fi&k-
As a result,
&k = Pr oIy, (8)
where

Br = hF[ (trace(FiJa)lsxs — FiJa) ™' € RS,

By replacing (8) in (7) nx,1 is extrapolated as

Mk = F i+ o, 9)

which gives the linearized rotation matrix R in terms of its rotation axis #. The dynamical
equation (2) is linearized by substituting the variations of M. Since the torque My is related
to the attitude of a rigid body, its variation oMy is written as a variation of the rotational
matrix

oMy = My,
while M € R33 is expressed as the attitude of the rigid body and is attained by the potential
field. Using (8), (9), variations of My, is equal to
SMis1 = Miaitisr = Mt Ff i+ My BTl

As a result,

Ol =0F] TTj + EF 6Ty + hd My, 1 + hBOuy,,
=— & FITTy + FLoTTy + hMyy Ff g
+ hMji1 Br 01Ty + hBouy
= — (BT FL T + FF 6T, + h My FL gy
+ h M1 Br oIy + hBouy,
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SMgy1 =((FT L) Br + EF + hMy i1 r)oTTy (10)
+ th_,_ngfjk + hBéuk.

Consequently, the linearized system (1-3) is summarized as follows

Meet | Ax Bk | [ 0 ity (11)
5Hk+1 Ck Dk (‘)Hk hB ’
while,
Ay =F],
B = B,

Cr = hMy41 Ff,
Dy = Fl + (FIT1)By + h My, 1 B.

and, in a 3D pendulum

OMj = Mycr
My = mgp x R,{e3 =mgpP(Ry es).

2.2 Optimization Problem

As in MPC problems, a convex optimization should be solved, a quadratic cost function for the

linearized system (11) is introduced as follows to minimize cost as well as energy [15, 16, 17]

1=

J=F Ry, TIN)+ ) L(Re, Ty, i)

=0
such that

F =trace(P,(Isx3 — Ry)) + trace(PI1y)

1 1 A
= §||P11/2(I3x3 —Ry)IIF + EHP;ZI/Z TIyl%,

L(Ry, 1ti, ug) = tr(Qp (I — Ry )) + %fmce(Qz(l - Fy))

+ trace(ukTW1 uy)
1

= S1Q1"( = Ryl +

1

521" (1= Fil

1
5w gl
Since 7y =logRy; besides, in the neighborhood of (II) it is true that oIy ~ I [17]:

1
trace(Qi(I - Ry) = 5 1Q1 (I - Ryl
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= trace(Qy (I — exp(jx)))

1 -
’:EUkTerlk

1

trace(Qa(l = Fi) = -5 11Q;" (1 - Fo) I

1
T 2h2
1

= SOTIE ]~ Qo] 0T,

Q32 h(J =L oIT, 112

where Q55 = trace(Qi22)I3x3 — Q1,22 for symmetric positive definite Q; , € R¥>?® | and Q, =

J71Q,,]7'. These matrices are evaluated from the property discussed in [15], which implies
1 ~

that for any positive semi-definite symmetric matrix B and ¢ € R3, %HBTCAH% = %CTBC, where

B =tr(B)I3x3 — B. As a result,

4

1 ~
L1, oIy, 1) = EﬂkTQl Nk
1 . 1
+ E(sr[kTQzaHk + ETkTwTk,
, 1 - 1 -
Fnn, oTy) = quﬂpl NN+ EénﬁpzanN,

where W = trace(W;)I — Wy, and u; € s0(3)" is expressed in terms of the applied torque 7 as
uy = T where s0(3)" is the dual of s0(3). We rewrite the linearized system and cost function as

follows

Cre1 = ACk + Bouy, (12)

IN =

where

3 LMI Based Model Predictive Control

No control action is applied to the system after the instant k+m—i; namely, u(k+ilk) = 0fori > m.
From the viewpoint of the receding horizon, only the first calculated control is implemented to
the system. In the next sampling time, the optimization problem min J is solved using the new
measurement of the system. As a result, both m and p go one step ahead. Considering system
(8), the minimization problem of the cost function is replaced by a worst-case minimization

problem in each sampling time, namely the following min — max problem
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min max  J(k) (14)
ulk+ilk) [A(K) B(k)]eQ

N
1 1
JN<k>=5<:};PcN+EZ (k+ilk)" QT (k + ilk)
+1(k +ilk)T Wr(k +i|k). (15)

Maximization is on the set Q) = Convex Hull[A B], arising from stability considerations, which
gives an upper bound for the Lyapunov function and leads to a robust performance objective.
Then, this bound should be minimized by the use of the state feedback control law u(k +ilk) =
K C(k+ilk)i = 0. The quadratic Lyapunov function is introduced in the form of

V(C(klk)) = C(klk)T PC(kk), P> 0. (16)

