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Abstract. Linear programming problems have exact parameters. In
most real-world, we are dealing with situations in which accurate data and
complete information are not available. Uncertainty approaches such as fuzzy
and random can be used to deal with uncertainties in real-life. Fuzzy and
stochastic theories cannot be used if the number of experts and the level of
experience is so low that it is impossible to extract membership functions or
the number of samples is small. To solve these problems, the grey system
theory is proposed. In this paper, a linear programming problem in a grey
environment with resources in interval grey numbers is considered. Most of
the proposed methods for solving grey linear programming problems become
common linear programming problems. However, we seek to solve the problem
directly without turning it into a standard linear programming problem for
the purpose of maintaining uncertainty in the original problem data in the
final solution. For this purpose, we present a method based on the duality
theory for solving the grey linear programming problems. This method is more
straightforward and less complicated than previous methods. We emphasize
that the concept presented is beneficial for real and practical conditions in
management and planning problems. Therefore, we shall illustrate our method
with some examples in different situations.
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1 Introduction

Managers need to use optimization methods to make the right decisions and solve their
problems. Operational research is one of the optimization methods that help make
the right decisions and solve management problems. One of the standard methods to
optimization a goal due to various constraints is Linear Programming (LP) problem [1].
To represent an optimization problem as a linear programming problem, assumptions
such as proportionality, additivity, divisibility, and deterministicity of all model pa-
rameters are required in the problem formulation [1]. In real cases, these assumptions
rarely apply. The LP model is used to select some future activities. As a result, it will
inevitably include some degree of uncertainty.

Lack of information, inaccuracy in information, and inaccuracy of forecasting are the
characteristics of inaccurate systems. During the decision-making process, the presence
of uncertainty in the data and the problem’s situation usually confronts the decision-
maker with conditions of doubt and uncertainty and makes it difficult to decide and
choose the best option [4]. Due to differences in the type and characteristics of uncer-
tainty systems, different theories, methods, and techniques have been used, including
statistics and probability, fuzzy set theory, and grey systems theory [16]. Fuzzy set
theory is based on the definition of fuzzy numbers, and fuzzy numbers, in turn, depend
on the definition of membership functions, which is based on the number of experts and
their level of experience. Statistics and probability are also the uncertainty that arises
from a completely random process and requires high distribution and sampling func-
tions. In other words, if the decision-maker fails to reduce the uncertainty by obtaining
more data, we will face uncertainty from a completely random process.

If the number of experts and level of experience is low and membership functions
cannot be extracted, or the number of samples is small i.e., we cannot use fuzzy uncer-
tainty theory or random uncertainty theory; we use grey system theory. This theory,
proposed by Deng, provides a very effective way to deal with uncertainty, providing
desirable outcomes using low and volatile information [10]. Grey systems theory stud-
ies topics that have a definite range and scope and an uncertain nature. With the
development of grey systems theory, today, this theory has become a new branch of
science whose theoretical structure includes systems analysis, modeling, forecasting,
decision making, control, and optimization techniques. Due to this theory’s advan-
tages over other methods of dealing with the system of uncertainty, its application is
expanding in recent years [2, 5, 34, 35, 38]. LP problems with interval grey numbers
have been studied by several authors [3, 9, 14, 15, 19, 23, 27, 36]. For example, Nasseri
et al. [24] have proposed a Simplex algorithm-based method for solving Grey Linear
Programming (GLP) problem (grey parameter in the objective function) by using grey
arithmetic concepts and grey number ranking. Their proposed method has the advan-
tage over previous methods in that it is no longer necessary to whiten GLP problem
parameters. Since the problem is solved directly, the input data’s uncertainty will be
better reflected in the final solution.

The duality theory for inexact LP problems was studied by Soyster [30] and Thuente
[32]. Rohn [29] discussed the duality in an interval LP problem with a real-valued ob-
jective function. Duality theory was developed by Rodder and Zimmermann [28] for
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solving fuzzy parameter LP problems using the aspiration level approach. Several re-
searchers solved fuzzy programming problems using fuzzy duality theory [12, 18, 31].
Ramik [26] introduced some new concepts, and results, possibilities, and necessary re-
lations of duality in fuzzy linear programming. Nasseri and Darvishi [23] gave duality
theory for solving the GLP problems. Darvishi [7] has studied some of the duality re-
sults in the GLP problem. One of the weaknesses of LP with grey parameters problems
is solving the problem without converting the parameters to display the uncertainty of
the input data in the output solution. To solve this problem, in this research, we tried
to use a dual LP problem with grey data, to present a method without whitening grey
parameters to solve the LP problem with grey data.

