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1 Introduction

Fuzzy numbers are often used to represent and calculate parameter uncertainties in the
procedure of mathematical modeling. Therefore, the analysis and calculation of linear
systems with fuzzy numbers are principal in fuzzy mathematics. In recent decades,
extensive research has been done in the field of fuzzy mathematics and its utilizations
[5, 6, 10, 13, 15, 20, 24, 27, 32, 33, 34].

Friedman et al. have presented an embedding approach to solving general fuzzy
linear systems [22]. Asady et al. have investigated solving general fuzzy linear systems
and have developed a method to solve an m × n fuzzy linear system [16]. Iterative
methods have been proposed to solve fuzzy systems in [2, 3, 7, 8].

The method of Buckley and Qu has been extended to fuzzy systems in the form of
A1X + b1 = A2X + b2, where A1,A2, b1 and b2 are fuzzy matrices with fuzzy numbers.
The classical solution seeks a fuzzy vector X that fulfills the system equation providing
the exact equality between the fuzzy vectors X and b. In general, the solution to the
system A1X + b1 = A2X + b2 is not identical with that of the system AX = b. However,
in the case where the matrix A = A1 −A2 is non-singular, their solutions are identical.
Consequently, the system A1X+b1 = A2X+b2 has been transformed into the fully fuzzy
linear system AX = b, where A = A1 −A2 and b = b2 − b1, and has been solved using a
new algorithm [19, 29]. In addition, a nonlinear programming method has been utilized
to solve fuzzy linear systems [30].

In 2012, the algebraic solution of fuzzy linear systems has been investigated based
on interval theory [11]. In [14, 17, 18], fuzzy systems have been solved using linear
programming problems, and in [21, 25, 28], fuzzy system-solving methods with the
input of complex numbers have been proposed.
Recently, Abbasi et al. have defined new arithmetic operations for fuzzy numbers
[4]. Then, fuzzy equations have been solved using these defined arithmetic operations
[1, 12].

Solving fuzzy linear systems has been extensively studied in recent decades, and
many researchers have utilized the conventional extension principle. This principle
defines the standard fuzzy arithmetic, which can lead to inaccurate solutions since
it does not consider all the accessible information. Despite reasonable solutions for
these methods, they are sometimes complicated with numerous and long techniques
and considerable computation. These challenges and problems in solving fuzzy linear
systems motivated us to propose a more efficient method. For this purpose, we have
studied solving fully fuzzy and dual fuzzy linear systems using Transmission-Average
(TA)-based fuzzy operations proposed in [4] and have proposed an analytical Cramer
method to solve these systems, which is a more effective method compared to common
methods and requires less computation.

The structure of the paper is as follows. In Section 2, the required preliminaries
are presented. In Section 3, the fuzzy Cramer method is used to solve systems of the
form ÃX̃ = B̃ and ÃX̃ + B̃ = C̃X̃ + D̃. In Section 4, numerical examples are presented to
show the effectiveness of the proposed method. Finally, the conclusion ends the paper
in Section 5.
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2 Basic Definitions

Definition 1. [23] Let A be a fuzzy set in R (A =
{
(x,µA(x)) |x ∈ R

}
). Then,

i) A is called normal if there exists an x ∈ R such that µÃ(x) = 1. Otherwise, A is
subnormal,

ii) The support of A, denoted by supp(A), is the subset of R whose elements all have
non-zero membership grades in A. In other words, supp(A) {x ∈ R|µA(x) > 0

},
iii) An α-level set (or α-cut) of a fuzzy set A in R is a non-fuzzy set denoted by Aα

and defined by

Aα =
{{
x ∈ R | µÃ(x) > 0

}
, α > 0,

cl (supp(A)) , α = 0,
(1)

where cl (supp(A)) denotes the closure of the support of A.

Definition 2. Let Ã be a Normal, Convex, and Continuous (NCC) fuzzy set on the
universal set U. Then, it can be defined from [26]:

ac
(
Ã
)
=
1
2

(
mincore

(
Ã
)
+maxcore

(
Ã
))
.

Definition 3. [26] A fuzzy number Ã is called a pseudo-triangular fuzzy number if its
membership function µÃ(x) is given by

µÃ(x) =


lÃ(x), a ⩽ x ⩽ a,
rÃ(x), a ⩽ x ⩽ a,
0, otherwise,

where lÃ(x) and rÃ(x) are non-decreasing and non-increasing functions respectively. The
pseudo-triangular fuzzy number Ã is denoted by the quintuplet Ã = (a,a,a, lÃ(x), rÃ(x)),
and the triangular fuzzy number by the senary (a,a,a,−,−).

