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of unmanned aerial vehicles (UAVs) accelerates, the safety of UAVs becomes
increasingly important. In this paper, a robust adaptive controller is designed
to improve the safety of a hexa-rotor UAV, and a robust adaptive controller is
developed to control our system. In doing so, the wind parameters from the
aerodynamic forces and moments acting on the hexa-rotor are estimated using
an observer with the adaptive algorithm. This proposed controller guarantees
stability and reliable function in the midst of parametric and non-parametric
uncertainties. The process’s global stability and tracking convergence are
investigated using the Lyapunov theorem. The performance and effectiveness of
the proposed controller are tested through two simulation studies, which take
into account external disturbances that are a function of time.
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1 Introduction

Unmanned Aerial Vehicles (UAVs) have shown great promise in recent years due to
their advantages in power and speed over quad-rotors. Various studies have shown
that the proper positioning of the rotors is crucial to the success of a hexa-rotor UAV
[8], [10] and [13]; other advantages show up in the form of more lift and more time in
flight [2], [6] and [15]. The hexa-rotor UAV has significant advantages over other types
of UAVs due to its fault tolerance, greater load capacity, and higher stability. This
makes it an ideal choice for completing more complex tasks. Therefore, understanding
how to control a hexa-rotor UAV is of great importance [9].

To control the hexa-rotor automatically, various control methods have been em-
ployed, such as linearization of input and output feedbacks [19], backstepping control
[16], sliding mode control (SMC) [3], fuzzy control and other intelligent control methods
[11], [14] and [17].

The hexa-rotor’s dynamics are significantly influenced by outside disturbances. In
order to mitigate this problem, Mokhtari, et al. developed a sliding mode disturbance
observer [7]. It is clear that this controller is not robust to wind disturbances that
affect the dynamic model of forces and displacement (x,y). In this work, the adaptive
technique is applied to the trajectory tracking problem following the structure of [12],
but the wind parameters resulting from the aerodynamic forces and moments, which
are time-dependent functions, are considered.

Against this backdrop, these wind parameters are estimated using an adaptive ob-
server based on an adaptive control algorithm to ensure convergence within a limited
time, thereby providing robustness to external disturbances and variations in parame-
ters for the overall system.

In this paper, we present a new robust adaptive Lyapunov-based controller for the
hexa-rotor by combining nonlinear adaptive control and sliding-mode control.

This paper is organized as follows. Section 2 provides a brief overview of the hexa-
rotor mathematical model. Section 3 discusses the proposed controller design in detail.
Section 4 analyzes the Lyapunov stability of the system. Section 5 presents two exam-
ples to illustrate the efficacy of the proposed controller design. Finally, Section 6 offers
conclusions and future research directions.
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2 Mathematical Model of the Hexa-Rotor

The hexa-rotor is shown in Figure 1. The hexa-rotor consists of six rotors generating
Fi (i = 1,2, . . . ,6) forces, each of which is attached to a propeller. The six rotors are
arranged in two parts, each pointing in opposite directions (Figure 1). Forward motion
is achieved by increasing the speed of the rotors (3,4,5) while decreasing the same
value for the rotors (1,2,6). For the movement to the left, the speed of rotors (5,6)

is increased while the speed of rotors (2,3) is decreased. Other movements can be
performed in a similar way [1].

Figure 1: Hexa-rotor aircraft.

The dynamic model of the hexa-rotor consists of the body-frame (xb, yb, zb) and
the earth-frame (xe, ye, ze). Let [x,y,z]′, [u,v,w]′, [p,q, r ]′, ms, g, l denote the position
of the center of gravity, the hexa-rotor in the earth-frame, the linear velocity in the
earth-frame, the angular velocity in the body-frame, the total mass of the aircraft, the
acceleration due to gravity, and the distance from the center of each rotor to the center
of gravity, respectively.

