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1 Introduction

Let A be an algebra. A linear mapping δ :A→A is called a derivation if it satisfies the
Leibniz rule δ(xy) = δ(x)y + xδ(y) for all x,y ∈ A. Let N0 be the set of all nonnegative
integers. If we define a sequence D = {dn}n∈N0

of linear mappings on A by d0 = I and
dn =

δn
n! , where I is the identity mapping on A, then the Leibniz rule ensures that dn’s

satisfy the condition
dn(xy) =

∑
i+j=n

di(x)dj (y),

for every x,y ∈ A and each non-negative integer n. Such a sequence D is called a higher
derivation. Note that d1 is a derivation, if D is a higher derivation. Higher derivations
were introduced by Hasse and Schmidt [3], and algebraists sometimes call them Hasse-
Schmidt derivations. For an account on higher derivations the reader is referred to the
book [2].

Mirzavaziri [6] proved that there exists a one-to-one correspondence between higher
derivations and the family of sequences of derivations on torsion free algebras. He
showed that for each higher derivation D = {dn}∞n=0 on a torsion free algebra A, there
is a unique sequence ∆ = {δn}∞n=1 of derivations on A such that

dn =
n∑
i=1

( ∑
∑i
j=1 rj=n

( i∏
j=1

1
rj + . . .+ ri

)
δr1 . . .δri

)
,

where the inner summation is taken over all positive integers rj with
∑i
j=1 rj = n.

Let x ∈Mn(R) be fixed. For inner derivation

δx(a) = ax − xa (a ∈Mn(R)),

on Mn(R), the ordinary higher derivation D = {dn}∞n=0 on Mn(R) is defined as follows.

d0 = I, dn(a) =
δnX (a)
n!

=
n∑
k=0

(−1)k

n!

(
n
k

)
xkaxn−k (a ∈Mn(R)).

For example, consider x ∈M2(R) given by

x =
(
1 0
0 −1

)
.

Then, the ordinary higher derivation corresponding to x, is defined by d0 = I and

dn(a) =
n∑
k=0

(−1)k

n!

(
n
k

)
xkaxn−k

=
n∑
k=0

(−1)k

n!

(
n
k

)(
a11 (−1)n−ka12

(−1)ka21 (−1)na22

)
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=


a11
n!

∑n
k=0(−1)k

(n
k

) a12
n!

(−1)n
∑n
k=0

(n
k

)
a21
n!

∑n
k=0

(n
k

) a22
n!

(−1)n
∑n
k=0(−1)k

(n
k

)


=
2n

n!

(
0 (−1)na12
a21 0

)
,

for all a = [aij ] ∈M2(R) and each n ∈N.

A functional equation is said to be stable, if any approximate solution of it, is near
to a true solution of it. The stability problem of functional equations originated from
the following question of Ulam [13]: Under what condition does there exist an additive
mapping near an approximately additive mapping? Hyers [5] gave a partial affirmative
answer to the question of Ulam in the context of Banach spaces. A generalized version
of the theorem of Hyers for approximately linear mapping was given by Th. M. Rassias
[9]. After that, several functional equations have been extensively investigated by a
number of authors (for instances, see [7, 8, 10, 11]).

In this paper, we prove that any orthogonally higher ring derivation on an inner
product algebra (an algebra equipped with an inner product) is a higher ring derivation.
Also, we find the general solution and prove the generalized Hyers-Ulam stability of
the pexider orthogonally higher ring derivations on inner product Banach algebras (a
Banach algebra equipped with an inner product).

2 Pexider Orthoganally Higher Ring Derivations

In this section, we first show that any orthogonally higher ring derivation on an inner
product algebra is a higher ring derivation.

Definition 1. Let A be an inner product algebra. A sequence D = {dn}∞n=0 of mappings
form A into A with d0 = I is called an orthogonally higher ring derivation if for each
n ∈N,

dn(x + y) = dn(x) + dn(y), (1)
for all x,y ∈ A with 〈

x,y
〉
= 0 and

dn(xy) =
∑
i+j=n

di(x)dj (y), (2)

for all x,y ∈ A.