Definition 4. [26] A fuzzy number Ã is called a pseudo-trapezoidal fuzzy number if
its membership function µÃ(x) is given by

µÃ(x) =


lÃ(x), a ⩽ x ⩽ a1,
1, a1 ⩽ x ⩽ a2,

rÃ(x), a2 ⩽ x ⩽ a,
0, otherwise,

where lÃ(x) and rÃ(x) are non-decreasing and non-increasing functions, respectively.
The pseudo-trapezoidal fuzzy number Ã is denoted by the senary Ã = (a,a1, a2, a, lÃ(x), rÃ(x)),
and the trapezoidal fuzzy number Ã is indicated by the senary Ã = (a,a1, a2, a,−,−).

Definition 5. [12] Consider two pseudo-triangular fuzzy numbers:

Ã = (a,a,a, lÃ(x), rÃ(x)) , B̃ =
(
b,b,b, lB̃(x), rB̃(x)

)
),
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with the following α-cut forms:

Ã =
⋃
α

Aα , Aα =
[
Aα ,Aα

]
, B̃ =

⋃
α

Bα , Bα =
[
Bα ,Bα

]
.

In what follows, fuzzy arithmetic operations are defined based on TA:

Ã+ B̃ =
⋃
α

(
Ã+ B̃

)
α
,

(
Ã+ B̃

)
α
=

[
a+ b
2

+
(
Aα +Bα

2

)
,
a+ b
2

+
(
Aα +Bα

2

)]
,

(2)

Ã− B̃ =
⋃
α

(
Ã− B̃

)
α
,

(
Ã− B̃

)
α
=

[
a− 3b
2

+
(
Aα +Bα

2

)
,
a− 3b
2

+
(
Aα +Bα

2

)]
,

(3)

Ã.B̃ =
⋃
α

(
Ã.B̃

)
α
,

(
Ã.B̃

)
α
=



[(
b
2

)
Aα +

(a
2

)
Bα +

(
b
2

)
Aα +

(a
2

)
Bα

]
, a > 0, b > 0,

[(
b
2

)
Aα +

(a
2

)
Bα +

(
b
2

)
Aα +

(a
2

)
Bα

]
, a > 0, b < 0,

[(
b
2

)
Aα +

(a
2

)
Bα +

(
b
2

)
Aα +

(a
2

)
Bα

]
, a < 0, b < 0,

[(
b
2

)
Aα +

(a
2

)
Bα +

(
b
2

)
Aα +

(a
2

)
Bα

]
, a < 0, b > 0,

(4)

Ã−1 =
⋃
α

(
Ã−1

)
α
,
(
Ã−1

)
α
=

[ 1
a2

Aα ,
1
a2

Aα

]
, (5)

Ã.B̃−1 =
⋃
α

(
Ã.B̃−1

)
α
,

(
Ã.B̃−1

)
α
=



[( 1
2b

)
Aα +

( a

2b2

)
Bα +

( 1
2b

)
Aα +

( a

2b2

)
Bα

]
, a > 0, b > 0,

[( 1
2b

)
Aα +

( a

2b2

)
Bα +

( 1
2b

)
Aα +

( a

2b2

)
Bα

]
, a > 0, b < 0,

[( 1
2b

)
Aα +

( a

2b2

)
Bα +

( 1
2b

)
Aα +

( a

2b2

)
Bα

]
, a < 0, b < 0,

[( 1
2b

)
Aα +

( a

2b2

)
Bα +

( 1
2b

)
Aα +

( a

2b2

)
Bα

]
, a < 0, b > 0.

(6)
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Definition 6. [4] Consider two pseudo-trapezoidal fuzzy numbers:

Ã = (a,a1, a2, a, lÃ(x), rÃ(x)) , B̃ =
(
b,b1, b2, b, lB̃(x), rB̃(x)

)
,

with the following α-cut forms:

Ã =
⋃
α

Aα , Aα =
[
Aα ,Aα

]
, 0 ⩽ α ⩽ 1,

B̃ =
⋃
α

Bα , Bα =
[
Bα ,Bα

]
, 0 ⩽ α ⩽ 1,

B1 = [b1, b2] A1 = [a1, a2] .