The orientation of the hexa-rotor is given by the rotation matrix R(ϕ,θ,ψ ) shown
in Figure 2, as follows:

R(ϕ,θ,ψ ) = R(z,ψ) ·R(y,θ) ·R(x,ϕ),

where R depends on the three Euler angles [ϕ,θ,ψ ]′, representing roll, pitch and yaw,
respectively. These angles are bounded as follows: roll angle, ϕ, by

(
−π2 < ϕ <

π
2

)
; pitch

angle, θ, by
(
−π2 < θ <

π
2

)
; and yaw angle, ψ, by (−π < ψ < π). The rotation of the

hexa-rotor’s body must be compensated for during position control. The compensation
is achieved by transposing the rotation matrix where [4],

R(z,ψ) =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 , (1)
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Figure 2: Orientation of the hexa-rotor by using Euler angles.

R(y,θ) =


cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

 , (2)

R(x,ϕ) =


1 0 0

0 cosϕ −sinϕ
0 sinϕ cosϕ

 . (3)

Hence,

R(Θ) = R(ϕ,θ,ψ ) =


CψCθ CψSθSϕ − SψCϕ CψSθCϕ + SψSϕ
SψCθ SψSθSϕ +CψCϕ SψSθCϕ −CψSϕ
−Sθ CθSϕ CθCϕ

 , (4)

where C(·) and S(·) represent cos(·) and sin(·), respectively.
Kinematics of a rigid body is given by [17]

ve = Rvb, (5)

where ve = [u0, v0,w0]′ and vb = [ub, vb,wb]′ are linear velocities of the center of mass
expressed in the earth-frame and the body-frame, respectively.

The matrix of the rotational velocities is [8]

M(Θ) =M(ϕ,θ,ψ ) =


1 0 −Sθ
0 Cϕ CθSϕ
0 −Sϕ CθCϕ

 . (6)
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To transfer the angular velocities from the earth-frame to the body-frame, the
angular velocity vector in the earth-frame must be matrix multiplied by the inverse of
the rotational velocity matrix as follows:


ϕ̇

θ̇

ψ̇

 =M−1(ϕ,θ,ψ )

p

q

r

 =

1 SϕTθ CϕTθ
0 Cϕ −Sϕ

0
Sϕ
Cθ

Cϕ
Cθ



p

q

r

 , (7)

where T(·) represents tan(·).
The translational motion can be described as [11]:

m


ẍ

ÿ

z̈

 = −

0

0

gm

+Ri,3U1 +


K1ẋ

K2ẏ

K3ż

 , (8)

where U1 is the main control input in the z-axis direction, Ri,3 is the third column of
the translational matrix and (K1ẋ,K2ẏ,K3ż)′ is the air drag vector, distributed in the
xe, ye and ze axes, respectively. By considering

(D1,D2,D3)
′ =

1
m
(K1ẋ,K2ẏ,K3ż)

′ , (9)

and according to Eqs. (4), (8)-(9) the dynamical equations describing the translational
dynamics of the hexa-rotor can be written as follows:

ẍ = 1
m (CϕSθCψ + SϕSψ )U1 +D1,

ÿ = 1
m (CϕSθCψ − SϕCψ )U1 +D2,

z̈ = 1
m (CϕCθ )U1 − g +D3,

(10)

where

U1 = (F1 +F2 +F3 +F4 +F5 +F6), (11)
Fi = bΩ

2
i , (12)

in which Fi represents the thrust generated by rotor i for i = 1,2, . . . ,6 and b > 0 is the
lift coefficient and Ωi is the angular velocity of the six rotors.