This research is formatted as follows. Section 2, presents some necessary notations
and definitions of grey systems. The definition of the GLP problem is given in Section
3. In Section 4, a dual LP problem with grey parameters and a new algorithm based
on dual results to solve it are introduced. In Section 5, by presenting three different
examples, the efficiency and numerical analysis of the proposed method is presented.
Finally, Section 6 consists of conclusions.

2 Preliminaries

In this section, we describe the definitions and concepts needed to study and analyze the
mathematical of grey systems and grey number calculations to solve the GLP problem
[10, 13, 17]. Grey systems theory is one of the most critical methods for studying and
analyzing systems with incorrect parameters and incomplete information [16]. One
of the main concepts of grey systems theory that plays a significant role in studying
uncertainty is grey numbers. There are different kinds of grey numbers [16] which we
use interval grey numbers in this article.

Definition 1. An interval grey number is the one whose exact value is unknown but
whose range is known [6].

⊗x ∈ [x,x] = { t|x ≤ t ≤ x} , x ≤ x, (1)

where, t is grey number information, x lower limit, and x upper limit.

Remark 1. [6] We show the set of grey numbers with R(⊗) the symbol.

Definition 2. [21] Let ⊗x1 ∈
[
x1,x1

] and ⊗x2 ∈
[
x2,x2

] be two grey numbers. The
following operations can be defined:

⊗ x1 +⊗x2 =
[
x1 + x2,x1 + x2

]
,

⊗ x1 −⊗x2 = ⊗x1 + (−⊗ x2) =
[
x1 − x2,x1 − x2

]
,

⊗ x1 ×⊗x2 =
[
min

{
x1x2,x1x2,x1x2,x1x2

}
,max

{
x1x2,x1x2,x1x2,x1x2

}]
,

k · ⊗x ∈

[kx,kx] , k > 0,

[kx,kx] , k < 0.
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Remark 2. [13] Let ⊗x ∈ [x,x] be a grey number. Then we have ⊗x ÷ ⊗x = 1 , and
⊗x −⊗x = 0 .

Remark 3. [13] For any real number x, we have ⊗x ∈ [x,x].

Definition 3. [27] For any grey number ⊗x ∈ [x,x], the kernel, ⊗x̂ of the grey number
is defined as ⊗x̂ = x+ x

2
.

Definition 4. [37] The length of the grey number ⊗x ∈ [x,x] is defined as µ(⊗x) = x−x.

Ranking of grey numbers is very important in grey decision making and optimization
problems. Several methods and more details can be seen in Dervishi et al.[8].

Definition 5. [37] Suppose that the background, which makes a grey number ⊗x come

into being, is Ω and µ(Ω) is the value of Ω. Then g◦(⊗x) =
µ(⊗x)
µ(Ω)

is called the degree

of greyness of ⊗x (denoted as g◦ for short).

Definition 6. [11] Suppose ⊗x1 and ⊗x2 are two grey numbers and ⊗x̂1, ⊗x̂2 are the
center of ⊗x1 and ⊗x2 respectively, g◦(⊗x1) and g◦(⊗x2) are the degree of greyness of
⊗x1 and ⊗x2 , respectively. So, if ⊗x̂1 < ⊗x̂2⇒⊗x1 <G ⊗x2

if ⊗ x̂1 = ⊗x̂2⇒


if g◦(⊗x1) = g◦(⊗x2)⇒⊗x1 =G ⊗x2,
if g◦(⊗x1) < g◦(⊗x2)⇒⊗x1 >G ⊗x2,
if g◦(⊗x1) > g◦(⊗x2)⇒⊗x1 <G ⊗x2.

(2)

For further study on the grey theory systems see [13].

3 Grey Linear Programming

The GLP problem is one of the appropriate approaches to deal with uncertainty in
real-life problems. Here, we present the general model of LP problems, including grey
numbers

Maximize⊗Z =G

n∑
j=1

⊗cj ⊗ xj

s.t
n∑
j=1

⊗⊗ aijxj ≤G bi , (3)

⊗ xj ≥G ⊗0,

where ⊗cj ,⊗aij ,⊗xj ,⊗bi ∈ R(⊗), i = 1,2, ...,m, j = 1,2, ...,n.



