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1 Introduction

Fuzzy sets [47] have been employed in many real-life applications. In many applications
often there is need a distance measure between two fuzzy numbers to solve the problems.
Many distance measures have been proposed for fuzzy sets including exact [1, 6, 8, 14,
20, 21, 26, 27, 29, 31, 32, 33, 36, 40] and fuzzy quantities [3, 4, 10, 11, 18, 24, 22, 34,
37, 41]. The idea behind a fuzzy distance is that if the quantities are reported as fuzzy
numbers, their distance is also expected to be a fuzzy number. Other distance measures
were conducted based on other types of imprecision including intuitionistic fuzzy sets
and interval-valued fuzzy numbers [15, 17, 19, 28, 39, 42, 43, 44, 45, 48, 49, 5].

A distance measure is an essential issue in many real-life applications that involve
error measurements between non-exact quantities. Many studies, as mentioned before,
have calculated the distance between two fuzzy numbers as exact numbers. However,
an exact distance is not usually reasonable in the fuzzy domain since an exact value
for distance between two fuzzy numbers may outcome in loss of essential information
under imprecision. Thus, it is reasonable to say that the distance between two fuzzy
numbers should be expressed as a fuzzy number, too. Furthermore, many existing
fuzzy distances do not satisfy some proper properties of a distance measure expected
in the fuzzy domain. In this paper, a new fuzzy distance measure was proposed for
fuzzy numbers. It was shown that the proposed fuzzy distance measure satisfied all
properties for an absolute error distance in the fuzzy domain. The main advantages of
the proposed fuzzy distance measure over others were also extensively illustrated.

This paper is organized as follows: Section 2 reviews some concepts of fuzzy num-
bers. Section 3 introduces fuzzy distance measures between two fuzzy numbers. The
main properties of the proposed fuzzy distance measures are also discussed and com-
pared with other fuzzy distances. The main contributions of this study will be discussed
in Section 4.

2 Fuzzy Numbers

This section briefly reviews some concepts and terminology related to α-values of fuzzy
numbers used throughout this paper.

Let X be a universal set. A fuzzy set of Ã is defined by its membership function
Ã : X→ [0,1]. The set Ã[α] := {x ∈ X : Ã(x) ≥ α} is called the α-cut of Ã [30]. Ã is
called a fuzzy number (FN) on X = R if

1. There exists a unique x∗
Ã
∈ R with Ã(x∗

Ã
) = 1, and

2. the set Ã[α] = {x ∈ R : Ã(x) ≥ α} is a non-empty nested closed interval in R, for
every α ∈ (0,1].

Such interval is presented by Ã[α] = [ÃLα , Ã
U
α ] in which ÃLα = inf{x : x ∈ Ã[α]} and

ÃUα = sup{x : x ∈ Ã[α]}. Moreover, a fuzzy number of Ã is an LR-fuzzy number (LRFN)
if there exist real numbers of a, la and ra with la, ra ≥ 0, and strictly decreasing and
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continuous functions of L,R : [0,1]→ [0,1] such that

Ã(x) =


L( a−xla ), a− la ≤ x ≤ a,

R(x−ara ), a < x ≤ a+ ra,

0, x ∈ R − [a− l, a+ r].

(1)

where L(0) = R(0) = 1 and L(1) = R(1) = 0. An LR-fuzzy number of Ã can be simply
denoted by (a; la, ra)LR. The most commonly used LR-fuzzy numbers are triangular
fuzzy numbers (TFNs) in which the shape functions of L and R are given by L(x) =
R(x) = 1 − x, for all x ∈ [0,1]. The membership function of a TFN of Ã = (a; l, r)T is
denoted by

Ã(x) =


x−a+la
la

, a− la ≤ x ≤ a,
a+ra−x
ra

, a ≤ x ≤ a+ ra,

0, x ∈ R − [a− la, a+ ra].

(2)

Some common operations between two LR-fuzzy numbers of Ã = (a; la, ra)LR and B̃ =
(b; lb, rb)LR can be defined as follows [30]:

1) (Addition) Ã⊕ B̃ = (a+ b; la + lb, ra + rb)LR.

3) (Scalar multiplication):

λ⊗ Ã =
{

(λa;λla,λra)LR, if λ > 0,
(λa;−λra,−λla)RL, if λ < 0.

(3)

Here, the notion of α-values of FNs is recalled.

Definition 1. [23] The α-values of a FN Ã is a mapping Ãα : [0,1]→ R defined by:

Ãα =

 ÃL2α , α ∈ [0,0.5],

ÃU2(1−α), α ∈ [0.5,1],
(4)

where ÃLα , ÃUα show the lower and upper limits of Ã[α], respectively.

