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1 Introduction

In this paper, we consider the following quasiconvex optimization problem:

(P) : inf f (x)

s.t. gj (x) ≤ 0, j ∈ J,
x ∈ Rn,

where, f and gj , for j ∈ J , are real-valued quasiconvex functions that are defined on Rn,
and J is a finite index set. Problems of this kind have been utilized for the analysis of
topological optimization problems and other theoretical aspects (see e.g., [10, 11, 14, 15,
16] and the references therein). Gap function for a mathematical programming problem
has been studied in various publications. Hearn [8] introduced the gap function for a
differentiable convex optimization problem in finite-dimensional Euclidean spaces, for
the first time. For a thorough study of this subject, refer to the works of Auslender [3],
Altangerel et al. [1, 2], Chen et al. [5], Hasani and Sadeghieh [7], Kanzi et al. [10],
and the recent paper by Caristi et al. [4]. One of the basic properties of gap function
for optimization problems is its ability in characterizing the solutions of the problem
in question. On the other hand, the linearization of nonlinear, especially nonsmooth,
optimization problems is an important topic in optimization theory; see e.g., [11, 13].
Linearization methods can be used to convert a nonlinear optimization problem into
a linear optimization problem. In this process, extra variables and constraints are
introduced to construct the original problem. Various methods have been proposed
in the literature by linearizing a nonlinear problem [12, 19]. The aim of the present
paper is to introduce and examine the linearization method as well as a suitable gap
function for problem (P). Since we do not assume that the functions which appear in
the problem are differentiable, we should state our results by a suitable subdifferential.
As it is shown in [14] and [16, Section 5], the incident subdifferential is an important
subdifferential in the analysis of quasiconvex functions. Very recently, the necessary
and sufficient optimality conditions and also the weak and strong duality results for
problem (P) have been presented according to incident subdifferential in [18]. Since the
linearization and also the characterization of solutions of (P) with gap function have
not yet been studied by incident subdifferential, we will present our results according
to this subdifferential to fill this gap.

The structure of subsequent sections of this paper is as follows. In Section 2, we
present the required notations, definitions and preliminary results from quasiconvex
analysis and optimization theory. Section 3, contains the main results of the paper,
that are based on the results of the very recent paper [18]. Conclusion is expressed in
Section 4.

2 Notations and Preliminaries

In this section we present some definitions, notations, and auxiliary results that will
be needed in the sequel. For a given S ⊆ Rn, the superfluous convex cone hull of S is
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denoted by cone(S). Also, if S , ∅ is a subset of Rn and x̂ ∈ S, the attainable cone, the
contingent cone, and the interior cone of S at x̂ ∈ S are respectively defined by ([6])

A(S, x̂) :=
{
x ∈ Rn | ∀tℓ ↓ 0,∃xℓ→ x, x̂ + tℓxℓ ∈ S, ∀ℓ ∈N

}
,

Z(S, x̂) :=
{
x ∈ Rn | ∃tℓ ↓ 0,∃xℓ→ x, x̂ + tℓxℓ ∈ S, ∀ℓ ∈N

}
,

I (S, x̂) :=
{
x ∈ Rn | ∃L > 0, ∀tℓ ↓ 0,∀xℓ→ x, x̂ + tℓxℓ ∈ S, ∀ℓ ≥ L

}
.

Obviously, the following inclusions hold

I (S, x̂) ⊆ A(S, x̂) ⊆ Z(S, x̂) ⊆ conv
(
Z(S, x̂)

)
.

A substantial list of equivalent forms, examples, properties, and details of these
cones can be found in [6, Section 3.4]. We recall from [16] that the incident (or upper
epi-) directional derivative of a given function φ : Rn→ R at x̂ ∈ Rn in direction d ∈ Rn,
and the incident subdifferential of φ at x̂ are, respectively, defined by

φ♭(x̂;d) := sup
δ>0

limsup
ε↓0

inf
∥w−d∥<δ

φ(x̂ + εw)−φ(x̂)
ε

,

and
∂♭φ(x̂) :=

{
ξ ∈ Rn | ⟨ξ,v⟩ ≤ φ♭(x̂;v), ∀v ∈ Rn

}
,

where, ⟨·, ·⟩ denotes the standard inner product in Rn. Also, we say that:

• φ is regular at x̂ if the function d→ φ♭(x̂;d) is convex.