Let
φ =

a1 + a2
2

, ϕ =
b1 + b2

2
.

In what follows, fuzzy arithmetic operations are defined based on TA:

Ã+ B̃ =
⋃
α

(
Ã+ B̃

)
α
,

(
Ã+ B̃

)
α
=

[
ϕ +φ

2
+
(
Aα +Bα

2

)
,
ϕ +φ

2
+
(
Aα +Bα

2

)]
,

(7)

Ã− B̃ =
⋃
α

(
Ã− B̃

)
α
,

(
Ã− B̃

)
α
=

[
ϕ − 3φ

2
+
(
Aα +Bα

2

)
,
ϕ − 3φ

2
+
(
Aα +Bα

2

)]
,

(8)

Ã.B̃ =
⋃
α

(
Ã.B̃

)
α
,

(
Ã.B̃

)
α
=



[(φ
2

)
Aα +

(
ϕ

2

)
Bα +

(φ
2

)
Aα +

(
ϕ

2

)
Bα

]
, ϕ > 0,φ > 0,

[(φ
2

)
Aα +

(
ϕ

2

)
Bα +

(φ
2

)
Aα +

(
ϕ

2

)
Bα

]
, ϕ > 0,φ < 0,

[(φ
2

)
Aα +

(
ϕ

2

)
Bα +

(φ
2

)
Aα +

(
ϕ

2

)
Bα

]
, ϕ < 0,φ < 0,

[(φ
2

)
Aα +

(
ϕ

2

)
Bα +

(φ
2

)
Aα +

(
ϕ

2

)
Bα

]
, ϕ < 0,φ > 0,

(9)

Ã−1 =
⋃
α

(
Ã−1

)
α
,
(
Ã−1

)
α
=

[
1
ϕ2Aα ,

1
ϕ2Aα

]
, (10)
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Ã.B̃−1 =
⋃
α

(
Ã.B̃−1

)
α
,

(
Ã.B̃−1

)
α
=



[(
1
2φ

)
Aα +

(
ϕ

2φ2

)
Bα +

(
1
2φ

)
Aα +

(
ϕ

2φ2

)
Bα

]
, ϕ > 0,φ > 0,

[(
1
2φ

)
Aα +

(
ϕ

2φ2

)
Bα +

(
1
2φ

)
Aα +

(
ϕ

2φ2

)
Bα

]
, ϕ > 0,φ < 0,

[(
1
2φ

)
Aα +

(
ϕ

2φ2

)
Bα +

(
1
2φ

)
Aα +

(
ϕ

2φ2

)
Bα

]
, ϕ < 0,φ < 0,

[(
1
2φ

)
Aα +

(
ϕ

2φ2

)
Bα +

(
1
2φ

)
Aα +

(
ϕ

2φ2

)
Bα

]
, ϕ < 0,φ > 0.

(11)

Definition 7. [4] Let FC(R) be a set of pseudo-geometric fuzzy numbers defined on a
set of real numbers. Then, for each Ã there exists 0Ã such that

Ã+0Ã = 0Ã + Ã = Ã, Ã− Ã = 0Ã,

for Ã = (a,a,a, lÃ(x), rÃ(x)), we have:

0Ã = (a− a,0, a− a, lÃ(x + a), rÃ(x + a)) , (12)

and for Ã = (a,a1, a2, a, lÃ(x), rÃ(x)), we have:

0Ã =
(
a−ϕ, a1 − a2

2
,
a2 − a1

2
, a−ϕ, lÃ(x +ϕ), rÃ(x +ϕ)

)
. (13)

Definition 8. [4] Let Ã and B̃ be two NCC fuzzy sets. Then,

Ã � B̃ if and only if ac
(
Ã
)
= ac

(
B̃
)
.

3 The Proposed Method

Definition 9. Let Ã =
[
ãij

]
and B̃ =

[
b̃ij

]
, 1 ⩽ j, j ⩽ n be fuzzy matrices. It is said that

Ã � B̃, if:
∀ 1 ⩽ j, j ⩽ n, ac

(
ãij

)
= ac

(
b̃ij

)
.

Definition 10. Let Ã =
[
ãij

]
, 1 ⩽ j, j ⩽ n be a fuzzy matrix. The corresponding zero

matrix is shown by OÃ and can be defined as follows:

OÃ =


0ã11 0ã12 · · · 0ã1n
0ã21 0ã22 · · · 0ã2n
...

