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1 Introduction

Data Envelopment Analysis (DEA), as a nonparametric method in economics and op-
erations research, was proposed by Charnes et al. [8]. It is used for evaluating the
relative performance of a set of similar decision-making units (DMUs) with multiple
inputs and multiple outputs while estimating the production frontier. The DEA has
been proved as an effective tool for performance evaluation in a variety of fields, with
interesting applications in health care, education, banking, manufacturing, and so on.
The DMUs are assumed to be comparable [12, 13]. However, they may have their own
unique conditions. The DEA method was originally introduced according to constant
returns to scale (CRS) and has then developed to variable returns to scale [6], nonin-
creasing returns to scale, and nondecreasing returns to scale [31]. Dealing with fuzzy
data and network structures can be considered as another development in this field
[29].

Efficiency scores in the DEA are estimated using the most desirable input/output
weights. Based on the efficiency score, a DMU is identified as efficient or inefficient. In
the second case, the DEA models present a related set of efficient units to be applied
as a benchmark. It allocates efficiency scores of less than 1 to inefficient DMUs and 1
to efficient DMUs.

To select a set of weights instead of choosing different weights for each DMU, a
common set of weights (CSW) has been suggested for assessing the performance of
DMUs. Comparison and ranking of the performance of DMUs based on the same
benchmark can be possible using a CSW. Using a CSW in DEA is equivalent to a
ranking method such as the analytical hierarchy process in multiple criteria decision-
making literature [20]. To generate a CSW in DEA, several alternative approaches
were proposed in [11, 24, 28, 35].

Traditional DEA models cannot distinguish between efficient DMUs, while they can
rank inefficient ones. In the last four decades, different theoretical developments have
been done, according to the original CCR model, to deal with the occurring practical
problems. Adler et al. [1] reviewed the main ranking approaches and divided them into
six main groups: cross-efficiency [33], super-efficiency [5], benchmark [42], multivariate
statistics [17, 18, 35], inefficient DMUs and multi-criteria decision-making (MCDM)
[19].

The most efficient DMU (which, in some cases is referred to as “the best”) can
be specified using ranking approaches. However, it is unnecessary to rank all efficient
DMUs to find a unique DMU as the most efficient. It is significant that ranking methods
usually use different sets of optimal weights for each DMU separately, while to determine
the most efficient DMU, a common set of optimal weights must simultaneously be
applied. While in ranking efficient DMUs, at least one optimization model for each
DMU must be solved, the most efficient DMU can be found just by solving an integrated
model. Ranking methods allow each DMU to determine its own optimal weights to
get the highest rank. Therefore, the majority of these approaches use different sets
of weights to rank efficient units and to attain these weights. Different optimization
problems must be solved. Although there are some approaches based on a CSW that
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rank DMUs by solving only one model, the issue of selecting a Pareto solution would
be problematic [11, 45].

During some real-life applications, the decision-maker usually wants to select only
one DMU among the set of considered DMUs. Obviously, there is always intense
competition among efficient DMUs. Therefore, it is reasonable to evaluate these units
through CSW. There have been several developments to extend some integrated DEA
models for finding the most efficient DMU. Li and Reeves [23] presented a multiple
criteria DEA model that could be used for improving the discrimination power of
classical DEA. Based on minimizing the maximum deviation and minimizing the sum
of deviations of DMUs, their model effectively yields more acceptable input and output
weights without former information. To show the applicability of the proposed MCDM
model, some examples of previous works were utilized in [32, 33, 34, 43].