• φ is quasiconvex if for all x1 and x2 in Rn and for all λ in [0,1] the following
inequality holds.

φ
(
λx1 + (1−λ)x2

)
≤max

{
φ(x1),φ(x2)

}
.

Some extraordinary properties for φ♭(x̂;d) and ∂♭φ(x̂) that show their important
role in quasiconvex analysis are presented in [14, Propositions 1, 3, 16]. We can see
([14, Proposition 47, and Corollary 50]) that if ψ : Rn → R is a convex function and
x̂ ∈ Rn, then

∂♭ψ(x̂) = ∂ψ(x̂) :=
{
ξ ∈ Rn | ψ(x)−ψ(x̂) ≥

〈
ξ,x − x̂

〉
, ∀ x ∈ Rn

}
.

The following theorem has a key role in convex optimization.

Theorem 1. Let ϕ : Rn→ R be a convex function. If the minimum of ϕ on a convex
set B ⊆ Rn is attained at x̂ ∈ B, one has

0n ∈ ∂ϕ(x̂) +N (B, x̂),

where, 0n denotes the zero vector in Rn, and N (B, x̂) denotes the normal cone of B at
x̂, defined by

N (B, x̂) :=
{
x ∈ Rn | ⟨x,b − x̂⟩ ≤ 0, ∀b ∈ B

}
.
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It is easy to see that if the function ϕ : Rn → R is continuously differentiable
at x̂ ∈ Rn, then ∂♭ϕ(x̂) = {∇ϕ(x̂)}, where ∇φ(x̂) denotes the gradient of ϕ at x̂, and
ϕ′(x̂;d) = ⟨d,∇ϕ(x̂)⟩, where ϕ′(x̂;d) denotes the classic directional derivative of ϕ at x̂
in direction d ∈ Rn, defined by

φ′(x̂;d) := lim
ε→0

φ(x̂ + εd)−φ(x̂)
ε

.

As the final point of this section, we recall from the classical theory of optimization
that if ϑ and θi , as i = 1, . . . ,m, are continuously differentiable functions from Rn to R,
we say that the optimization problem

(∆) : inf ϑ(x)

s.t. θi(x) ≤ 0, i = 1, . . . ,m,

x ∈ Rn,

satisfies the Guignard constraint qualification (GCQ) at x0 ∈Q, with

Q := {x ∈ Rn | θi(x) ≤ 0, i = 1, . . . ,m},

when {
d ∈ Rn | ⟨∇θi(x0),d⟩ ≤ 0, i ∈ I ∗

}
⊆ conv

(
Z(Q,x0)

)
,

where, I ∗ :=
{
i = 1, . . . ,m | θi(x0) = 0

}
. The following theorem, states the classical

Karush-Kuhn-Tucker (KKT) necessary optimality condition for problem (∆).

Theorem 2. [6, Theorem 3.6.3] Assume that x0 is an optimal solution of problem (∆)
and GCQ holds at x0. Then, there exist non-negative scalars λi , as i ∈ I ∗, such that

∇ϑ(x0) +
∑
i∈I ∗

λi∇θi(x0) = 0n.

Note that GCQ is the weakest constraint qualification that concludes the above
equality that is named KKT relation; see, e.g., [6, Page 279].

3 The Main Results

As a starting point of this section, we mention that the feasible set of (P) is denoted
by Ω, i.e.,

Ω := {x ∈ Rn | gj (x) ≤ 0 ∀j ∈ J}.

Also, for each x̂ ∈Ω, the set of active indices at x̂ is defined by

J(x̂) :=
{
j ∈ J | gj (x̂) = 0

}
.

The following constraints qualification and KKT type necessary optimality condi-
tions can be found in [18].
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Definition 1. [18, Definition 1] We say that the generalized Kuhn-Tucker constraints
qualification (GKTCQ, in brief) holds at x̂ ∈Ω when{

d ∈ Rn | ⟨d,ξ⟩ ≤ 0, ∀ξ ∈
⋃
j∈J(x̂)

∂♭ψj (x̂)
}
⊆ A(Ω, x̂).