The rolling, pitching and yawing torques represented by Mϕ , Mθ and Mψ , respec-
tively, can be expressed as [5] and [9]:

Mϕ =
1
2
db(Ω2

1 +Ω2
5 +Ω2

6 −Ω
2
2 −Ω

2
3 −Ω

2
4), (13)

Mθ =

√
3
2
bd(Ω2

4 +Ω2
5 −Ω

2
1 −Ω

2
2), (14)
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Mψ = l(Ω2
1 +Ω2

2 +Ω2
3 −Ω

2
4 −Ω

2
5 −Ω

2
6), (15)

where d and l are the distance between the center of the rotors on the diagonal and the
reverse torque coefficient, respectively. In Eq. (13) cos60◦ = 1

2 represents the torque
component of the rotors on the x-axis in the body-frame, and in Eq. (14) sin60◦ =

√
3
2

represents the torque component of the rotors on the y-axis in the body-frame.
The torque balance of the hexa-rotor UAV can be expressed by the Newton–Euler

formula as follows [18]:


ṗ

q̇

ṙ

 = I−1xyz
−


p

q

r

×

Ixp

Iyq

Izr

+

JRΩp

JRΩq

0

+

Mϕ

Mθ

Mψ

+Taero
 , (16)

where Ixyz =


Ix 0 0

0 Iy 0

0 0 Iz

 and JR are the inertia matrix and the rotor inertia, respectively.

Taero is the UAV system and

Ω =Ω1 +Ω2 −Ω3 +Ω4 −Ω5 +Ω6.

In summary, the rotational model of a hexa-rotor UAV can be expressed as:
Rotational dynamics:



ϕ̈ = θ̇ψ̇
Iy − Iz
Ix

+
JR
Ix
θ̇w +

d
Ix
U2 +D4,

θ̈ = ϕ̇ψ̇
Iz − Ix
Iy

+
JR
Iy
ϕ̇w +

d
Iy
U3 +D5,

ψ̈ = ϕ̇θ̇
Ix − Iy
Iz

+
1
Iz
U4 +D6,

(17)

where

U2 =

√
3
2

(F4 +F5 −F1 +F2),

U3 =
1
2
(F1 +F5 +F6 −F2 −F3 −F4),

U4 = F1 +F2 +F3 −F4 −F5 −F6,
D4

D5

D6

 = I−1xyzTaero .
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3 Design of a Robust Adaptive Controller

The dynamic nonlinear mathematical model can describe the system in its state space of
the hexa-rotor with state vector X = (x1,x2, . . . ,x12)′. To design an adaptive controller,
substitute

x1 = ϕ, x3 = θ, x5 = ψ, x7 = z, x9 = x, x11 = y,

x2 = ϕ̇, x4 = θ̇, x6 = ψ̇, x8 = ż, x10 = ẋ, x12 = ẏ.

the Equations (10) and (17) can be rewritten as follows:



ẋ1 = x2,

ẋ2 = a1x4x6 + a2wx4 + b1U2 +D4,

ẋ3 = x4,

ẋ4 = a3x2x6 + a4wx2 + b2U3 +D5,

ẋ5 = x6,

ẋ6 = a5x2x4 + b3U4 +D6,

ẋ7 = x8,

ẋ8 = −g + 1
m (cosx1 cosx3)U1D3,

ẋ9 = x10,

ẋ11 = x12,

ẋ12 =
1
m (cosx1 sinx3 sinx5 − sinx1 cosx5)U1 +D1,

(18)

where Ui ’s are the control inputs to achieve the desired objectives, ai and bj are the
known constants given by:

a1 =
Iy − Iz
Ix

, a2 = −
JR
Ix
, a3 =

Iz − Ix
Iy

, a4 =
JR
Iy
, a5 =

Ix − Iy
Iz

,

b1 =
d
Ix
, b2 =

d
Iy
, b3 =

1
Iz
.

Accordingly, the six arbitrary disturbance functions Di ’s are considered as unstructured
uncertainties of the hexa-rotor model.
Some of the equations from the dynamics of the hexa-rotor model (18) can be arranged
as follows:
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U1 =
m(ẋB + g)

cosx1 cosx3
−D3,

U2 =
1
b1

(ẋ2 − a1x4x6 − a2wx2)−D4,

U3 =
1
b2

(ẋ4 − a3x2x6 − a4wx2)−D5,

U4 =
1
b3

(ẋ6 − a5x2x4)−D6.