19F. Pourofoghi , D. Darvishi Salokolaei/ COAM, 5 (1), Spring-Summer 2020

Definition 7. Linear programming problem with grey right-hand sides’ parameters is
defined as follows:

Minimize⊗Z =G

n∑
j=1

⊗cj ⊗ xj

s.t
n∑
j=1

⊗⊗ aijxj ≥G bi , (4)

⊗ xj ≥G ⊗0,

where ⊗cj ,⊗aij ∈ R,⊗xj ,⊗bi ∈ R(⊗), i = 1,2, ...,m, j = 1,2, ...,n.

Because in the process, we need the notion of a feasible grey solution and grey
optimal solution, we consider the following definitions.

Definition 8. The set {⊗xj , j = 1,2, ...,n} is called to be a feasible solution (4), if they
satisfy into the model constraints.

Definition 9. A feasible solution {⊗xj , j = 1,2, ...,n} of the problem (4), is said to be
an optimal feasible solution, if

∑n
j=1⊗cj ⊗ x0 ≤

∑n
j=1⊗cj ⊗ xj , ⊗xj ∈D, j = 1,2, ...,n.

Definition 10. (Grey basic feasible solution): Consider the system∑n
j=1 aij ⊗ xj =G ⊗bi i = 1,2, ...,m and ⊗xj ≥G 0, where [aij ]m×n is a m × n matrix and

[⊗bi]i = 1,2, ...,m is an m vector. Suppose that rank[aij ,⊗bi]m×n+1 = rank[aij ]m×n = m
partition, A = [aij ]m×n, j = 1,2, ...,n, i = 1,2, ...,m, after possibly rearranging the columns
of A, as [B,N ], where B is m×m non-singular matrix. It is apparent that

⊗xB =G (⊗xB1
,⊗xB2

, ...,⊗xBm)
T =G B

−1 ⊗ b, ⊗xN =G ⊗0,

is a solution of
∑n
j=1 aij ⊗ xj =G ⊗bi , i = 1,2, ...,m the vector ⊗x =G (⊗xTB , ⊗x

T
N )

T where
⊗xN =G ⊗0 is called a basic grey solution of the system.

If ⊗xB ≥G ⊗0, then ⊗x is called a grey basic feasible solution of the system, and the
corresponding grey objective value is ⊗z =G cB ⊗ xB, where cB =

(
cB1
, cB2

, ..., cBm
)
.

For all j = 1,2, ...,n, define yj = B−1aj , zj = cByj = cBB−1aj and for any primary index
j = Bi , j = 1,2, ...,m, we have zj − cj = cBB−1aj − cj = 0.

Theorem 1. Let problem (4) be non-degenerate. A basic feasible solution, ⊗xB =G
(⊗xB1

,⊗xB2
, ...,⊗xBm)

T =G B−1 ⊗ b, ⊗xN =G ⊗0 is optimal to (4) if and only if, zj − cj =
cBB

−1aj − cj ≤ 0 , for any non-basic variable.

Proof. Let that ⊗x =G (⊗xTB ,⊗x
T
N )

T , ⊗xB =G (⊗xB1
,⊗xB2

, ...,⊗xBm)
T =G B−1⊗b , ⊗xN =G

⊗0 is a solution of
∑n
j=1 aij ⊗ xj =G ⊗bi , i = 1,2, ...,m. So that, the optimal grey value

of the objective function is ⊗Z =G cB ⊗ xB =G cBB−1 ⊗ b. On the other hand, for any
grey basic feasible solution ⊗x to (4), we have ⊗b =G A⊗ x =G B⊗ xB +N ⊗ xN . Hence,
B⊗ xB =G ⊗b −N ⊗ xN ⇒⊗xB =G B−1 ⊗ b −B−1N ⊗ xN .

Thus, for any basic grey feasible solution to (4), we have

⊗Z =G c⊗ x =G cB ⊗ xB + cN ⊗ xN ,
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=G cBB
−1 ⊗ b − cBB−1N ⊗ xN + cN ⊗ xN ,

=G cBB
−1 ⊗ b −

(
cBB

−1N − cN
)
⊗ xN ,

=G cBB
−1 ⊗ b −

∑
j,Bi

(
cBB

−1aj − cj
)
⊗ xj ,

=G cBB
−1 ⊗ b −

∑
j,Bi

(
zj − cj

)
⊗ xj .