Karsak and Ahiska [21] used benchmarks to introduce a multiple-criteria decision-
making model and claimed their proposed model resulted in the most efficient DMU.
However, Amin et al. [4] showed that this model was unable to determine the most
efficient DMU in some specific cases. Ertay and Ruan [14] proposed a cross-efficiency
approach to determine the most efficient unit. Next, Ertay et al. [15] proposed a min-
max model to find the most efficient DMU and applied it to a real data set consisting
of 19 facility layout alternatives. The related objective function contains a parameter
that needs to be selected on a trial-and-error method. Amin and Toloo [3] introduced
an integrated DEA model in order to detect the most efficient DMU. They claimed
that their proposed model could find the most CCR-efficient DMU without solving a
series of linear programs (LPs) and therefore was less time-consuming. Moreover, their
model eliminated the requirement of using the parameter mentioned in [15]. Amin [2]
showed that the model proposed in [3] might result in more than one efficient DMU.
He proposed a mixed-integer nonlinear programming model to obtain a single most
efficient DMU, especially in the CRS technology. Toloo and Nalchigar [39] developed
the previous models to find the most BCC-efficient DMU. Toloo [36] addressed some
problems of applying the model in [39] and introduced a new mixed-integer linear
programming (MILP) model to determine the most BCC-efficient DMU. Foroughi [16]
claimed that the mixed-integer nonlinear model proposed in [2] was infeasible in some
cases. Then he proposed an MILP model to find the most efficient DMU using the
super-efficiency perspective. Toloo and Salahi [41] extended a nonlinear model to deal
with improving the discriminating power of DEA models, and it was shown that the
proposed model identified the most efficient unit. Özsoy et al. [27] introduced another
model based on mixed-integer programming to determine the most efficient DMU in
two-stage systems and sub-stages. An approach considering user’s subjective opinions
was developed by Toloo et al. [40] to find the most efficient information system projects.

Wang and Jiang [44] suggested a set of MILP models for identifying the most
efficient DMU under various returns to scale technologies. They claimed that the
proposed approaches were simpler than Foroughi’s. Toloo [37] formulated an MILP
model to determine the most efficient unit without any explicit inputs. He also utilized
the model to detect the most efficient professional tennis player. Lam [22] introduced a
new MILP model that had an objective function similar to that of the super-efficiency
model. Moreover, Salahi and Toloo [30] suggested a model to find the maximum epsilon
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in the determination of the most efficient DMU. Özsoy et al. [26] proposed a model
excluding the non-Archimedean epsilon and calculating the CSW to choose the most
efficient unit. As an alternative to all MILP models for identifying the most efficient
unit under the CRS assumption, Toloo [38] formulated a min-max model.

While all the aforementioned approaches may introduce various units as the most
efficient ones, they could be time-consuming and NP-hard and are based on solving
one or more than one mathematical programs. Furthermore, it is not possible to claim
that one of them is more reasonable than the others. Therefore, a different approach
is needed to find the most efficient unit. In this paper, an easy-to-use algorithm is
presented to determine the most efficient unit without solving any mathematical pro-
gramming problem. The proposed method is based on the definition of the most efficient
DMU and the properties of efficient DMUs.

Table 1: Comparison of different methods proposed for finding the most efficient DMU according to
their models

Reference Method - Model type
Etray & Ruan [14] LP-Cross efficiency
Etray et al. [15] Min-max model

Karsak & Ahiska [21] MCDM
Amin & Toloo [3] Integrated DEA model

Amin [2] Mixed-Integer Nonlinear Programming
Foroughi [16] MILP model

Toloo [36] MILP model
Wang & Jiang [44] MILP model

Toloo [38] Min-max model
Toloo & Salahi [41] Nonlinear model
Ozsoy et al. [27] MIP (two stage)
Proposed Model No Mathematical Model

The structure of the paper is organized as follows. Section 2 gives preliminaries
on the subject. In Section 3, a new algorithm will be proposed to generate the real
most efficient DMU. Subsequently, in Section 4, a discussion is given after solving
two numerical examples to show the potential applications of the proposed algorithm.
Conclusions appear in Section 5.

2 Preliminaries

Consider a set of n DMUs (DMUj : j = 1, . . . ,n) such that each one uses the input vector
xj = (x1j , . . . ,xmj ) to produce the output vector yj = (y1j , . . . , yrj ).

Charnes et al. [8] proposed the basic DEA model, called the CCR model. They
solved the following fractional programming problem to obtain an optimal solution
regarding values for the input weights v = (v1, . . . , vm) and the output weights u =
(u1, . . . ,us) as variables:
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max θp =
∑s
r=1 uryrp∑m
i=1 vixip

s.t.
∑s
r=1 uryrj∑m
i=1 vixij

≤ 1 j = 1, . . . ,n

vi ≥ 0 i = 1, . . . ,m
ur ≥ 0 r = 1, . . . , s

(1)

where DMUp (p ∈ {1, . . . ,n}) is the DMU under evaluation.