(19)

Using

Γ2 = ẋ2d − η2(x2 − x2d ), Γ4 = ẋ4d − η4(x4 − x4d ),

Γ6 = ẋ6d − η6(x6 − x6d ), Γ8 = ẋ8d − η8(x8 − x8d ) + g,

the regressor matrices Zj in terms of certain functions of the variables Γi ’s and xi ’s and
θj ’s are defined in terms of the unknown parameters of dynamical systems (19) (for
j = 1,2,3,4 and i = 2,4,6,8) as follows:

Z1 =
(

Γ8

cosx1 cosx3

)
, Z2 = (Γ2,x4x6,x4), Z3 = (Γ4,x2x6,x2), Z4 = (Γ6,x2x4),

θ1 = (m), θ2 =
(
1
b1
,−a1
b1
,−a2w

b1

)
, θ3 =

(
1
b2
,−a3
b2
,−a4w

b2

)
, θ4 =

(
1
b3
,−a5
b3

)
,

where x̃i = xi − xid , xid is the desired trajectory, and γi ’s are positive constants. If
xi → xid then Γi → ẋi for 2,4,6 and 8, so the control law (19) can be reformulated as:

U1 = Z1θ̂1 −
γ1sgn(x̃8)
cosx1 cosx3

,

U2 = Z2θ̂2 −γ2sgn(x̃2),

U3 = Z3θ̂3 −γ3sgn(x̃4),

U4 = Z4θ̂4 −γ4sgn(x̃6),

(20)

where “ ˆ” is used to indicate the estimated values of the uncertain system parameters,
which are updated using adaptation laws.

4 Convergence of the Method

We obtain the dynamics of the closed-loop system using the proposed nonlinear robust
adaptive controller by substituting the control laws (20) into the hexa-rotor model (19),
and by adding and subtracting some expiration, we obtain

1
b1

(ẋ2 − a1x4x6 − a2wx2)−D4 = Z2θ̂2 −γ2sgn(x̃2) =
ẋ2d − η2(x2 − x2d )

b̂1
−
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â1
b̂1
x2x6 −

â2ŵ

b̂1
x2x6 −

â2ŵ

b̂1
x4 ±

ẋ2d − η2(x2 − x2d )
b1

1
b2

(ẋ4 − a3x2x6 − a4wx2)−D5 = Z3θ̂3 −γ3sgn(x̃4) =
ẋ4d − η4(x4 − x4d )

b̂2
−

â3
b̂2
x2x6 −

â4ŵ

b̂2
x2 ±

ẋ4d − η4(x4 − x4d )
b2

1
b3

(ẋ6 − a5x2x4)−D6 = Z4θ̂4 −γ4sgn(x̃6) =
ẋ6d − η6(x6 − x6d )

b̂3
− â5
b̂3
x2x4±

ẋ6d − η6(x6 − x6d )
b3

m(ẋ8 + g)
cosx1 cosx3

−D3 = Z1θ̂1 −
γ1sgn(x̃8)
cosx1 cosx3

=

ẋ8d − η8(x8 − x8d ) + g
cosx1 cosx3

m̂−
γ1sgn(x̃8)
cosx1 cosx3

±
m(ẋ8d + g − η8x̃8)

cosx1 cosx3
.

By simplification, the dynamics of the closed-loop system are finally expressed as
follows: 

˙̃x2 = −η2x̃2 + b1Z2θ̃2 − b1γ2sgn(x̃2) + b1D4,

˙̃x4 = −η4x̃4 + b2Z3θ̃3 − b2γ3sgn(x̃4) + b2D5,

˙̃x6 = −η6x̃6 + b3Z4θ̃4 − b3γ4sgn(x̃6) + b3D6,

˙̃x8 = −η8x̃8 + 1
m (cosx1 cosx3Z1θ̃1 −γ1sgn(x̃8) + cosx1 cosx3D3),

(21)

where θ̃i = θ̂i −θi for i = 1,2,3,4 are the vectors of parameter estimation errors.