Example 1. Let Ã = (a; la, ra)LR be an LR-FN. From Definition 1, one finds that:

Ãα =
{
a− laL−1(2α), 0 ≤ α ≤ 0.5,
a+ raR−1(2(1−α)), 0.5 ≤ α ≤ 1.

For instance,

1. If Ã = (a; la, ra)T is a TFN, then,

Ãα =
{

(a− la) + 2laα, 0 ≤ α ≤ 0.5,
a+ ra − 2ra(1−α), 0.5 ≤ α ≤ 1.
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2. Let Ã = (a; la, ra)LR with L(x) =
√
1− x3 and R(x) = 1− x5 then:

Ãα =
{
a− la

3
√
1− 4α2, 0 ≤ α ≤ 0.5,

a+ la
5
√
2α − 1, 0.5 ≤ α ≤ 1.

The relationship between α-values and α-cuts of FNs can be investigated by the
following lemma [23].

Lemma 1. Let {Ãα}α∈[0,1], called α-values, be a strictly decreasing function of α and
Ã0.5 be a constant number. Then, {Ãα}α∈[0,1] can construct a FN Ã whose α-cuts is
Ã[α] = [Ã1−α/2, Ãα/2]. In addition, if Ã is a FN, then its α-values are given by:

Ãα =


ÃL2α , α ∈ [0,0.5],

ÃU2(1−α), α ∈ (0.5,1].
(5)

Proof. Given the α-values of {Ãα}α∈[0,1], it is easy to verify that [Ã1−α2/2, Ãα2/2] ⊆
[Ã1−α1/2, Ãα1/2]. Therefore, from Representation Theorem [30], the α-cuts of Ã[α] =
[Ã1−α/2, Ãα/2] can construct the fuzzy number of Ã. Therefore, Ã is a FN. Now, let Ã
be a FN with the following α-values:

Ãα =

 ÃU2α , α ∈ [0,0.5],

ÃL2(1−α), α ∈ (0.5,1].
(6)

Then, it is readily seen that

1) Ãα is a strictly decreasing function with relative to α ∈ [0,1] and Ã0.5 is a constant
number,

2) Ã[α] = [Ã1−α/2, Ãα/2],

which completes the proof.

Definition 2. [25] Let Ã and B̃ be two FNs. It is said that Ã ⪯ B̃, if Ãα ≤ B̃α for any
α ∈ [0,1].

We will use such ordering to define a fuzzy distance measure in the next section.

Remark 1. [25] It is notable that the addition and scalar multiplication of FNs (men-
tioned before) can be reevaluated based on their α-values as follows:

(Ã⊕ B̃)α = Ãα + B̃α ,

(λ⊗ Ã)α =
{
λÃα , if λ > 0,
λÃ1−α , if λ < 0.
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3 Fuzzy Distance Measure

In this section, a fuzzy distance measure between two FNs is introduced according to
a two-step procedure. In the first step, an exact distance measure is proposed. Using
such distance measure, a fuzzy distance measure is proposed. To do these, a popular
definition of a (non-fuzzy) distance measure between two FNs is first recalled.

Definition 3. A mapping d : F (R) × F (R)→ [0,∞) is called a (non-fuzzy) distance
measure if any Ã, B̃ and C̃ ∈ F (R) meets the following conditions:

1) d(Ã, B̃) = 0 if and only if Ã = B̃,

2) d(Ã, B̃) = d(B̃, Ã),

3) d(Ã, C̃) ≤ d(Ã, B̃) + d(B̃, C̃).

Theorem 1. For two FNs of Ã and B̃, define

da(Ã, B̃) =
∫ 1

0
gÃ,B̃(α)dα,

where

1)

gÃ,B̃(α) =
∫ 1−α/2

α/2
|Ãβ − B̃β |f(α/2,0.5,1−α/2)(β)dβ,

2) fα/2,0.5,1−α/2 denotes the triangular density function on [α/2,1−α/2] defined as

f(α/2,0.5,1−α/2)(β) =


4(β−α/2)
(1−α)2 , α/2 ≤ β ≤ 0.5,

4(1−α/2−β)
(1−α)2 , 0.5 ≤ β ≤ 1−α/2.

(7)

Then, da : F (R)×F (R)→ [0,∞) is a non-fuzzy distance measure.