Definition 1. DMUp is CCR-efficient if the model (1) has at least one optimal solution
(u∗, v∗) with v∗ > 0 and u∗ > 0 in which θ∗p = 1. Otherwise, DMUp is CCR-inefficient.
(Here, the notation ∗ shows the optimality).

The model mentioned in (1) can be converted into a linear programming model as
follows [7]:

max θ = uyp
s.t. vxp = 1

uyj − vxj ≤ 0 j = 1, . . . ,n
u ≥ 0, v ≥ 0

(2)

According to Definition 1, all DMUs can be partitioned into efficient and inefficient
sets. The ranking of the inefficient DMUs is based on their efficiency scores; however,
the efficient DMUs must be ranked based on some other criteria. This has led to many
ranking models in the literature. Although ranking models can sort these units, all the
efficient units are related to a model to be solved. Furthermore, based on each ranking
method, the result may differ.

It should also be noted that a specific applicable definition of the most efficient
DMU does not exist. Moreover, all existing models randomly choose one of the efficient
DMUs as the best while it is not unique. Thus, the performances of these models are
not comparable. Finally, all these models use integer and nonlinear programming to
determine the most efficient DMU, which is time-consuming and NP-hard. In the next
section, the most efficient DMU is defined, and then the most efficient unit is determined
accordingly.

In order to overcome the mentioned drawbacks, in the first step, the definition of
the most efficient DMU is presented as follows.

Definition 2. [38] DMUp is called the most efficient DMU if there is a common set of
optimal weights (u∗, v∗) > 0 such that u∗yp − v∗xp = 0 and u∗yj − v∗xj < 0 for each j , p.

Example 1. Consider four DMUs whose data are shown in Table 2, and their corre-
sponding production possibility set (PPS) is shown in Figure 1.

The hyperplane ∆ : 6y−3x1−x2 = 0 satisfies Definition 2, and as it can be observed,
DMUA is the most efficient.

In the next section, an approach will be proposed to find the most efficient unit
without solving any nonlinear, binary, or even linear models.

PPS is the set of all (x,y)’s such that the input vector x can produce the output vector y. For more details
on the mathematical definition, see [10].
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Figure 1. The PPS of Example 1. 

 

Figure 1: The PPS of Example 1.

Table 2: Data of Example 1.

A B C D
x1 1 2 3 3
x2 3 2 1 4
y 1 1 1 1

3 The Proposed Approach

3.1 Requirements

It is known that the optimal value of model (1) is 1. The following theorem represents
the relationship between efficiency and the most efficient DMU.
Theorem 1. Inefficient DMUs cannot be the most efficient.
Proof. Suppose that DMUp is inefficient, that is, either (a) θ∗ < 1 or (b) θ∗ = 1 and
that at least one component of the vector (u∗, v∗) equals zero at optimal solutions to
model (2).
(a). If θ∗ < 1, then the model (2) implies that

θ∗ = u∗yp < v
∗xp = 1,

u∗yp − v∗xp < 0.

Therefore, DMUp does not satisfy Definition 2.

(b). In this case, the DMUp cannot be the most efficient obviously, since by Definition
2, the vector (u∗, v∗) must be positive.

Theorem 2. If there exist ur ≥ 0 (r = 1, . . . , s) and vi ≥ 0 (i = 1, . . . ,m) such that∑
r uryrp∑
i vixip

=Maxj

{∑
r uryrj∑
i vixij

}
, (3)

then DMUp is efficient [9].
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Theorem 2 makes it possible to find the efficient DMUs by choosing various combi-
nations of input and output weights.

Corollary 1. DMUp, where ∑
r yrp∑
i xip

=Maxj

{∑
r yrj∑
i xij

}
,

is an efficient unit.

Proof. By setting u = (1, . . . ,1) and v = (1, . . . ,1) in Theorem 2, the result is trivial.

Now, according to Definition 1 and Corollary 1, the conditions for finding the most
efficient DMU are expressed in the following theorem.

Theorem 3. If there exists a unique index p satisfying the condition∑
r yrp∑
i xip

=Maxj

{∑
r yrj∑
i xij

}
, (4)

then, DMUp is the most efficient unit.

Proof. In order to show that DMUp is the most efficient unit, it suffices to show that
DMUp satisfies Definition 1. For this purpose, first, by assuming

∑
r yrp∑
i xip

= k, we obtain∑
r yrp − k

(∑
i xip

)
= 0. Then, for each DMUj (j = 1, . . . ,n; j , p), we have∑

r yrp∑
i xip

= k >

∑
r yrj∑
i xij

.