Theorem 3. (KKT necessary conditions)[18, Theorem 5] Let x̂ ∈ Ω be an optimal
solution of (P), ϑ and ψj be regular at x̂ for j ∈ J(x̂), and I (Ω, x̂) , ∅. Moreover,
assume that GKTCQ is satisfied at x̂ and the following cone is closed:

cone
( ⋃
j∈J(x̂)

∂♭ψj (x̂)
)
.

Then, there exist λj ≥ 0 for j ∈ J(x̂) such that

0n ∈ ∂♭ϑ(x̂) +
∑
j∈J(x̂)

λj∂
♭ψj (x̂), and

∑
j∈J(x̂)

λj = 1.

The following important theorem will be used in the sequel.

Theorem 4. [18, Lemma 2] Suppose that φ : Rn→ R is a quasiconvex function. Then,

φ(x) ≤ φ(x̂) =⇒ ⟨ξ,x − x̂⟩ ≤ 0, ∀ξ ∈ ∂♭φ(x̂).

Equivalently, the quasiconvexity of φ and the inequality ⟨ξ,x − x̂⟩ > 0, for some ξ ∈
∂♭φ(x̂), conclude that φ(x) > φ(x̂).

As mentioned in Section 1, one of the most important approaches in optimization
theory is to turn the nonlinear problems into linear problems, and then apply the usual
techniques of linear programming. These linearizations, which are done approximately,
are useful when the optimal solutions of two (nonlinear and linear) problems are the
same. Assume that x0 ∈Ω is given. For each ξ0 ∈ ∂♭ϑ(x0) and ξj ∈ ∂♭ψj (x0), as j ∈ J ,
we define the linear functions φξ0x0 : Rn→ R and φξjx0 : Rn→ R by

φξ0x0 (x) := ⟨ξ0,x − x0⟩, and φ
ξj
x0(x) := ⟨ξj ,x − x0⟩.

Also, we consider the following two linear optimization problems:

(LP1ξ0x0 ) : inf
(
φξ0x0 (x) +ϑ(x0)

)
s.t. φ

ξj
x0(x) +ψj (x0) ≤ 0, j ∈ J, ξj ∈ ∂♭ψj (x0),

x ∈ Rn,

(LP2ξ0x0 ) : inf
(
φξ0x0 (x) +ϑ(x0)

)
s.t. φ

ξj
x0(x) +ψj (x0) ≤ 0, j ∈ J(x0), ξj ∈ ∂♭ψj (x0),

x ∈ Rn.
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The feasible sets of the mentioned problems are denoted by Γ1x0 and Γ2x0 , respec-
tively, i.e.,

Γ1x0 :=
{
x ∈ Rn | φξjx0(x) +ψj (x0) ≤ 0, ∀j ∈ J,∀ξj ∈ ∂♭ψj (x0)

}
,

Γ2x0 :=
{
x ∈ Rn | φξjx0(x) +ψj (x0) ≤ 0, ∀j ∈ J(x0),∀ξj ∈ ∂♭ψj (x0)

}
.

Owing to x0 ∈Ω and ⟨ξj ,x0 − x0⟩ = 0, we deduce that

φ
ξj
x0(x0) +ψj (x0) = ψj (x0) ≤ 0, ∀j ∈ J.

The latter inequality and the definitions of Γ1x0 and Γ2x0 imply that

x0 ∈ Γ1x0 ⊆ Γ2x0 , ∀x0 ∈Ω. (1)

Since the number of constraints of (LP1ξ0x0 ) and (LP2ξ0x0 ) are not finite (in general),
they form a linear semi-infinite programming problem (LSIP). To study the properties
of such problems, one can refer to [10]. The following two theorems show that, under
some suitable assumptions, an optimal solution x0 of (P) is also an optimal solution for
(LP1ξ0x0 ) and (LP2ξ0x0 ).