Proof. To prove, it is enough to show that da satisfies assertions (1)-(3) in Definition 4.
To check assertion (1), note that da(Ã, B̃) = 0 if and only if gÃ,B̃ = 0 for any α ∈ [0,1],
i.e. Ãβ = B̃β for any β ∈ [0,1] which means Ã = B̃. Assertion (2) is also immediately
followed. To prove assertion (3), by the conventional triangular inequality, we have

|Ãβ − C̃β | ≤ |Ãβ − B̃β |+ |B̃β − C̃β |,

for any β ∈ [0,1]. Integrating on both sides with respect to f(α/2,0.5,1−α/2)(β) on [α/2,1−
α/2], will result in gÃ,C̃(α) ≤ gÃ,B̃(α) + gB̃,C̃(α) for any α ∈ [0,1]. This means d̃a(Ã, C̃) ≤
(d̃a(Ã, B̃) + d̃a(B̃, C̃)) which completes the proof.
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It is noticeable that f(α/2,0.5,1−α/2)(β) cares about points near 0.5 (that is those values
near to modal of fuzzy numbers ) more than other values in [α/2,1−α/2]. Interestingly,
da can be interpreted as the double expected value of uniform distribution on [0,1] and
a triangular density function on [α/2,1−α/2] ⊆ [0,1].

Now, a procedure is suggested to extend the non-fuzzy distance measure of da as
“about da”. First, a common notion of fuzzy distance measure is reviewed.

Definition 4. [24] We say that D̃ : F (R)×F (R)→F ([0,∞)) is a fuzzy distance measure
(FDM) if any Ã, B̃ and C̃ ∈ F (R) meet the following conditions:

1) D̃(Ã, B̃) = I {0} if and only if Ã = B̃,

2) D̃(Ã, B̃) = D̃(B̃, Ã),

3) D̃(Ã, C̃) ⪯ (D̃(Ã, B̃)⊕ D̃(B̃, C̃)).

Lemma 2. For two FNs of Ã and B̃, define

(d̃a(Ã, B̃))α =


∫ 1
0 gÃ,B̃(2wα)dw, 0 ≤ α ≤ 0.5,∫ 1
0 gÃ,B̃(1− 2(1−w)(1−α))dw, 0.5 ≤ α ≤ 1.

(8)

Then, d̃a is a FN.

Proof. For every α1 < α2, first, note that Iα2
= [α2/2,1 −α2/2] ⊆ Iα1

= [α1/2,1 −α1/2]
and f(α2/2,0.5,1−α2/2)(β) ≤ f(α1/2,0.5,1−α1/2)(β) for any β ∈ [0,1]. This simply implies that
gÃ,B̃(α2) ≤ gÃ,B̃(α1) for every 0 ≤ α1 < α2 ≤ 1, i.e. gÃ,B̃(α) is a decreasing function on
[0,1]. This immediately concludes that (d̃a(Ã, B̃))α is also a decreasing function with
respect to α. Moreover, it is seen that (d̃a(Ã, B̃))0.5 = da(Ã, B̃) is a constant number.
These verify that d̃a is a FN.

Theorem 2. Recall assumptions in Lemma 2. Then d̃a : F (R)×F (R)→F ([0,∞)) is a
FDM.

Proof. We show that d̃a(Ã, B̃) meets all the conditions of Definition 4. Future, d̃a(Ã, B̃) =
I {0} if and only if for any α ∈ [0,1], (d̃a(Ã, B̃))α = 0. This simply concludes that Ãα = B̃α
for any α ∈ [0,1] or Ã = B̃. This shows (1).The assertion (2) can be immediately
followed. To prove assertion (3), it is enough to see that gÃ,C̃(α) ≤ gÃ,B̃(α) + gB̃,C̃(α).
This simply implies that (d̃a(Ã, C̃))α ≤ ((d̃a(Ã, B̃))α +(d̃a(B̃, C̃)))α for any α ∈ [0,1] which
completes the proof by Remark 1 and Definition 2.

Next, the most important properties needed for an absolute error distance are ver-
ified in a fuzzy domain.

Lemma 3. If Ã, B̃, C̃ ∈ F (R) and λ ∈ R, then

1) d̃a(Ã⊕ C̃, B̃⊕ C̃) = d̃a(Ã, B̃).