Now, consider the following three cases:
1) If for all j = 1,2, ...,n, we have:(

zj − cj
)
≥ 0⇒

(
zj − cj

)
⊗ x ≥G ⊗0⇒

∑
j,Bi

(
zj − cj

)
⊗ xj ≥G ⊗0,then⊗Z ≤G ⊗Z∗.

This is a contradiction to ⊗Z∗ being optimal.
2) If for all j = Bi ,1 ≤ i ≤m, we have

(
zj − cj

)
= 0, then ⊗Z∗ =G ⊗Z.

3) If for all j = 1,2, ...,n, we have:(
zj − cj

)
≤ 0⇒

(
zj − cj

)
⊗ x ≤G ⊗0⇒

∑
j,Bi

(
zj − cj

)
⊗ xj ≤G ⊗0,then⊗Z ≥G ⊗Z∗.

Hence, we have zj − cj = cBB−1aj − cj ≤ 0, j = 1,2, ...,n.

4 Duality in Linear Programming Problem with Grey Parameters

Duality is an essential concept in linear algebra and mathematical programming that
derives from examining a problem from two different perspectives. Specifically, a device
is interpreted from linear relationships defined in terms of a matrix in terms of column
space or its row space. These two different perspectives lead us to some real results,
such as the equation of the row and column rank of a matrix, the equation of optimal
values of the initial problem, and the dual problem of LP [20]. The duality concept
is one of the most essential and exciting concepts in linear programming. The basic
idea in this theory is that every LP problem has a corresponding dual problem. So,
whenever an LP problem is given, by solving it in the simplex method, we have two
problems solution synchronous. For each LP problem with grey parameters, there is a
corresponding problem named dual, which satisfies the duality results and the crisp and
fuzzy environments [23]. Therefore, we try to find a solution to the LP problems with
grey parameters using the duality concept. If we determine the dual of the problem
(4), then we can present the mathematical model of the LP problem by grey right-hand
sides as follows:

Minimize ⊗Z =G

m∑
j=1

⊗yi ⊗ bi

s.t
m∑
j=1

⊗⊗ yiaij ≥G cj , j = 1,2, ...,n, (5)
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⊗ yi ≥G ⊗0 i = 1,2, ...,m,

where cj , aij ∈ R, yi ,bi ∈ R(⊗), i = 1,2, ...,m, j = 1,2, ...,n.

Theorem 2. [23] (The weak duality property) If ⊗x0 =
(
⊗x01,⊗x

0
2, ...,⊗x0n

)
≥G ⊗0 is any

feasible solution to the primal GLP problem (4) and ⊗y0 = (⊗y01 ,⊗y
0
2 , ...,⊗y0m) ≥G ⊗0

is any feasible solution to the dual of the problem (4) i.e. (5), then
∑m
i=1⊗y

0
i ⊗ bi ,≤G∑n

j=1 cj ⊗ x
0
j .

Corollary 1. [23] If ⊗x∗ and ⊗y∗ are, respectively, feasible solutions to primal (4)
and dual (5), and c ⊗ x∗ =G ⊗y∗T ⊗ b, then ⊗x∗ and ⊗y∗are optimal solutions to their
respective problems.

4.1 The proposed algorithm (Duality Method)

Now we propose an a Algorithm based on the duality method for finding the optimal
solution. Consider the following problem:

Minimize ⊗Z =GC ⊗X
s.t A⊗X ≥G ⊗b, (6)

⊗X ≥G ⊗0.

1) Write a dual problem of grey linear programming.

Maximize ⊗u =G ⊗ yT ⊗ b
s.t ⊗ yTA ≤G C, (7)

⊗ yT ≥G ⊗0.

2) Suppose that a basic feasible solution and a corresponding simplex table are
available.

3) The basic feasible solution is given by ⊗yTB =G B−1c =G ⊗f0 and ⊗yTN =G ⊗0. In this
case, the value of the grey target function will be as: ⊗u =G ⊗yT B−1C =G ⊗f00.

4) Compute ⊗f0j=G ⊗uj −⊗bj , for all j = 1,2, ...,m; j , Bi , i = 1,2, ...,n.