Note that an orthogonally additive mapping cannot be additive or linear in general.
Ratz in Corollary 10 of [12] showed that if (X,⊥) is an inner product space and (Y ,+) a
uniquely 2-divisible abelian group, then a function d : X→ Y is orthogonally additive,
if and only if there exist additive mappings a : R → Y , b : X → Y such that d(x) =
a(∥x∥2) + b(x), for every x ∈ X.

Using this corollary, in the next theorem we characterize the orthogonally higher
ring derivations.
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Theorem 1. Let A be an inner product algebra. Any orthogonally higher ring deriva-
tion on A is a higher ring derivation.

Proof. Let D = {dn}∞n=0 be an orthogonally higher ring derivation on A. Since for
any n ∈N, dn is an orthogonally additive mapping on the inner product space A, by
Corollary 10 of [12], it follows that dn is of the form

dn(x) = an(∥x∥2) + bn(x) (x ∈ A),

in which an : R→A and bn :A→A are additive mappings. Using this, it follows from
(2) that

an(∥xy∥2) + bn(xy)

=
∑
i+j=n

(ai(∥x∥2) + bi(x))(aj (∥y∥2) + bj (y))

=
∑
i+j=n

(
ai(∥x∥2)aj (∥y∥2) + ai(∥x∥2)bj (y) + bi(x)aj (∥y∥2) + bi(x)bj (y)

)
,

for all x,y ∈ A. Let k ∈N, replacing x by 2kx and y by 2ky in the above equation, we
obtain

24kan(∥xy∥2) + 22kbn(xy)

=
∑
i+j=n

(24kai(∥x∥2)aj (∥y∥2) + 23kai(∥x∥2)bj (y) + 23kbi(x)aj (∥y∥2) + 22kbi(x)bj (y)),

for all x,y ∈ A. Dividing the above equation by 24k and letting k→∞, we get

an(∥xy∥2) =
∑
i+j=n

ai(∥x∥2)aj (∥y∥2) (x,y ∈ A), (3)

which implies that

22kbn(xy) =
∑
i+j=n

(23kai(∥x∥2)bj (y) + 23kbi(x)aj (∥y∥2) + 22kbi(x)bj (y)) (x,y ∈ A).

Also, dividing the above equation by 23k and letting k→∞, we get∑
i+j=n

(ai(∥x∥2)bj (y) + bi(x)aj (∥y∥2)) = 0 (x,y ∈ A),

which implies that
bn(xy) =

∑
i+j=n

bi(x)bj (y) (x,y ∈ A).

Since d0 = I (by definition of higher derivation), it follows that b0 = I and a0 = 0.
Therefore {bn}∞n=0 is a higher ring derivation. By induction on n we show that an = 0
for each n ∈N. Assume that ak = 0 for all k < n. From Equation (3) we deduce that
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an(∥xy∥2) = an(∥x∥2)a0(∥y∥2) +
∑
i+j=n

0≤i≤n−1

ai(∥x∥2)aj (∥y∥2),

which implies an(∥xy∥2) = 0 for all x,y ∈ A. For each t ≥ 0 define xy =
√
t∥z∥−1z (0 ,

z ∈ A). Then an(t) = an(∥xy∥2) = 0. Since an is additive, it is odd. Thus, for each t < 0,
an(t) = −an(−t) = 0 and so an = 0 on R. This completes the proof.

Corollary 1. Let A be an inner product algebra. Any orthogonally ring derivation on
A is a ring derivation.

Definition 2. Let A be an inner product algebra. If F = {fn}∞n=0, G = {gn}∞n=0 and
H = {hn}∞n=0 are sequences of mappings from A into A such that f0 = g0 = h0 = I and
for each n ∈N0,

fn(x + y) = gn(x) + hn(y), (4)
for all x,y ∈ A with 〈

x,y
〉
= 0 and

fn(xy) =
∑
i+j=n

gi(x)hj (y), (5)

for all x,y ∈ A, then the triple (F,G,H ) is siad to be a pexider orthogonally higher ring
derivation on A.

To see a similar aspect of the above definition, the reader is referred to [1, 4].