Theorem 1. If the adaptation laws are defined as:

˙̂θ1 = −AT3Z
T
1 cosx1 cosx3x̃8,

˙̂θ2 = −AT4Z
T
2 x̃2,

˙̂θ3 = −AT5Z
T
3 x̃4,

˙̂θ4 = −AT6Z
T
4 x̃6,

(22)

if t→∞ then x2i → x2id on the condition γi ≥ |Ai+2| for i = 1,2,3,4.

Proof. To prove the stability of the process and the convergence of the tracking with
the proposed controller, a Lyapunov function candidate is used as follows:

V =
1
2
(Σ4

i=1(x̃2i )
2 + θ̃T1 A

−1
3 θ̃1 + b1θ̃

T
2 A
−1
4 θ̃2 + b2θ̃

T
3 A
−1
5 θ̃3 + b3θ̃

T
4 A
−1
6 θ̃4). (23)

The time derivative of V is then obtained as follows:

V̇ =
4∑
i=1

x̃2i ˙̃x2i +
˙̃θT1 A

−1
3 θ̃1 + b1

˙̃θT2 A
−1
4 θ̃2 + b2

˙̃θT3 A
−1
5 θ̃3 + b3

˙̃θT4 A
−1
6 θ̃4, (24)
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where ˙̃θi =
˙̂θi , because θi is a constant vector and θ̇i = 0. By employing the nonlinear

closed-loop dynamics (21) into (24), and considering the adaptation laws (22) we have

V̇ =
1
2
(x̃2(−η2x̃2 + b1Z2θ̃2 − b1γ2sgn(x̃2) + b1D4) + x̃4(−η4x̃4 + b2Z3θ̃3

− b2γ3sgn(x̃4) + b2D5) + x̃6(−η6x̃6 + b3Z4θ̃4 − b3γ4sgn(x̃6) + b3D6) + x̃8(−η8x̃8

+
1
m
(cosx1 cosx3Z1θ̃1 −γ1sgn(x̃8) + cosx1 cosx3D3))

+
1
m
(−AT3Z

T
1 cosx1 cosx3x̃8)

TA−13 θ̃1 + b1(−A
T
4Z

T
2 x̃2)

TA−14 θ̃2 + b2(−A
T
5Z

T
3 x̃4)

TA−15 θ̃3

+ b3(−AT6Z
T
4 x̃6)

TA−16 θ̃4) =
1
2
((−η2x̃22 − η4x̃

2
4 − η6x̃

2
6 − η8x̃

2
8)− b1(γ2sgn(x̃2)−D4)x̃2

− b2(γ3sgn(x̃4)−D5)x̃4 − b3(γ4sgn(x̃6)−D6)x̃6 −
1
m
(γ1sgn(x̃8)− cosx1 cosx3D3)x̃8)

≤ 0.

If x̃2i > 0 for i = 1,2,3 then,

sgn(x̃2i ) = 1
γi≥|Di+2|−−−−−−−→ (γ2isgn(x̃2i −D2i+2)x̃2i ≥ 0

⇒−bi(γ2isgn(x̃2i )−D2i+2)x̃2i ≤ 0,

and if x̃2i < 0 for i = 1,2,3 then,

sgn(x̃2i ) = −1
γi≥|Di+2|−−−−−−−→ (γ2isgn(x̃2i −D2i+2)x̃2i ≥ 0

⇒−bi(γ2isgn(x̃2i )−D2i+2)x̃2i ≤ 0.