5) Let ⊗f0k=Gmin
{
⊗fij

}
, j = 1,2, ...,m.

6) If ⊗f0k≥G ⊗ 0, then stop, the current solution is optimal.

7) If ⊗f0k<G ⊗ 0 and, fik ≤ ⊗0, i = 1,2, ...,n, then stop, the problem is unbounded.

8) If ⊗f0k <G ⊗0 and, fik > ⊗0, i = 1,2, ...,n, then, determine an index r corresponding
to a variable yBr leaving the basis as follows:

fr0
frk

=min
{
fi0
fik
|fik ≥ 0

}
, i = 1,2, ...,n.
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9) Pivot on frkan element and update the simplex tableau to go to the second step.

In the following, the efficiency of the proposed method is shown by providing practical
examples.

5 Numerical Examples

In this section, by presenting three different examples of problem (4), including different
types of constraints and decision variables that can occur in real life, the proposed
method’s efficiency to solve them is evaluated. Here, we give GLP problems and solve
these by the proposed method described in the last section.

Example 1. A livestock company is willing to provide the feed required by its livestock
at a minimum cost. The number of nutrients in each kilogram of these substances (in
terms of the number of units of nutrients in the substance), the number of nutrients
needed per day, and each ingredient’s cost are listed below.

Table 1: The nutrients, cost, and required daily amount of a Livestock company.

Amount of daily necessities Alfalfa Corn Nutrients
⊗[4,6] 3 2.5 Vitamin
⊗[3,4] 4 1 Protein

4 2 Cost

Let
⊗x1: Number of packages needed for Corn;
⊗x2: Number of packages needed for Alfalfa.
Consider the following GLP problem.

Minimize ⊗Z =G2⊗ x1 +4⊗ x2
s.t 2.5⊗ x1 +3⊗ x2 ≥G ⊗[4,6], (8)

⊗ x1 +4⊗ x2 ≥G ⊗[3,4],
⊗ x1,⊗x2 ≥G ⊗0,

and its dual problem:

Maximize ⊗u =G ⊗ [4,6]⊗ y1 +⊗[3,4]⊗ y2
s.t 2.5⊗ y1 +⊗y2 ≤G 2, (9)

3⊗ y1 +4⊗ y2 ≤G 4,

⊗ y1,⊗y2 ≥G ⊗0.

In this example, we describe a primal model to the constraints of the “greater than
or equal to” type, the decision variables are “≥ 0”, and so, duality model has the
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constraints of the “less than or equal to” type. Also, the decision variables are “≥ 0”.
Now, we solve the problem by using the proposed Algorithm 4.1.

Table 2: The simplex tableau of the problem (9).

Basic variables ⊗u ⊗y1 ⊗y2 ⊗s1 ⊗s2 R.H.S
⊗u0 [1,1] -[4,6] -[3,4] [0,0] [0,0] [0,0]
⊗s1 [0,0] 2.5 1 [1,1] [0,0] 2
⊗s2 [0,0] 3 4 [0,0] [1,1] 4
⊗u0 [1,1] [0,0] -[0.6,2.4] [1.6,2.4] [0,0] [3.2,4.8]
⊗y1 [0,0] [1,1] 0.4 0.4 [0,0] 0.8
⊗s2 [0,0] [0,0] 2.8 -1.2 [1,1] 1.6
⊗u0 [1,1] [0,0] [0,0] [0.57,2.14] [0.21,0.85] [3.54,6.17]
⊗y1 [0,0] [1,1] [0,0] 0.57 0.14 0.571
⊗y2 [0,0] [0,0] [1,1] 0.43 0.36 0.571

Table 2 is the optimal table of the duality problem, so by using the coefficients
of the slack variables of the duality problem in the first line of the optimal table, we
extract the optimal answer to the primal problem. Grey optimal solution to the primal
problem will be as follows.

⊗x1 = ⊗ [0.57,2.14] , ⊗x2 = ⊗ [0.21,0.85] , ⊗z = ⊗ [3.54,6.17] .