Remark 1. In the framework of unital inner product algebras, each pexider orthogo-
nally higher ring derivation is in fact a higher ring derivation. To see this, let A be a
unital inner product algebra with the identity element e. Letting y = 0 in equation (4)
for n = 1 we obtain

f1(x) = g1(x) + h1(0), (x ∈ A). (6)
On the other hand, letting y = e in equation (5) for n = 1 we have

f1(x) = g1(x)h0(e) + g0(x)h1(e) = g1(x)e+ xh1(e), (x ∈ A). (7)

Comparing (6) and (7) we get h1(0) = xh1(e) for all x ∈ A. Putting x = 0 in this equation
we have h1(0) = 0. So, it follows from (6) that f1(x) = g1(x) for all x ∈ A.

Reasoning like above, we get that g1(0) = 0 and so f1(x) = h1(x) for all x ∈ A. Hence
f1 = g1 = h1, and consequently, f1 is an ordinary derivation on A. By continuing this
process, we can prove that fn = gn = hn for all n ∈N, which means that {fn}∞n=0 is an
orthogonally higher ring derivation and so by Theorem 1, is a higher ring derivation on
A.

Proposition 1. Let A be an inner product algebra. If the triple (F,G,H ) is a pexider
orthogonally higher ring derivation on A, then there exists a higher ring derivation
D = {dn}∞n=0 on A such that for each n ∈N0,

fn(x) = dn(x) + fn(0), gn(x) = dn(x) + gn(0), hn(x) = dn(x) + hn(0),

for all x ∈ A.
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Proof. Putting x = y = 0 in (4), we conclude that fn(0) = gn(0) + hn(0). Putting x = 0
in (4), we get fn(y) = gn(0) + hn(y) for all y ∈ A and so

hn(y) = fn(y)− gn(0) (y ∈ A). (8)

Putting y = 0 in (4), we get fn(x) = gn(x) + hn(0) for all x ∈ A and so

gn(x) = fn(x)− hn(0) (x ∈ A). (9)

If we define the function dn : A → A by dn(x) = fn(x) − fn(0), then using relations
(8) and (9), we have

fn(x) = dn(x) + fn(0), gn(x) = dn(x) + gn(0), hn(x) = dn(x) + hn(0), (10)

for all x ∈ A and n ∈N0. Substituting equations (10) into (4), we obtain

dn(x + y) = dn(x) + dn(y),

for all x,y ∈ A with 〈
x,y

〉
= 0 and n ∈N0. That is, for any n ∈N0, the function dn is

orthogonally additive.
Substituting equations (10) into (5), we obtain

dn(xy) + fn(0) =
∑
i+j=n

(di(x) + gi(0))(dj (y) + hj (0))

=
∑
i+j=n

(di(x)dj (y) + di(x)hj (0) + gi(0)dj (y) + gi(0)hj (0))

for all x,y ∈ A. Putting x = y = 0 in the last equation, we get

fn(0) =
∑
i+j=n

gi(0)hj (0),

and so
dn(xy) =

∑
i+j=n

(di(x)dj (y) + di(x)hj (0) + gi(0)dj (y)), (11)

for all x,y ∈ A. Putting y = 0 and x = 0 in equation (11), we get respectively,∑
i+j=n

di(x)hj (0) = 0,
∑
i+j=n

gi(0)dj (y) = 0,

for all x,y ∈ A, which implies that

dn(xy) =
∑
i+j=n

di(x)dj (y),

for all x,y ∈ A. That is, D = {dn}∞n=0 is an orthogonally higher ring derivation and so
by Theorem 1, is a higher ring derivation.



99Ekrami S.Kh./ COAM, 7 (1), Winter-Spring 2022

In the next theorems, we will prove the generalized Hyers-Ulam stability of the
pexider orthoganally higher ring derivations.