Therefore,
∑
r yrj − k

(∑
i xij

)
< 0 for all j (j = 1, . . . ,n, j , p). Hence, according to

Definition 1, by choosing v̄ = (k, . . . , k) and ū = (1, . . . ,1), DMUp is the most efficient
unit.

Now, since the conditions for finding the most efficient unit are fully provided, the
most efficient unit can be easily found through the following algorithm without solving
any models.

3.2 The Algorithm

In this section, an algorithm is proposed to find the most efficient unit without solv-
ing any mathematical programming problem. The proposed algorithm is based on
Definition 1 and the characteristics of efficient DMUs.

The algorithm starts with a set of initial weights (u = (1, . . . ,1) and v = (1, . . . ,1)). If
there exists a unique DMU such that these weights satisfy Definition 2 and Theorem 2,
then it is the most efficient one. Otherwise, the initial weights are changed by using the
specific method (i.e., the hyperplane is rotated). Eventually, such changes lead to the
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adjustment of the initial hyperplane so that the resulted hyperplane satisfies Definition
2. The steps of the algorithm are stated in the following steps.

Step 0. If some DMUs are multiples of each other (i.e., the vectors of inputs and
outputs of a DMU are multiples of each other), then eliminate all these DMUs except
one.

Step 1. Set t = 1, v(t) = (1, . . . ,1), u(t) = (1, . . . ,1), and M0 = {1, . . . ,n}.

Step 2. Find k =max
{∑

r u
(t)
r yrj∑

i v
(t)
i xij

∣∣∣ j ∈Mt−1

}
and set

Mt =

argmax
j


∑
r u

(t)
r
yrj∑

i v
(t)
i xij

, j ∈Mt−1


 .

Step 3. If Mt is a singleton, then DMUp (p ∈Mt) is the most efficient unit. Set
(ū, v̄) =

(
u
(t)
r , kv

(t)
i

)
and stop. Otherwise, go to Step 4.

Step 4. Let P ,Q∈Mt . Since P and Q are different DMUs, at least one component
of the input vector or one component of the output vector is different.

Case I: If there exists an index l such that xlp , xlq, then we define
v
(t+1)
l = 2v(t)l ,

v
(t+1)
i = v(t)i , i = 1, . . . ,m; i , l,

u
(t+1)
r = u(t)r , r = 1, . . . , s.

(5)

Case II: If there exists an index l such that ylp , ylq, then we define
v
(t+1)
i = v(t)i , i = 1, . . . ,m,

u
(t+1)
l = 0.5u(t)l ,

u
(t+1)
r = u(t)r , r = 1, . . . , s; r , l.

(6)

Set t← t +1 and go to Step 2.
Using the predefined weights at the first step, a set of efficient DMUs is found.

These DMUs belong to M1. If M1 is a singleton, then the most efficient DMU is
found. Otherwise, the weights are changed such that the hyperplane uyj − vxj ≤ 0 is
slightly turned, resulting in a reduction of the cardinality of Mt . This process should
be repeated until Mt is a singleton. In order to maintain the above relation, the output
weights are decreased, or input weights are increased. Finally, after finding the most
efficient DMU, a set of weights is needed to satisfy Definition 2. Thus, in the final step,
the related weights are set as (ū, v̄) =

(
ur (t), kv

(t)
i

)
.

3.3 Validity of the Algorithm

The validity of the algorithm is presented via the following theorem.
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Theorem 4. Suppose that the algorithm produces a vector (u,v) in the final step of
Algorithm. This vector satisfies ūyj − v̄xj ≤ 0 and (u,v) > 0 for all j = 1, . . . ,n.

Proof. In the first step, the algorithm uses the default vector (u,v) = (1, . . . ,1,1, . . . ,1).
In the next steps, the algorithm reduces a component of ur (r = 1, . . . , s) into halves
or increases a component of vi (i = 1, . . . ,m) by making it double. This allows us to
conclude that ur ’s and vi ’s satisfy Definition 2, that is, uyj − vxj ≤ 0 and (u,v) > 0 for
j = 1, . . . ,n. It is obvious that ūyp − v̄xp = 0 for P ∈Mt . Therefore, in the final step, we
have ūyp − v̄xp = 0.