Theorem 5. Suppose that x̂ ∈Ω is an optimal solution of (P), and all the hypotheses
of Theorem 3 hold. Then, x̂ is an optimal solution of (LP2ξ̂x̂ ) for some ξ̂ ∈ ∂♭ϑ(x̂).

Proof. Employing Theorem 3, we can find some ξ̂ ∈ ∂♭ϑ(x̂), λj ≥ 0 and ξj ∈ ∂♭ψj (x̂) for
j ∈ J(x̂), such that

ξ̂ +
∑
j∈J(x̂)

λjξj = 0n =⇒ ξ̂ = −
∑
j∈J(x̂)

λjξj .

Thus, for each x̄ ∈ Γ2x̂, we get

φξ̂x̂ (x̄) +ϑ(x̂) = ⟨ξ̂, x̄ − x̂⟩+ϑ(x̂) = −
〈 ∑
j∈J(x̂)

λjξj , x̄ − x̂
〉
+ϑ(x̂)

= −
∑
j∈J(x̂)

(
λj⟨ξj , x̄ − x̂⟩

)
+ϑ(x̂) = −

∑
j∈J(x̂)

λj

≤0︷︸︸︷
φ
ξj
x̂ (x̄)+ϑ(x̂)

≥ ϑ(x̂) = ⟨ξ̂, x̂ − x̂⟩+ϑ(x̂) = φξ̂x̂ (x̂) +ϑ(x̂).

Since x̄ is an arbitrary element in Γ2x̂, the above inequality means that x̂ is an
optimal solution of (LP2ξ̂x̂ ), and the proof is complete.

Theorem 6. Suppose that x̂ ∈Ω is an optimal solution of (P), and all the hypotheses
of Theorem 3 hold. Then, x̂ is an optimal solution of (LP1ξ̂x̂ ) for some ξ̂ ∈ ∂♭ϑ(x̂).

Proof. According to (1) and Theorem 5, the result is clear.
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The following theorem shows that the converse of Theorem 5 holds.

Theorem 7. Suppose that x̂ ∈ Ω is an optimal solution of (LP2ξ̂x̂ ) for some nonzero
ξ̂ ∈ ∂♭ϑ(x̂) \ {0n}. If ϑ is upper-semicontinuous at x̂, then x̂ is an optimal solution of
(P).

Proof. Suppose on the contrary that there exists some x∗ ∈Ω such that

ϑ(x∗) < ϑ(x̂). (2)

Employing Theorem 4, we conclude that

⟨ξ̂,x∗ − x̂⟩ ≤ 0. (3)

If
〈
ξ̂,x∗− x̂

〉
= 0, we can find a sequence {wk}∞k=1 converging to x∗− x̂ with

〈
ξ̂,wk

〉
> 0,

for all k ∈N. This inequality and Theorem 4 imply that〈
ξ̂, (wk + x̂)− x̂

〉
> 0 =⇒ ϑ(wk + x̂) ≥ ϑ(x̂), ∀k ∈N.

Thus, the upper-semicontinuity of ϑ allows us to deduce that

ϑ(x∗) = ϑ
(
lim
k→∞

(wk + x̂)
)
≥ lim
k→∞

ϑ(wk + x̂) ≥ ϑ(x̂),

which contradicts (2). Therefore,
〈
ξ̂,x∗ − x̂

〉
, 0, and so〈

ξ̂,x∗ − x̂
〉
< 0, (4)

by (3). On the other hand, owing to x∗ ∈Ω, for each j ∈ J(x̂), we have

ψj (x
∗) ≤ 0 = ψj (x̂), (5)

and by Theorem 4 we deduce for all ξj ∈ ∂♭ψj (x̂) that

φ
ξj
x̂ (x∗) +ψj (x̂) = ⟨ξj ,x∗ − x̂⟩+0 ≤ 0.

Consequently, x∗ ∈ Γ2x̂, and by (4),

φξ̂x̂ (x
∗) +ϑ(x̂) = ⟨ξ̂,x∗ − x̂⟩+ϑ(x̂) < ϑ(x̂) = ⟨ξ̂, x̂ − x̂⟩+ϑ(x̂) = φξ̂x̂ (x̂) +ϑ(x̂).

The above inequality contradicts the optimality of x̂ for (LP2ξ̂x̂ ), and completes the
proof.