2) d̃a(λ⊗ Ã,λ⊗ B̃) = |λ| ⊗ d̃a(Ã, B̃).
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Proof. For three FNs of Ã, B̃ and C̃, it is easy to verify that
1) gÃ⊕C̃,B̃⊕C̃(α) = gÃ,B̃(α),

2) gλ⊗Ã,λ⊗B̃(α) = |λ|gÃ,B̃(α),
for any α ∈ [0,1]. Therefore,

(d̃a(Ã⊕ C̃, B̃⊕ C̃))α =


∫ 1
0 gÃ⊕C̃,B̃⊕C̃(2wα)dw 0 ≤ α ≤ 0.5,∫ 1
0 gÃ⊕C̃,B̃⊕C̃(1−α))dw 0.5 ≤ α ≤ 1,

(9)

=


∫ 1
0 gÃ,B̃(2wα)dw 0 ≤ α ≤ 0.5,∫ 1
0 gÃ,B̃(1−α))dw 0.5 ≤ α ≤ 1,

= (d̃a(Ã, B̃))α , (10)

for any α ∈ [0,1]. This concludes that d̃a(Ã⊕ C̃, B̃⊕ C̃) = d̃a(Ã, B̃). The second assertion
can be also verified due to gλ⊗Ã,λ⊗B̃(α) = |λ|gÃ,B̃(α) for any α ∈ [0,1].

Remark 2. If two fuzzy numbers of Ã and B̃ reduce to non-fuzzy quantities of a and
b, then it can be checked that d̃a(Ã, B̃) = I(|a − b|) which is the conventional absolute
error distance.

Note that a distance measure should be able to tolerate small errors in evaluating
the membership functions that is the distance between two FNs should not change if
the variation of the membership functions is sufficiently small [?]. Here, a notion of
robustness for a FDM is defined.
Definition 5. Let D̃ : F (R) × F (R) → F ([0,∞)) be a FDM. We say D̃ is robust,
if for any given pair of FNs (Ã, B̃) and a sequence of pair FNs of {(Ãn, B̃n)} with
dH (Ãn, Ã) → 0 and dH (B̃n, B̃) → 0 as n → ∞ we have dH (D̃(Ãn, B̃n), D̃(Ã, B̃)) → 0 as
n → ∞ in which dH is the Hausdorff distance measure between two FNs defined by
dH (Ã, B̃) = supα∈[0,1] |Ãα − B̃α |.

Now, the robustness of the proposed FDM of d̃a is examined by the following
theorem.
Theorem 3. The FDM of d̃a introduced in Lemma 2 is robust.
Proof. For a given pair of FNs (Ã, B̃) and a sequence of FN pairs {(Ãn, B̃n)}, assume
that dH (Ãn, Ã)→ 0 and dH (B̃n, B̃)→ 0 as n→∞. First, for every α ∈ [0,1], note that

(d̃a(Ã, B̃))α ≤ sup
α∈[0,1]

|Ãα − B̃α | = dH (Ã, B̃). (11)

By Theorem 2 and Equation (11), it follows that

(d̃a(Ãn, B̃n))α ≤ (d̃a(Ãn, Ã))α + (d̃a(B̃n, Ã))α ,

≤ (d̃a(Ãn, Ã))α + (d̃a(B̃n, B̃))α + (d̃a(Ã, B̃))α ,

≤ dH (Ãn, Ã) + dH (B̃n, B̃) + (d̃a(Ã, B̃))
β
α .

Similarly, we have (d̃a(Ã, B̃))α ≤ dH (Ãn, Ã) + dH (B̃n, B̃) + (d̃a(Ãn, B̃n))α . This concludes
that |(d̃a(Ãn, B̃n))α − (d̃a(Ã, B̃))α | ≤ dH (Ãn, Ã) + dH (B̃n, B̃) for every α ∈ [0,1]. Therefore,
dH (d̃a(Ãn, B̃n), d̃a(Ã, B̃))→ 0 as n→∞. This shows that d̃a is robust.
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Example 2. Consider two TFNs Ã1 = (7;1.3,0.7)T and Ã2 = (3;0.4,0.2)T . First,
note that da(Ã1, Ã2) = 3.898. Furthermore, the FDM of d̃a between Ã1 and Ã2 was
evaluated as “about 3.898” whose membership degree is depicted in Figure 1.3 FUZZY DISTANCE MEASURE 10

 

Figure 1: Plot of d̃a(Ã1, Ã2) in Example 3.1.

between two triangular fuzzy numbers of Ã = (a; la, ra)T and B̃ = (b; lb, rb)T .
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in space of FNs. Another disadvantage of d̃ is that d̃(Ã, Ã) 6= (0; 0, 0)T .
Beigi et al. [7] proposed a triangular absolute error fuzzy distance measure

of d̃ for two triangular fuzzy numbers of Ã = (a; la, ra)T and B̃ = (b; lb, rb)T .