Similarly, if x̃8 > 0 then,

sgn(x̃8) = 1
γ1≥|D3|−−−−−−→ (γ1sgn(x̃8)− cosx1 cosx3D3)x̃8 ≥ 0

⇒− 1
m
(γ1sgn(x̃8)− cosx1 cosx3D3)x̃8 ≤ 0,

and if x̃8 < 0 then,

sgn(x̃8) = −1
γ1≥|D3|−−−−−−→ (γ1sgn(x̃8)− cosx1 cosx3D3)x̃8 ≥ 0

⇒− 1
m
(γ1sgn(x̃8)− cosx1 cosx3D3)x̃8 ≤ 0.

The proposed nonlinear control method guarantees stability and tracking conver-
gence based on the Lyapunov stability theorem.

5 Simulation Results
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Example 1. To probe the estimator, consider perturbations as follows:

D1 = 0.05 ∗ cos(0.1t), D2 = 0.01sin(t), D3 = 0.02cos(t),

D4 = 1+0.5sin(0.2t), D5 = 0.2+0.1sin(0.2t), D6 = 0.4+0.2sin(0.2t),

and constant coefficients as follows:

a1 = −a3 = −1, a2 = −a4 = −0.00155, a5 = 0,

b1 = b2 = 13.89, b3 = 23.14, w = 0.5, m = 1.830, g = 9.81,

and also consider the desirable trajectories as follows:

x2d = 0.1e−t , x4d = 0.01e−2t , x6d = e
−0.01t , x8d = 0.5e−2t ,

with the following initial data:

(x1,x2,x3,x4,x5,x6) = (0.1,0.5,0.15,0.2,−0.05),

(x7,x8,x9,x10,x11,x12) = (100,−0.05,50,0.005,150,0.01),

θ1 = 1.8, θ2 = (0.1,−0.09,0.0005), θ3 = (0.1,−0.09,−0.0005),

θ4 = (0.04,−0.004).

Finally, by applying the adaptive control described in this article, the trajectory of
the roll, pitch, and yaw angles and the trajectory of the hexa-rotor position are shown
respectively in Figure 3.

Example 2. To probe the estimator, consider perturbations as follows:

D1 = 0.05 ∗ e−4t
2
, D2 = 0.01sin(t), D3 = e

−5t2 ,

D4 = −e−6t
2
, D5 = 0.2+0.1sin(0.2t), D6 = 0.4+0.2sin(0.2t),

and constant coefficients as follows:

a1 = 1.2, a2 = 0.002, a3 = −1, a4 = −0.01, a5 = 0.02,

b1 = 25.4, b2 = 17.6, b3 = 23.14, w = 1, m = 1.540, g = 9.81,

and consider the desirable trajectories as follows:

x2d = e
−t2 , x4d = 0.1e−2t , x6d = 0.2e−0.01t , x8d = e

−t ,

with the following initial data:

(x1,x2,x3,x4,x5,x6) = (0.75,0.01,1.02,−0.1,−0.05,−0.05),
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Figure 3: Position of the hexa-rotor in the earth reference frame.

(x7,x8,x9,x10,x11,x12) = (200,−0.01,50,0.05,40,0.1),

θ1 = 1.540, θ2 = (0.39,0.47,−0.000787), θ3 = (0.057,0.057,−0.000568),

θ4 = (0.043,−0.000864).

Finally, by applying the adaptive control described in this paper, the trajectory of the
roll, pitch, and yaw angles and the trajectory of the position of the hexa-rotor position
are shown respectively in Figure 4.

6 Conclusion

In this paper, a nonlinear robust adaptive control strategy based on Lyapunov analysis
was developed. The objective of the proposed robust adaptive controller is to reduce
the errors of the trajectories by tracking the desired values. The stability of the con-
trolled process, the convergence of the tracking, and bounded parameter adaptation
were demonstrated using Lyapunov analysis. The proposed nonlinear robust adaptive
control strategy can be used in future works in simulated dynamic systems and realistic
health treatments of some patients.
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Figure 4: Position of the hexa-rotor in the earth reference frame.
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