It is worth observing that we cannot repeat the proof of Theorem 7 for (LP1ξ̂x̂ ). In
fact, in the proof of Theorem 7, the equality ψj (x̂) = 0 is not true for all j ∈ J , and
we cannot conclude that x∗ ∈ Γ1x̂. Consequently, the converse of Theorem 6 is not (in
general) true, and we cannot replace (LP2ξ̂x̂ ) by (LP1ξ̂x̂ ) in Theorem 7. The following
example shows the contents.
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Example 1. Consider the following problem:

(Q) : inf |x|
s.t. x3 − x ≤ 0,

x − 1 ≤ 0,

x ∈ R.

This problem has the form of (P), with ϑ(x) = |x|, J = {1,2}, ψ1(x) = x3 − x, and
ψ2(x) = x − 1. Obviously, x̂ := 0 ∈Ω with J(0) = {1}, and

∂♭ϑ(0) = [−1,1], ∂♭ψ1(0) = {−1}, ∂♭ψ2(0) = {1}.

Thus,
φξ0 (x) +ϑ(0) = ξ(x − 0) + 0 = ξx, for ξ ∈ [−1,1],

φ−10 (x) +ψ1(0) = −1(x − 0) + 0 = −x,

φ1
0(x) +ψ2(0) = 1(x − 0)− 1 = x − 1.

Hence, for each ξ ∈ [−1,1], the linearized problems (LP1ξ0) and (LP2ξ0) have the
following forms:

(Q1ξ0) : inf ξx

s.t. − x ≤ 0,

x − 1 ≤ 0,

x ∈ R,

(Q2ξ0) : inf ξx

s.t. − x ≤ 0,

x ∈ R.

These problems have the following feasible sets, respectively:

Γ10 = [0,1], and Γ20 = [0,+∞).

Thus, we obtain the following assertions:

• (Q2ξ0) has an optimal solution at x̂ when ξ > 0, and Theorem 7 concludes that x̂
is the optimal solution of (Q). This fact can be obtained trivially, by

Ω =
{
x ∈ R | x(x − 1)(x +1) ≤ 0, x − 1 ≤ 0

}
=(

(−∞,−1]∪ [0,1]
)
∩ (−∞,1] = (−∞,−1]∪ [0,1].

• (Q1ξ0) has an optimal solution at x̂ when ξ > 0, and x̂ is the optimal solution of
(Q). Thus, the converse of Theorem 6 can be true.
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• (Q1ξ0) has an optimal solution at x1 := 1 when ξ < 0, while x1 is not an optimal
solution of (Q).

Now, we consider the important concept of gap function for (P). A brief history
and a detailed list of the advantages and properties of gap functions can be found in
the pioneering paper [4]. One of the basic properties of gap function for optimization
problems is its ability in characterizing the solutions of the problem in question. In
order to do this for (P), we first formulate an appropriate gap function for the problem.
We define a gap function Υ as follows:

Υ :
⋃
x∈Ω

(
{x} ×∂♭ϑ(x)

)
−→ R,

Υ(x,ξ) := sup
y∈Ω
⟨ξ,x − y⟩, ∀x ∈Ω, ∀ξ ∈ ∂♭ϑ(x).

Equivalently, for each x ∈Ω and ξ ∈ ∂♭ϑ(x), we have

Υ(x,ξ) = sup
y

{
⟨ξ,x − y⟩ | ϑj (y) ≤ 0, j ∈ J

}
.

According to x ∈Ω, we conclude that

sup
y

{
⟨ξ,x − y⟩ | ϑj (y) ≤ 0, j ∈ J

}
≥ ⟨ξ,x − x⟩ = 0,

and hence
Υ(x,ξ) ≥ 0, ∀x ∈Ω, ∀ξ ∈ ∂♭ϑ(x). (6)

We are going to show that the optimal solutions for (P) are characterized by the
zero value of Υ.

Theorem 8. Suppose that Υ(x̂, ξ̂) = 0 for some x̂ ∈ Ω and for some nonzero ξ̂ ∈
∂♭ϑ(x̂) \ {0n}. If ϑ is upper-semicontinuous at x̂, then x̂ is an optimal solution for (P).