However, it can be observed that d̃(λ ⊗ Ã, λ ⊗ B̃) 6= |λ| ⊗ d̃(Ã, B̃) in the
case where λ < 0. Moreover, such a fuzzy distance measure can be only used
for triangular FNs. Chen and Wang [13] proposed a probability fuzzy ab-

solute error distance measure [12] between two LR-fuzzy numbers of Ã and

B̃. However, in cases where d̃(Ã, B̃) = I{0}, one can observe that Ã = B̃
is not guaranteed. Moreover, Hesamian and Akbari [24] proposed a fuzzy
distance measure between two LR-FNs based on the absolute value of fuzzy
numbers and an extended subtraction operation. The potential advantages
of such fuzzy distance lie in its robustness and satisfaction of all conditions
in Lemma 3.2. However, the proposed fuzzy absolute error distance can be
used only for LR-FNs while the proposed method is applicable on any type of
FNs. Additionally, the proposed fuzzy distance measure provides a simpler
procedure to compute the fuzzy distance between two FNs as compared with

Figure 1: Plot of d̃a(Ã1, Ã2) in Example 2.

Remark 3. Chakraborty and Chakraborty [10] suggested a fuzzy distance measure
(d̃∗) for generalized fuzzy numbers. Ganbari and Nuraei [16] verified that Chakraborty
and Chakraborty’s distance is not always a generalized triangular fuzzy number. Fur-
ther, it may be a nonnegative generalized triangular fuzzy number of d̃∗. Additionally,
d̃∗(Ã⊕C̃, B̃⊕C̃) , d̃∗(Ã, B̃) which is true for D̃a as discussed in Lemma 3. Voxman [41] pro-
posed a notion of fuzzy absolute error distance of ∆̃ between two fuzzy numbers. How-
ever, the main disadvantage of such distance measure is that ∆̃(Ã⊕ C̃, B̃⊕ C̃) , ∆̃(Ã, B̃)
which is expected for an absolute error distance in a fuzzy environment. Abbasbandy
and Hajighasemi [4], introducing a definition for fuzzy distance measure, proposed a
symmetric triangular fuzzy distance measure d̃ which satisfies all conditions in Lemma
3. But, the main shortcoming of d̃ is that if d̃(Ã, B̃) = I {0} then it is not necessary
to have Ã = B̃. Sadi-Nezhad et al. [35] proposed a triangular fuzzy absolute error
distance measure of d̃ between two triangular fuzzy numbers of Ã = (a; la, ra)T and
B̃ = (b; lb, rb)T . Therefore, the possible applications of a such distance measure are lim-
ited in space of FNs. Another disadvantage of d̃ is that d̃(Ã, Ã) , (0;0,0)T . Beigi et al.
[7] proposed a triangular absolute error fuzzy distance measure of d̃ for two triangular
fuzzy numbers of Ã = (a; la, ra)T and B̃ = (b; lb, rb)T . However, it can be observed that
d̃(λ⊗ Ã,λ⊗ B̃) , |λ| ⊗ d̃(Ã, B̃) in the case where λ < 0. Moreover, such a fuzzy distance
measure can be only used for triangular FNs. Chen and Wang [13] proposed a probabil-
ity fuzzy absolute error distance measure [12] between two LR-fuzzy numbers of Ã and
B̃. However, in cases where d̃(Ã, B̃) = I {0}, one can observe that Ã = B̃ is not guaranteed.
Moreover, Hesamian and Akbari [24] proposed a fuzzy distance measure between two
LR-FNs based on the absolute value of fuzzy numbers and an extended subtraction
operation. The potential advantages of such fuzzy distance lie in its robustness and
satisfaction of all conditions in Lemma 3. However, the proposed fuzzy absolute error
distance can be used only for LR-FNs while the proposed method is applicable on any
type of FNs. Moreover, a simpler procedure to compute the fuzzy distance between
two FNs is suggested in this paper compared to Hesamian and Akbari’s method.
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4 Conclusion

This paper proposed a fuzzy distance measure between two fuzzy numbers using α-
values as a fuzzy number. The main expected properties of the proposed fuzzy distance
measure were also verified in the space of fuzzy numbers. Calculating the fuzzy dis-
tance between two fuzzy numbers was demonstrated using a numerical example. The
advantages of the proposed fuzzy distance measure were also examined and compared
with other existing ones. Future studies should be devoted to extending a notion of
distance measure in the space of intuitionistic fuzzy numbers or type-2 fuzzy numbers.
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