The next theorem shows that the procedure of the algorithm concludes a set Mt

that is a singleton.

Theorem 5. The procedure of the algorithm leads to a singletonMt in finite iterations.

Proof. Suppose that in an iteration, Mt is not a singleton; that means there exist at
least two DMUs, for example, P and Q such that P ,Q ∈ Mt and P is not a multiple
coefficient of Q. If ū and v̄ are calculated according to (5) or (6), it is obvious that∑

r ūryrp∑
i v̄ixip

,

∑
r ūryrq∑
i v̄ixiq

.

Without loss of generality, suppose∑
r ûryrp∑
i v̂ixip

>

∑
r ûryrq∑
i v̂ixiq

,

then, in the next step, we have Q < Mt+1. This shows Mt+1 ⊂ Mt , and hence in the
finite steps of algorithm, the set Mwill be a singleton.

Now, Theorems 4 and 5 guarantee that the algorithm finds the most efficient DMU
in finite steps. In the next section, the procedure of finding the most efficient DMU is
illustrated by two examples.

The following theorem shows that the supporting hyperplane relies on PPS and
establishes some conditions for the most efficient definition.

Theorem 6. The hyperplane constructed in Theorem 3 is the support of the PPS.

Proof. Suppose that for an arbitrary DMUp, there exists (u∗, v∗) such that

u∗yp − v∗xp = 0, (7)
u∗yj − v∗xj < 0, j , p, (8)
u∗ > 0, v∗ > 0.

Inequalities (7) and (8) are multiplied by λj ≥ 0, and the results are summed as
follows:

n∑
j=1

λj (u
∗yj )−

n∑
j=1

λj (v
∗xj ) ≤ 0,
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u∗
( n∑
j=1

λjyj

)
− v∗

( n∑
j=1

λjxj

)
≤ 0.

Based on the definition of CRS of PPS (see [10]), it follows

Tc = {(x,y)|x ≥
∑

λjxj , y ≤
∑

λjyj ,λj ≥ 0},

we get u∗y − v∗x ≤ 0. Hence (x,y) ∈ T .
On the other hand, since u∗yp − v∗xp = 0, u∗y − v∗x = 0 supports the PPS.

4 Numerical Examples

As it was explained, up to now, all the existing models for finding the most efficient
DMU have used mathematical models such as linear, nonlinear, integer, or even mixed-
integer programming. Thus, many of them can be NP-hard [25], while the proposed
algorithm only uses a few simple operations. The next example shows the steps of the
algorithm in detail.

Example 2. Consider the data set of Example 1.
Set t := 1, u(1) := 1, v(1) := (1,1), and M0 := {A,B,C,D}. Now, set

k =max
{ 1
1+3

,
1

2+2
,

1
3+1

,
1

3+4

}
=
1
4
,

and then M1 = {A,B,C}. Since M1 is not a singleton, then the vector (u(1), v(1)) must
be changed. Considering the components of the input vector x, we have

x1A , x1B , x1C .

By using (5), we obtain 
u(2) = u(1) = 1,

v
(2)
1 = 2v(1)1 = 2,

v
(2)
1 = v(1)1 = 1.

In the next iteration, t = 2 and

k =max
{ 1
2+3

,
1

4+2
,

1
6+1

,
1

6+4

}
=
1
5
,

and M2 = {A}. Since M2 is a singleton, the algorithm terminates, and DMUA is the
most efficient DMU. By

(ū, v̄) = (u(2), kv(2)) = (1,
1
5
(2),

1
5
(1)) = (1,

2
5
,
1
5
),

the conditions of Definition 2 are satisfied. The supporting hyperplane is y− 2
5x1−

1
5x2 =

0 and
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A : 1− 2
5
(1)− 1

5
(3) = 0,

B : 1− 2
5
(2)− 1

5
(2) = −1

5
< 0,

C : 1− 2
5
(3)− 1

5
(1) = −2

5
< 0,

D : 1− 2
5
(3)− 1

5
(4) = −1 < 0.

Example 3. Here, we examine a data set from [44]. Consider 30 OECD countries
with three inputs (unemployment ratio (x1), rate of inflation (x2), and baby death rate
(x3)) and five outputs (national income per capita (y1), human development index (y2),
education index (y3), contribution rate to labor force of woman population (y4), and
health expenditure per capita (y5)) that are listed in Table 3.