Proof. Suppose on the contrary that there exists y∗ ∈Ω such that

ϑ(y∗) < ϑ(x̂). (7)

Similar to the proof of (4) we get

⟨ξ̂, y∗ − x̂⟩ < 0. (8)

So, by y∗ ∈Ω we deduce that

Υ(x̂, ξ̂) = sup
y

{
⟨ξ,x − y⟩ | ϑj (y) ≤ 0, j ∈ J

}
≥ ⟨ξ̂, x̂ − y∗⟩ = −⟨ξ̂, y∗ − x̂⟩ > 0,

where the last inequality holds by (8). The above inequality contradicts the assumption
of Υ(x̂, ξ̂) = 0. So, (7) does not hold and the proof is complete.
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The following theorem presents the converse of Theorem 8.

Theorem 9. Suppose that x̂ ∈Ω is an optimal solution for (P). Under the hypotheses
of Theorem 3, Υ(x̂, ξ̂) = 0 for some ξ̂ ∈ ∂♭ϑ(x̂).

Proof. According to Theorem 3, the equality

− ξ̂ =
∑
j∈J(x̂)

λjξj , (9)

holds for some ξ̂ ∈ ∂♭ϑ(x̂), some ξj ∈ ∂♭ψj (x̂) with j ∈ J(x̂), and some λj ≥ 0 with j ∈ J(x̂).
Assume that y ∈ Ω is chosen arbitrarily. Then, owing to Theorem 4, for each j ∈ J(x̂)
we have,

ψj (y) ≤ 0 = ψj (x̂) ⇒ ⟨ξj , y − x̂⟩ ≤ 0.

The latter inequality and the fact that λj ≥ 0 for j ∈ J(x̂) imply∑
j∈J(x̂)
⟨λjξj , y − x̂⟩ =

∑
j∈J(x̂)

λj⟨ξj , y − x̂⟩ ≤ 0.

Combining this relation with (9), we obtain that

⟨ξ̂, x̂ − y⟩ = ⟨−ξ̂,y − x̂⟩ = ⟨
∑
j∈J(x̂)

λjξj , y − x̂⟩ ≤ 0.

Since the above inequality holds for all y ∈Ω, we get

Υ(x̂, ξ̂) = sup
y∈Ω
⟨ξ̂, x̂ − y⟩ ≤ 0.

Due to the last inequality and (6), we deduce Υ(x̂, ξ̂) = 0, as required.

Theorem 10. Suppose that x̂ ∈ Ω is an optimal solution for (P). If ϑ is a convex
function, then Υ(x̂, ξ̂) = 0 for some ξ̂ ∈ ∂ϑ(x̂).

Proof. As the starting the proof, for each j ∈ J set

Ωj := {x ∈ Rn | ψj (x) ≤ 0}.

Owing to the quasiconvexity of ψj for j ∈ J , we conclude that Ωj is convex, and
hence, Ω is convex by

Ω =
⋂
j∈J

Ωj . (10)

Since the convex function f attains its minimum on the convex set Ω at x̂, Theorem
1 implies that

0n ∈ ∂f (x̂) +N (Ω, x̂).

This inclusion and the definition of convex normal cone imply that the following
relation holds for some ξ̂ ∈ ∂f (x̂):
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−ξ̂ ∈N (Ω, x̂) = {z ∈ Rn | ⟨z,y − x̂⟩ ≤ 0, ∀y ∈Ω}.

This means
⟨−ξ̂, y − x̂⟩ ≤ 0 =⇒ ⟨ξ̂, x̂ − y⟩ ≤ 0, y ∈Ω.

Therefore,
Υ(x̂, ξ̂) = sup

y∈Ω
⟨ξ̂, x̂ − y⟩ ≤ 0.

The above inequality and (6) imply that Υ(x̂, ξ̂) = 0, and the proof is complete.

The following theorem shows that when ϑ(·) and ψj (·) for j ∈ J(x̂) are continu-
ously differentiable at x̂, the converse of Theorem 8 holds under the weakest constraint
qualification GCQ, without any convexity assumption.