Theorem 2. Let A be an inner product Banach algebra and φ,ψ :A×A→ [0,∞) be
functions such that for all x,y ∈ A,

lim
k→∞

2kφ(2−kx,2−ky) = 0, lim
k→∞

22kψ(2−kx,2−ky) = 0. (12)

Suppose that φ(x,0),φ(0, y) ≤ φ(x,y) for all x,y ∈ A and there exists M > 0 such that
for all x,y ∈ A with 〈

x,y
〉
= 0 and 〈

x + y,x − y
〉
= 0,

max {φ(x,y),φ(x,−y),φ(x + y,x − y)} ≤Mφ(x,x),

and the limit

φ̃(x) =
∞∑
k=1

2k−1φ(2−kx,2−kx), (13)

exists for all x ∈ A. If F = {fn}∞n=0, G = {gn}∞n=0 and H = {hn}∞n=0 are sequences of
mappings from A into A such that for any n ∈N0, fn is odd, gn(0) = hn(0) = 0 and

∥fn(x + y)− gn(x)− hn(y)∥ ≤ φ(x,y), (14)

for all x,y ∈ A with 〈
x,y

〉
= 0 and∥∥∥∥fn(xy)− ∑

i+j=n

gi(x)hj (y)
∥∥∥∥ ≤ ψ(x,y), (15)

for all x,y ∈ A, then there exists a unique higher ring derivation D = {dn}∞n=0 from A
into A such that

∥fn(x)− dn(x)∥ ≤ 9Mφ̃(x),
∥gn(x)− dn(x)∥ ≤ 9Mφ̃(x) +φ(x,0),
∥hn(x)− dn(x)∥ ≤ 9Mφ̃(x) +φ(0,x),

(16)

for all x ∈ A and n ∈N0.

Proof. Since for all x ∈ A, ⟨x,0⟩ = 0, so putting y = 0 in (14), we get

∥fn(x)− gn(x)∥ ≤ φ(x,0), (17)

for all x ∈ A. Also putting x = 0 in (14), we get

∥fn(y)− hn(y)∥ ≤ φ(0, y), (18)

for all y ∈ A. Using (14), (17) and (18), we have

∥fn(x + y)− fn(x)− fn(y)∥ ≤ 3φ(x,y), (19)

for all x,y ∈ A with 〈
x,y

〉
= 0.

Let n ∈ N0 and x ∈ A be fixed. There exists y ∈ A such that 〈
x,y

〉
= 0 and〈

x + y,x − y
〉
= 0; then, moreover, 〈

x,−y
〉
= 0. Applying inequality (19) for the orthog-

onal vectors (x,−y) and (x + y,x − y), we get
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∥fn(x − y)− fn(x) + fn(y)∥ ≤ 3φ(x,−y), (20)

∥fn(2x)− fn(x + y)− fn(x − y)∥ ≤ 3φ(x + y,x − y). (21)

Using (19), (20) and (21), we have

∥fn(2x)− 2fn(x)∥ ≤ 3(φ(x,y) +φ(x,−y) +φ(x + y,x − y)) ≤ 9Mφ(x,x). (22)

From the above inequality we get

∥fn(x)− 2kfn(2−kx)∥ ≤
k∑

m=1

∥2m−1fn(2−(m−1)x)− 2mfn(2−mx)∥

≤ 9M
k∑

m=1

2m−1φ(2−mx,2−mx).

It follows from (13) and the above inequality that the sequence {2kfn(2−kx)} is Cauchy
in Banach algebra A and so is convergent. If we define the mapping dn :A→A by

dn(x) := lim
k→∞

2kfn(2
−kx) (x ∈ A),

then
∥fn(x)− dn(x)∥ ≤ 9Mφ̃(x),

for all x ∈ A.
It follows from (17) and (18) that for all x ∈ A and n ∈N0

∥2kfn(2−kx)− 2kgn(2−kx)∥ ≤ 2kφ(2−kx,0),

and
∥2kfn(2−kx)− 2khn(2−kx)∥ ≤ 2kφ(0,2−kx).

So taking limit, we get

lim
k→∞

2kgn(2
−kx) = lim

k→∞
2khn(2

−kx) = dn(x),

for all x ∈ A and n ∈N0 and also using (17) and (18) we get

∥gn(x)− dn(x)∥ ≤ 9Mφ̃(x) +φ(x,0),

∥hn(x)− dn(x)∥ ≤ 9Mφ̃(x) +φ(0,x).