According to the Lyapunov stability theorem, variations of V(C(k|k)) should be negative in
order to guarantee the stability of the system. Suppose that for any C(k + i|k), u(k + ilk) and
i <0, the variation of Lyapunov function is smaller than a negative quadratic function, which
considers being the summand of cost function such as[12]

AV(C(k+1)) = V(C(k+i+1]k)) = V(C(k +ilk))
=C(k+i+1)k)T Py Clk+i+ 1)k) = C(k +ilk)T P (k +i]k)
—(C(k +ilk)T QrC(k +ilk) + T(k +i|k)T W (k + i|k)). (17)

Let us calculate the sum of both sides of (17). Firstly, the sum of the first side of it is calculated
as follows [18]

N-1
A[C (k+i+ 100 Py Clk+i + 1]k)]
=0

N-1
Z[c k+i+1k) TP Ck+i+1]k) - (k+z|k)TPkC(k+z|k)]

CT(k + NIK)Per C(k + N1k) = T (kIK)PC (klK).

Note: C(k+ N|k) is summerized as Cy. Finally, it gives

N-1
—C(klk)TP.C(klk) < —CLPCy — Z[c k+ilk)TQrC(k +ilk) +7(k +i]k) Wr(k+z|k)]
=0

as a result

~V(C(klk)) < =T (k)
I (k) < CT(klk)T L (KlK). (18)

So (18) is an upper bound for the cost function J; namely, the problem of maxJ gives the
upper bound V(C(klk)) for J. It is clear that the minimization problem has been changed to
determining the state feedback control gain K of t(k +ilk) = KC(k +ilk), i > 0 in each sampling
time k for the minimization of this upper bound of V(C(k|k)). It means we should minimize the
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upper bound of 7, which is the function V. Similar to the problem of standard MPC, firstly,
the first calculated input T(k|k) = KT (k|k) should be implemented to the system. In the next
sampling time, the state (i, is measured, and optimization is repeated to compute F again.
Since the linearized system has been embed on Euclidean space using the exponential map, it
is a convex optimization problem and can be solved under linear matrix inequality conditions.
The following theorem expresses LMI conditions on which the gain of controller K is going to

calculate

Theorem 1. Let (i = C(k|k) be the state of the system (12) measured at the sampling time k.
There are no constraints on inputs and outputs of the system. Then, the feedback matrix K
in control law ©(k +ilk) = KC(k + i|k), i < 0 which minimizes the upper bound V({(k|k)) on the
robust performance of cost function in sampling time k can be computed as follows[12]

K=LE™, (19)

where the matrices E > 0, L (if it exists) are obtained from the following linear minimization

problem:
%’i 4 (20)
subject.to. :
T

1 k™ )5 (1)

C(klk) E

E EAT +LTBT EQY? LTw//?

AE+BL E 0 0

QY2E 0 yI 0

1/2
WY2E 0 0 yI
>0 (22)
Proof: See Appendix. A in [12]. O

4 Simulation Results

In this section, a numerical simulation is presented in order to analyze the effectiveness of the
proposed method. Standard inertial matrix is chosen as J = diag(1,2.8,2). The discretization
time-step parameter h = 0.2. The initial angular velocity in the body-fixed frame is considered
as Qg =[0,0,1] while IT = J.Q, and 7 = [0,0,1.5]. Solving LMI, the control gain K is computed
in each iteration with control horizon 2, and only the first parameter of K is implemented to the
system. The simulation results are depicted on figures (1,2). Figures show that only 7 seconds
takes for the pendulum to reach its equilibrium. Simulation repeated for more complicated
initial conditions, which expressed complicated starting point of the pendulum, result with
initial conditions as Q =[0,1,1] and 5 = [-0.5,0,1.5] is illustrated on figure (3). Using the
LMI method for solving the MPC problem on the manifold is compared with the standard
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MPC method on a manifold without using the LMI. Results are depicted on figures (4,5),

which demonstrate fewer control efforts. This is a rest-to-rest initial condition simulation.

P | |
0 5 10 15 20 25 30
time(s)

Figure 1: Angular Momentum ITj3.

. . .
0 5 10 15 20 25 30
time(s)

Figure 2: Input torque 73.

°

S8

- | | | |
0 5 10 15 20 25
time(s)

Figure 3: Input torque 73.

48 Sl I L L I
2 4 6 8 10 12
time(s)

Figure 4: Comparing MPC based LMI on manifold method with regular MPC on manifold
method for the parameter I15.

5 Conclusions

This paper formulated a model predictive method for the 3D pendulum, in which its config-
uration space is expressed as a manifold. Its dynamics are used as LGVI equations, and a
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6
time(s)

Figure 5: Comparing MPC based LMI on manifold method with regular MPC on manifold

method for input torque parameter 3.

linearization method on manifolds has been used in order to generalize the conventional MPC

methods from Fuclidean spaces to manifolds. Solving MPC and calculating control gain is

achieved using LMI conditions.
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