Theorem 11. Suppose that x̂ ∈ Ω is an optimal solution for (P), where ϑ and ψj (·)
for j ∈ J(x̂) are continuously differentiable at x̂, and that GCQ holds at x̂. Then,
Υ
(
x̂,∇ϑ(x̂)

)
= 0.

Proof. Employing Theorem 2, we find non-negative scalars λj for j ∈ J such that

∇f (x̂) +
∑
J(x̂)

λj∇gj (x̂) = 0n. (11)

We claim that
⟨∇gj (x̂), z − x̂⟩ ≤ 0, ∀j ∈ J(x̂), ∀z ∈Ω. (12)

Suppose, on the contrary, that ⟨gj∗(x̂), z∗− x̂⟩ > 0 for some j∗ ∈ J(x̂) and some z∗ ∈Ω,
i.e.,

0 < g ′j∗(x̂;z
∗ − x̂) = lim

ε→0+

gj∗
(
x̂ + ε(z∗ − x̂)

)
−

=0︷︸︸︷
gj∗(x̂)

ε
.

This implies that gj∗
(
x̂ + ε(z∗ − x̂)

)
> 0, and so

εz∗ + (1− ε)x̂ = x̂ + ε(z∗ − x̂) <Ω.

Since x̂ ∈Ω and z∗ ∈Ω, the latter relation contradicts the convexity of Ω (by (10)),
and this contradiction justifies the claim (12). Now, by (12), we have∑

j∈J(x̂)
⟨∇λjgj (x̂), z − x̂⟩ ≤ 0, ∀z ∈Ω. (13)

On the other hand, equality (11) concludes

⟨∇f (x̂), z − x̂⟩+
∑
j∈J(x̂)
⟨∇λjgj (x̂), z − x̂⟩ = 0, ∀z ∈Ω.

This equality together with (13) yields
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⟨∇f (x̂), z − x̂⟩ ≥ 0, =⇒ ⟨∇f (x̂), x̂ − z⟩ ≤ 0, ∀z ∈Ω.

Therefore,
Υ
(
x̂,∇f (x̂)

)
= sup
z∈Ω
⟨∇f (x̂), x̂ − z⟩ ≤ 0.

This inequality and (6) conclude Υ
(
x̂,∇f (x̂)

)
= 0, as required.

Example 2. Consider the following problem:

(Y ) : inf x21 + x
2
2 + x1 − 1

s.t. − x1 ≤ 0,

x2 +1 ≤ 0,

x = (x1,x2) ∈ R2.

Since f (x) = x21 + x22 + x1 − 1, so ∇f (x̂) = (2x1 +1,2x2). Considering

M = {(x1,x2) ∈ R2 | −x1 ≤ 0, x2 +1 ≤ 0},

and the point x∗ = (0,−1) ∈M, we conclude that

Υ
(
x∗,∇f (x∗)

)
= sup

(y1,y2)∈M
⟨(1,−2), (0− y1,−1− y2)⟩ = sup

(y1,y2)∈M
−y1 +2y2 +2.

The condition of (y1, y2) ∈M implies that −y1+2y2+2 ≤ 0, and hence Υ
(
x∗,∇f (x∗)

)
=

0. Consequently, x∗ is an optimal solution of (Y ) by Theorem 8.
On the other hand, for each x̃ ∈M, we get

{(d1,d2) ∈ R2 | ⟨(d1,d2), (−1.0)⟩ ≤ 0, ⟨(d1,d2), (0,1)⟩ ≤ 0} = [0,+∞)× (−∞,0]
= conv

(
Z(M,x̃)),

which implies that GCQ holds at all x̃ ∈M. Since, by a short calculation, one can see
Υ
(
x̃,∇f (x̃)

)
, 0 for all x̃ , x∗, Theorem 11 implies that x̃ is not an optimal solution of

(Y ). Thus, the problem (Y ) has a unique optimal solution x∗.

4 Conclusion

In this paper, we derived two linearizations as well as a gap function for quasiconvex
optimization problems with nonsmooth data. We expressed and proved our results in
terms of incident subdifferential, using advanced quasiconvex optimization methods.
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