Now, the proposed algorithm is applied to determine the most efficient DMU. The
algorithm starts with the initial weights. At the first iteration, the value of k is deter-
mined as 8023.110874 and M1 is a singleton. So, the final weights are driven as

ūr = u(1)r = 1, r = 1, . . . ,5,

v̄i = kv
(1)
i = 8023.110874, i = 1,2,3.

Our proposed approach determined DMU17 as the best efficient one. As mentioned
in [44], different methods may determine various DMU as the most efficient ones. For
instance, DMU27 was distinguished as the most efficient one in [44].

5 Conclusion

In order to distinguish and recognize the best performance of efficient DMUs, deter-
mining the most efficient DMU is crucial. Various approaches have been proposed to
find these DMUs, which are NP-hard and time-consuming. Furthermore, there is no
clue that one of them is more accurate than the others. In this paper, we introduced an
easy-to-use method based on setting weights. The proposed procedure enabled us to
find the most efficient unit only through some elementary operations and comparisons.
This was done by using an algorithm that altered the weights of inputs and outputs
to obtain a hyperplane satisfying the most efficient condition. As it was shown, the
validity of the algorithm was confirmed by two theorems. Finally, the approach was
applied to some examples. The way of setting the initial weights would be a topic
for future research. Here, we set all weights equal to unity, but the effect of choosing
random weights or selecting appropriate weights according to inputs and outputs could
be surveyed. Also, researchers can develop some methods for updating weights in the
algorithm so that the number of iterations is reduced.
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Table 3: Data on 30 OECD countries [44]

DMU Countries xxx1 xxx2 xxx3 yyy1 yyy2 yyy3 yyy4 yyy5
1 Australia 5.1 3 6 34740 80.9 0.993 67.4 2036
2 Austria 7.2 1.8 5 37117 79.4 0.966 63.8 1968
3 Belgium 12.1 1.6 6 35712 78.8 0.977 57.3 2081
4 Canada 6.8 2.2 6 35133 80.3 0.991 72.8 2312
5 Czech 8.9 1.8 5 12152 75.9 0.936 64 930
6 Denmark 5.6 2.4 4 47984 77.9 0.993 74.2 2133
7 Finland 8.4 1.7 4 37504 78.9 0.993 72.8 1502
8 France 9.1 1.9 4 33918 80.2 0.982 62.4 2055
9 Germany 9.2 2.3 5 33854 79.1 0.953 67.4 2424
10 Greece 9.9 4.6 5 20327 78.9 0.97 56 1167
11 Hungary 7.2 5.3 8 10814 72.9 0.958 53.5 705
12 Iceland 1.8 4.8 4 52764 81.5 0.978 82.9 2103
13 Ireland 4.3 4.7 6 48604 78.4 0.993 62.2 1436
14 Italy 7.7 2.5 6 30200 80.3 0.958 50.1 1783
15 Japan 4.4 1 4 35757 82.3 0.946 60.5 1822
16 South Korea 3.7 2.8 5 16308 79 0.904 49.9 730
17 Luxembourg 4.2 1.1 5 80288 78.4 0.942 55.7 2215
18 Mexico 3.6 5 25 7298 75.6 0.863 42.6 356
19 Netherland 4.3 3.5 5 38618 79.2 0.988 69.5 2070
20 New Zealand 3.7 2.7 6 26464 79.8 0.993 71.2 1424
21 Norway 3.5 1.3 4 64193 79.8 0.991 77.3 2330
22 Poland 18.2 1.9 9 7946 75.2 0.951 57.6 496
23 Portugal 7.6 3.5 6 17456 77.7 0.925 67.8 1237
24 Slovak 11.7 3.3 8 8775 74.2 0.921 62.4 930
25 Spain 9.2 3.1 5 27226 80.5 0.987 57.2 1218
26 Sweden 5.8 2.2 3 39694 80.5 0.978 74.9 1746
27 Switzerland 3.8 0.9 3 50532 81.3 0.946 75.3 2794
28 Turkey 10.3 13.7 3.8 5816 71.4 0.812 26.5 255
29 England 2.8 1.6 6 37023 79 0.97 69.3 1461
30 USA 5.1 1.6 7 4200 77.9 0.971 70.1 4178
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