Let x,y ∈ A with 〈
x,y

〉
= 0. It follows from (14) that for all x ∈ A and n ∈N0

∥dn(x + y)− dn(x)− dn(y)∥ = lim
k→∞
∥2kfn(2−k(x + y))− 2kgn(2−kx)− 2khn(2−ky)∥

≤ lim
k→∞

2kφ(2−kx,2−ky) = 0.

That is, the mappings dn are orthogonally additive.
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Let x,y ∈ A and n ∈N0. Replacing x by 2−kx and y by 2−ky in (15) and multiplying
by 22k , we have

22k
∥∥∥∥fn((2−kx)(2−ky))− ∑

i+j=n

gi(2
−kx)hj (2

−ky)
∥∥∥∥ ≤ 22kψ(2−kx,2−ky),

which tends to zero as k→∞. Since the sequence {2kgi(2−kx)} converges for all x ∈ A, it
is bounded. Thus for each x ∈ A there is Cx > 0 such that ∥2kgi(2−kx)∥ ≤ Cx. Therefore∥∥∥∥dn(xy)− ∑

i+j=n

di(x)dj (y)
∥∥∥∥

≤ ∥dn(xy)− 22kfn(2−2kxy)∥+
∥∥∥∥22kfn(2−2kxy)− ∑

i+j=n

(2kgi(2
−kx))(2khj (2

−ky))
∥∥∥∥

+
∥∥∥∥ ∑
i+j=n

(2kgi(2
−kx)− di(x))dj (y)

∥∥∥∥+ ∥∥∥∥ ∑
i+j=n

(2kgi(2
−kx))(2khj (2

−ky)− dj (y))
∥∥∥∥

≤ ∥dn(xy)− 22kfn(2−2kxy)∥+22k
∥∥∥∥fn((2−kx)(2−ky))− ∑

i+j=n

gi(2
−kx)hj (2

−ky)
∥∥∥∥

+
∑
i+j=n

∥2kgi(2−kx)− di(x)∥∥dj (y)∥+
n∑
j=0

Cx∥2khj (2−ky)− dj (y)∥,

which tends to zero as k→∞. Therefore the sequence D = {dn}∞n=0 is an orthogonally
higher ring derivation and so by Theorem 1 it is a higher ring derivation.

If D′ = {d ′n}∞n=0 is another higher ring derivation satisfying (16), then for each n ∈N0
we have

∥dn(x)− d ′n(x)∥ ≤ ∥dn(x)− fn(x)∥+ ∥fn(x)− d ′n(x)∥ ≤ 18Mφ̃(x),

for all x ∈ A. Therefore

∥dn(x)− d ′n(x)∥ = lim
k→∞

2−k∥dn(2kx)− d ′n(2kx)∥ ≤ lim
k→∞

2−k(18Mφ̃(2kx)) = 0.

So we obtian that dn(x) = d ′n(x) for all x ∈ A and n ∈N0 and then D = D′. Thus the
higher ring derivation D is unique and this completes the proof.

Theorem 3. Let A be an inner product Banach algebra and φ,ψ :A×A→ [0,∞) be
functions such that for all x,y ∈ A

lim
k→∞

2−kφ(2kx,2ky) = 0, lim
k→∞

2−2kψ(2kx,2ky) = 0.

Suppose that φ(x,0),φ(0, y) ≤ φ(x,y) for all x,y ∈ A and there exists M > 0 such that
for all x,y ∈ A with 〈

x,y
〉
= 0 and 〈

x + y,x − y
〉
= 0,

max {φ(x,y),φ(x,−y),φ(x + y,x − y)} ≤Mφ(x,x),

and the limit
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φ̃(x) =
∞∑
k=1

2−kφ(2k−1x,2k−1x),

exists for all x ∈ A. If F = {fn}∞n=0, G = {gn}∞n=0 and H = {hn}∞n=0 are sequences of
mappings from A into A such that for any n ∈N0, fn is odd, gn(0) = hn(0) = 0 and