...
...

...
0ãn1 0ãn2 · · · 0ãnn

 ,
where 0ãij , 1 ⩽ i, j ⩽ n is determined based on (12) and (13).
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Lemma 1. If Ã, B̃ and C̃ are fuzzy matrices, then:

i. Ã− Ã �OÃ,

ii. Ã+OÃ � Ã,

iii. Ã.B̃ = B̃.Ã,

iv. Ã.B̃+ Ã+ C̃ � Ã.
(
B̃+ C̃

)
.

Definition 11. The determinant of a 2 × 2 fuzzy matrix Ã =
(
ã11 ã12
ã21 ã22

)
is shown by

|Ã| and is defined by
|Ã| = (ã11.ã22)− (ã12.ã21) . (14)

Definition 12. Let Ã =
[
ãij

]
n×n

. The (i, j)-minor of Ã, which is the determinant of the
matrix of Ã formed by deleting the i-th row and j-th column of Ã, is denoted by M̃ij .

Example 1. Consider the following fuzzy matrix:

Ã =


(−4,1,2,−,−) (5,6,7,−,−)

(
1,2,4,

(
1− (x − 2)2

) 1
2 ,

(
1− 1

4 (x − 2)
2
) 1
2

)
(1,2,3,−,−) (6,6,7,−,−) (1,2,3,−,−)
(−4,1,2,−,−) (4,5,7,−,−) (−7,2,3,−,−)

 .
The (3,1)-minor of Ã is obtained as:

M̃31 =

(5,6,7,−,−)
(
1,2,4,

(
1, (x − 2)2

) 1
2 ,

(
1− 1

4 (x − 2)
2
) 1
2

)
(6,6,7,−,−) (1,2,3,−,−)

 .
Definition 13. Consider the fuzzy matrix

Ã =


ã11 ã12 · · · ã1n
ã21 ã22 · · · ã2n
...

...
...

...
ãn1 ãn2 · · · ãnn

 .
The (i, j) element of the cofactor matrix of Ã is shown by Ãij and is defined as follows:

Ãij = (−1)i+j |M̃ij |.

Example 2. Consider the matrix Ã of Example 1. Using Definitions 11 to 13 and the
TA-based arithmetic operations (2) to (6), it is obtained:

Ã13 =
(
−21
4
,4,8,−,−

)
.
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Definition 14. (Expansion method for calculating the determinant of an n × n fuzzy
matrix). Consider the fuzzy matrix

Ã =


ã11 ã12 · · · ã1n
ã21 ã22 · · · ã2n
...

...
...

...
ãn1 ãn2 · · · ãnn

 .
The determinant of the matrix can be evaluated by expanding each row or column of
the matrix. For example, by expanding on the first row, we have:

|Ã| = ã11.Ã11 + ã12.Ã12 + · · ·+ ã1n.Ã1n. (15)

Example 3. Consider the matrix Ã of Example 1. From (15), and (2) to (6), it can
be achieved that:

|Ã| =
⋃
α

[
−60
16
− 1
2

√
1−α2 +

28
16

α,
29
16
− 61
16

α +
17
32

√
1−α2

]
.

Definition 15. The fuzzy matrix Ã is called singular, if |Ã| � 0|Ã| and is called non-
singular, if ac

(
|Ã|

)
, 0.

Definition 16. The following system
ã11 ã12 · · · ã1n
ã21 ã22 · · · ã2n
...

...
...

...
ãn1 ãn2 · · · ãnn



x̃1
x̃2
...
x̃n

 =

b̃1
b̃2
...
b̃n

 , (16)

is called a fully fuzzy vector system and is denoted by ÃX̃ = B̃, where Ã =
[
ãij

]
, 1 ⩽ i,

j ⩽ n is a known n×n fuzzy matrix, B̃ =
[
b̃i
]
is a known n×1 fuzzy vector, and X̃ = [x̃i ]

is an unknown n× 1 fuzzy vector.

Properties of the fuzzy determinant

• If two rows or two columns of a fuzzy matrix Ã are equal, then |Ã| � 0|Ã|.

• In a fuzzy matrix Ã, if for ith row and jth column, j = 1,2, . . . ,n, there is ãij � 0ãij ,
then |Ã| � 0|Ã|.

• For any fuzzy square matrix Ã, we have |Ã| � |ÃT |.