Example 2. Consider the following GLP problem:

Minimize ⊗Z =G ⊗ x1 +2⊗ x2 +⊗x3
s.t 2⊗ x1 +3⊗ x2 +⊗x3 ≤G ⊗[4,8], (10)

2⊗ x1 +3⊗ x2 +⊗x3 ≥G ⊗[0.5,1.5],
⊗ x1,⊗x2,⊗x3 ≥G ⊗0.

and its dual problem:

Maximize ⊗u =G ⊗ [4,8]⊗ y1 +⊗[0.5,1.5]⊗ y2
s.t − 2⊗ y1 +2⊗ y2 ≤G 1, (11)

3⊗ y1 +3⊗ y2 ≤G 2,

−⊗y1 +⊗y2 ≤G 1,

⊗ y1,⊗y2 ≥G ⊗0.

In this example, we describe a primal model contain some constraints of the “less than
or equal to” type, some of the “greater than or equal to” type, the decision variables
are “≥ 0”. So, the duality model has the constraints of the “less than or equal to”
type, and the decision variables are “≥ 0”. Now, we solve the problem according to the
Algorithm 4.1.

Table 3 gives the optimal table of the duality problem, so by using the coefficients
of the slack variables of the duality problem in the first line of the optimal table, we
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Table 3: The simplex tableau of the problem (11).

Basic variables ⊗u ⊗y1 ⊗y2 ⊗s1 ⊗s2 ⊗s3 R.H.S
⊗u0 [1,1] [4,8] -[0.5,1.5] [0,0] [0,0] [0,0] [0,0]
⊗s1 [0,0] -2 2 1 0 0 1
⊗s2 [0,0] 3 3 0 1 0 2
⊗s3 [0,0] -1 1 0 0 1 1
⊗u0 [1,1] [2.5,7.5] [0,0] [0.25,0.75] [0,0] [0,0] [0.25,0.75]
⊗y2 [0,0] -1 1 0.5 0 0 0.5
⊗s2 [0,0] 6 0 -1.5 1 0 0.5
⊗s3 [0,0] -1 1 -0.5 0 1 0.5

extract the optimal solution of the primal problem. The solution of the primal problem
will be as follows:

⊗x1 = ⊗ [0.25,0.75] , ⊗x2 = ⊗ [0,0] , ⊗x3 = ⊗ [0,0] , ⊗Z = ⊗ [0.25,0.75] .

Example 3. Consider the following GLP problem.

Minimize ⊗Z =G10⊗ x1 +50⊗ x2 +20⊗ x3
s.t ⊗ x1 +2⊗ x2 +⊗x3 ≥G ⊗[400,600], (12)

⊗ x1 +8⊗ x2 ≥G ⊗[100,300],
⊗ x2,⊗x3 ≥G ⊗0, ⊗x1 is unrestricted,

and its dual problem:

Maximize ⊗u =G ⊗ [400,600]⊗ y1 +⊗[100,300]⊗ y2
s.t ⊗ y1 +⊗y2 =G 10, (13)

2⊗ y1 +8⊗ y2 ≤G 50,

⊗ y1 ≤G 20,

⊗ y1,⊗y2 ≥G ⊗0.

In this example, we describe a primal model to constraints of the “greater than or equal
to” type, the decision variables are “≥G0”, or “unrestricted”. So, the duality model has
the constraints of the “less than or equal to” type, and some of the “equal to” type, and
the decision variables are “≥G0”. Now, we solve the problem according to Algorithm
4.1.
Table 4 presents the optimal table of the duality problem, so by using the coefficients

of the slack variables of the duality problem in the first line of the optimal table, we
extract the optimal answer to; the primal problem. The solution to the primal problem
will be as follows.

x1 = ⊗ [400,600] , ⊗x2 = ⊗ [0,0] , ⊗x3 = ⊗ [0,0] , ⊗Z = ⊗ [4000,6000] .

Different methods have been proposed to solve GLP problems, most of which have been
using whitening problem parameters. GLP problems were studied by several authors
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Table 4: The simplex tableau of the problem (13).