∥fn(x + y)− gn(x)− hn(y)∥ ≤ φ(x,y),

for all x,y ∈ A with 〈
x,y

〉
= 0 and∥∥∥∥fn(xy)− ∑

i+j=n

gi(x)hj (y)
∥∥∥∥ ≤ ψ(x,y),

for all x,y ∈ A, then there exists a unique higher ring derivation D = {dn}∞n=0 from A
into A such that

∥fn(x)− dn(x)∥ ≤ 9Mφ̃(x),
∥gn(x)− dn(x)∥ ≤ 9Mφ̃(x) +φ(x,0),
∥hn(x)− dn(x)∥ ≤ 9Mφ̃(x) +φ(0,x),

for all x ∈ A and n ∈N0.

Proof. As in the proof of Theorem 2, replacing x by 2k−1x in (22) and multiplying by
2−k we get

∥2−kfn(2kx)− fn(x)∥ ≤ 9M
k∑

m=1

2−mφ(2m−1x,2m−1x),

for all x ∈ A and n ∈N0. Thus the Cauchy sequence {2−kfn(2kx)} is convergent and so
for each n ∈N0 there exists a mapping dn :A→A defined by

dn(x) := lim
k→∞

2−kfn(2
kx) (x ∈ A),

such that
∥fn(x)− dn(x)∥ ≤ 9Mφ̃(x),

for all x ∈ A. The rest of proof is similar to that of Theorem 2.

Corollary 2. Let A be an inner product Banach algebra and ε > 0 be a real number.
If F = {fn}∞n=0, G = {gn}∞n=0 and H = {hn}∞n=0 are sequences of mappings from A into A
such that for any n ∈N0, fn is odd, gn(0) = hn(0) = 0 and

∥fn(x + y)− gn(x)− hn(y)∥ ≤ ε,

for all x,y ∈ A with 〈
x,y

〉
= 0 and∥∥∥∥fn(xy)− ∑

i+j=n

gi(x)hj (y)
∥∥∥∥ ≤ ε,

for all x,y ∈ A, then there exists a unique higher ring derivation D = {dn}∞n=0 from A
into A such that

∥fn(x)− dn(x)∥ ≤ 9ε, ∥gn(x)− dn(x)∥ ≤ 10ε, ∥hn(x)− dn(x)∥ ≤ 10ε,

for all x ∈ A and n ∈N0.
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Proof. This follows from Theorem 3 by taking φ(x,y) = ψ(x,y) = ε for all x,y ∈ A.

The next corollary follows from Theorem 2 (Theorem 3).

Corollary 3. Let A be an inner product Banach algebra and φ,ψ be functions sat-
isfying the conditions of Theorem 2 (Theorem 3). If F = {fn}∞n=0 is a sequence of odd
mappings from A into A such that for any n ∈N0

∥fn(x + y)− fn(x)− fn(y)∥ ≤ φ(x,y),

for all x,y ∈ A with 〈
x,y

〉
= 0 and

∥∥∥∥fn(xy)− ∑
i+j=n

fi(x)fj (y)
∥∥∥∥ ≤ ψ(x,y),

for all x,y ∈ A, then there exists a unique higher ring derivation D = {dn}∞n=0 from A
into A such that

∥fn(x)− dn(x)∥ ≤ 3Mφ̃(x),

for all x ∈ A and n ∈N0.

Example 1. Define the sequence of odd functions F = {fn :M2(R)→M2(R)}∞n=0 by

f0(a) =
(
a11 a12 +

a12
|a12|+1

a21 a22

)
, fn(a) =

2n

n!

 0 (−1)n
(
a12 +

a12
|a12|+1

)
a21 0

 ,
for all a = [aij ] ∈M2(R) and each n ∈N. Then for all a,b ∈M2(R) and each n ∈N0, we
have

∥fn(a+ b)− fn(a)− fn(b)∥ =
∥∥∥∥2nn!

(
0 (−1)n

(
a12+b12
|a12+b12|+1

− a12
|a12|+1

− b12
|b12|+1

)
0 0

)∥∥∥∥
=
2n

n!