Basic variables ⊗u ⊗y1 ⊗y2 ⊗R1 ⊗s2 ⊗s3 R.H.S
⊗u0 [1,1] -[400,600] -[100,300] [M,M] [0,0] [0,0] [0,0]
⊗R1 [0,0] 1 1 [1,1] [0,0] [0,0] 10
⊗s2 [0,0] 2 8 [0,0] [1,1] [0,0] 50
⊗s3 [0,0] 1 0 [0,0] [0,0] [1,1] 20
⊗u0 [1,1] -[M,M] -[M,M] [0,0] [0,0] [0,0] -30[M,M]

-[400,600] -[100,300]
⊗R1 [0,0] 1 1 [1,1] [0,0] [0,0] 10
⊗s2 [0,0] 2 8 [0,0] [1,1] [0,0] 50
⊗s3 [0,0] 1 0 [0,0] [0,0] [1,1] 20
⊗u0 [1,1] [0,0] [100,500] [M,M] [0,0] [0,0] +10[M,M]

+[400,600] +[400,600]
⊗y1 [0,0] [1,1] 1 1 [0,0] [0,0] 10
⊗s2 [0,0] [0,0] 6 -2 [1,1] [0,0] 30
⊗s3 [0,0] [0,0] -1 -1 [0,0] [1,1] 10

[9, 14, 15, 19, 27, 33, 36]. Nasseri et al. [24] presented the first method of solving GLP
problems without whitening, which had grey objective function coefficients for GLP
problems. In this paper, we have presented for the first time a method for solving GLP
problems with the right-hand side grey parameters without whitening grey numbers.
In this method, we use the dual GLP problem that has not been done before, and we
do so for constraints in different states. The presented Algorithm for this method is
straightforward and will show the uncertainty of the input data in the results.

6 Conclusion

Grey systems theory is a fundamental methodology for dealing with inexact conditions.
The problem of LP with grey resources is beneficial for real and practical problems.
In this research, we fixed a new concept of duality for LP minimization problems with
grey parameters. We argue the grey basic feasible solution notions for LP minimiza-
tion problems with grey parameters. With the use of arithmetic operations between
interval grey numbers, we have proved the optimal basic feasible solution and the weak
duality property for LP minimization problems with grey data. These results would
be useful for establishing a new Algorithm. Finally, by giving different examples, we
demonstrate the proposed method’s efficiency for solving GLP in different modes. In
the most proposed methods for find LP problems solution with grey parameters, the
GLP problems transformed into one or a series of the classical LP problems and then
obtained an optimal solution, but with the use of the above results, we proposed a
new Algorithm (duality method) for the find LP problems solution with grey data.
The proposed method is less sophisticated than other methods. One of the essential
advantages of this method is that it does not use whitening to solve GLP problems,
resulting presented uncertainty in the input data in the output data.
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چکیده

اطلاعات که هستیم روبرو شرایطی با ما واقعی، دنیای در هستند. دقیق پارامترهای دارای خطی برنامه ریزی مسائل
مقابله برای تصادفی و فازی مانند قطعیت عدم رویکردهای از می توان شرایط این در نیست. دسترس در کامل و دقیق
توابع استخراج که باشد کم قدری به تجربه سطح و متخصصان تعداد اگر کرد. استفاده واقعی زندگی در اطمینان عدم با
این حل برای کرد. استفاده تصادفی و فازی نظریه های از نمی توان باشد، کم ها نمونه تعداد یا باشد غیرممکن عضویت
منابعی با خاکستری محیط یک در خطی برنامه ریزی مساله یک ، مقاله این در شد. ارائه خاکستری سیستم نظریه مشکل،
برنامه ریزی مسائل حل برای پیشنهادی روش های بیشتر است. شده گرفته نظر در بازه ای خاکستری اعداد صورت به
حل دنبال به ما حال، این با می باشند. معمولی خطی برنامه ریزی مساله یک به آن تبدیل مبنای بر خاکستری خطی
ورودی داده های عدم قطعیت حفظ منظور به استاندارد خطی برنامه ریزی مساله یک به آن تبدیل بدون و مساله مستقیم
منابع با خطی برنامه ریزی مساله دوال اساس بر روش، یک ما منظور، این برای هستیم. نهایی آمده بدست جواب های در
برخوردار آنها به نسبت کمتری پیچیدگی از و بوده قبلی روش های از ساده تر پیشنهادی روش می دهیم. ارائه خاکستری
باشد. مفید تواند می برنامه ریزی و مدیریت مسائل در عملی و واقعی شرایط برای شده ارائه روش که می شود أکید ت است.

است. شده داده نشان مختلف شرایط در مثال چند ارائه با پیشنهادی روش کارایی بنابراین،

کلیدی کلمات

قطعیت. عدم دوگان، نظریه خاکستری، خطی برنامه ریزی خاکستری، عدد
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