∣∣∣∣(−1)n( a12 + b12
|a12 + b12|+1

− a12
|a12|+1

− b12
|b12|+1

)∣∣∣∣
< 6,

and
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∥fn(ab)−
n∑
i=0

fi(a)fn−i(b)∥ = ∥fn(ab)− f0(a)fn(b)− fn(a)f0(b)−
n−1∑
i=1

fi(a)fn−i(b)∥

=
∥∥∥∥2nn!

(
0 (−1)n

(
a11b12 + a12b22 +

a11b12+a12b22
|a11b12+a12b22|+1

)
a21b11 + a22b21 0

)
− 2n

n!

(
a11 a12 +

a12
|a12|+1

a21 a22

)(
0 (−1)n(b12 +

b12
|b12|+1

)
b21 0

)
− 2n

n!

(
0 (−1)n(a12 +

a12
|a12|+1

)
a21 0

)(
b11 b12 +

b12
|b12|+1

b21 b22

)

−
n−1∑
i=1

2i

i!
2n−i

(n− i)!

(
0 (−1)i(a12 +

a12
|a12|+1

)
a21 0

)(
0 (−1)n−i(b12 +

b12
|b12|+1

)
b21 0

)∥∥∥∥
=
2n

n!

∥∥∥∥( 0 (−1)n(a11b12 + a12b22 +
a11b12+a12b22
|a11b12+a12b22|+1

)
a21b11 + a22b21 0

)
−

(a12 + a12
|a12|+1

)b21 (−1)na11(b12 +
b12
|b12|+1

)

a22b21 (−1)na21(b12 +
b12
|b12|+1

)


−
(−1)nb21(a12 + a12

|a12|+1
) (−1)nb22(a12 +

a12
|a12|+1

)

a21b11 a21(b12 +
b12
|b12|+1

)


−
n−1∑
i=1

(
n
i

)(−1)i(a12 + a12
|a12|+1

)b21 0

0 (−1)n−ia21(b12 +
b12
|b12|+1

)

∥∥∥∥
=
2n

n!

∥∥∥∥−(a12 + a12
|a12|+1

)b12(1 + (−1)n) (−1)n
(

a11b12+a12b22
|a11b12+a12b22|+1

− a11(
b12
|b12|+1

)− b22(
a12
|a12|+1

)
)

0 −a21(b12 +
b12
|b12|+1

)(1 + (−1)n)


−
(a12 + a12

|a12|+1
)b21

∑n−1
i=1 (−1)i

(n
i

)
0

0 a21(b12 +
b12
|b12|+1

)
∑n−1
i=1 (−1)n−i

(n
i

)∥∥∥∥
=
2n

n!

∥∥∥∥(0 (−1)n
(

a11b12+a12b22
|a11b12+a12b22|+1

− a11(
b12
|b12|+1

)− b22(
a12
|a12|+1

)
)

0 0

)∥∥∥∥
=
2n

n!

∣∣∣∣(−1)n( a11b12 + a12b22
|a11b12 + a12b22|+1

− a11
( b12
|b12|+1

)
− b22

( a12
|a12|+1

))∣∣∣∣
< 2(1+ |a11|+ |b22|)
≤ 2(1+ ∥a∥+ ∥b∥).

So, if we define
φ(a,b) = 6, ψ(a,b) = 2(1 + ∥a∥+ ∥b∥),

then by Corollary 3 the higher ring derivation defined by

d0 = I , dn(a) =
2n

n!

(
0 (−1)na12
a21 0

)
satisfies the inequality
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∥fn(a)− dn(a)∥ ≤ 18

for all a ∈M2(R) and each n ∈N0.

3 Conclusion

In this paper, we showed that any orthogonally higher ring derivation on an inner prod-
uct algebra (an algebra equipped with an inner product) is a higher ring derivation.
Also, we found the general solution of pexider orthogonally higher ring derivations on
inner product algebras. Finally, we showed that for any approximate pexider orthogo-
nally higher ring derivation on an inner product Banach algebra A under some control
funtions φ(x,y) and ψ(x,y), there exists a unique higher ring derivation D = {dn}∞n=0 on
A, near the approximate pexider orthogonally higher ring derivation estimated by φ
and ψ.
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