• If two rows or two columns of a fuzzy matrix Ã are switched and the obtained
(or resulting) matrix is called B̃, then |B̃| � |Ã|.
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• In a fuzzy matrix Ã =
[
ãij

]
, if we have ãij � 0ãij for each i, j = 1,2, . . . ,n, then

|Ã| = [0,0].

Example 4. Consider the fuzzy matrix

Ã =
((
0,4,6,−,1− 1

4 (x − 4)
2
) (

0,4,6,−,1− 1
4 (x − 4)

2
)

(−3,−2,−1,−,−) (−3,−2,−1,−,−)

)
,

in which the first and second columns are equal. From (14), it can be found that

|A| =
⋃
α

[
−2+2α − 2

√
1−α,6− 6α

]
,

and as a result, |Ã| � 0|Ã|.

The Fuzzy Cramer method: The solution to the fuzzy system (16) obtained using
the fuzzy Cramer method is achieved as follows:

x̃j =
|Ãj |
|A|

, j = 1,2, . . . ,n, (17)

in which Ãj is determined by substituting B̃ in the jth column of Ã.

Theorem 1. If a fuzzy matrix Ã is non-singular, then the Cramer method always has
a fuzzy solution for the fuzzy system (16).

Definition 17. The following system
ã11 ã12 · · · ã1n
ã21 ã22 · · · ã2n
...

...
...

...
ãn1 ãn2 · · · ãnn



x̃1
x̃2
...
x̃n

+

b̃1
b̃2
...
b̃n

 =

c̃11 c̃12 · · · c̃1n
c̃21 c̃22 · · · c̃2n
...

...
...

...
c̃n1 c̃n2 · · · c̃nn



x̃11 x̃12 · · · x̃1n
x̃21 x̃22 · · · x̃2n
...

...
...

...
x̃n1 x̃n2 · · · x̃nn

+

d̃1
d̃2
...
d̃n

 , (18)

is called the dual fully fuzzy system and can be shown as ÃX̃+B̃ = C̃X̃+D̃ by considering
Ã =

[
ãij

]
n×n

, B̃ =
[
b̃i
]
n×1

, C̃ =
[
c̃ij

]
n×n

and D̃ =
[
d̃i

]
n×1

. It is assumed that the matrix
A−C =

[
aij

]
−
[
cij

]
is non-singular.

Now, the goal is to solve ÃX̃ + B̃ = C̃X̃ + D̃. Therefore, we have:

ÃX̃ + B̃− B̃ = C̃X̃ + D̃ − B̃.

Using Lemma 1, (i) and (ii), we have:

ÃX̃ � C̃X̃ + D̃ − B̃.

Adding −C̃X̃ to both sides of the above equation and using Lemma 1, (i) and (ii), it is
obtained:

ÃX̃ +
(
−C̃

)
X̃ � D̃ − B̃.

Moreover, using Lemma 1,(iv), we achieve:
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(
Ã− C̃

)
X̃ � D̃ − B̃. (19)

Finally, the solution for the fuzzy system (19) is obtained as follows using the fuzzy
Cramer method:

x̃j =

∣∣∣∣∣(Ã− C̃)
j

∣∣∣∣∣∣∣∣∣(Ã− C̃)∣∣∣∣ x̃j =
⋃
α

(
x̃j

)
α

(20)

in which
(
Ã− C̃

)
j
is determined by substituting the elements of D̃−B̃ in the j-th column

of Ã− C̃.

Theorem 2. If the matrix
(
Ã− C̃

)
is non-singular, the dual fully fuzzy system (20)

has a fuzzy solution.

4 Numerical Examples

Example 5. Consider the following system of linear equations.(
(−4,1,2,−,−) (4,7,8,−,−)
(2,4,6,−,−) (6,6,7,−,−)

)(
x̃
ỹ

)
=

(
(1,5,7,−,−)
(1,2,3,−,−)

)
. (21)

Using the arithmetic operations (2) to (6), the fuzzy Cramer method (17) and
determinant definition (14), we obtain:

x̃ =

∣∣∣∣∣∣
(
(1,5,7,−,−) (4,7,8,−,−)
(1,2,3,−,−) (6,6,7,−,−)

)∣∣∣∣∣∣∣∣∣∣∣∣
(
(−4,1,2,−,−) (4,7,8,−,−)
(2,4,6,−,−) (6,6,7,−,−)

)∣∣∣∣∣∣
=

(
−2142
1936

,−16
22

,− 801
1936

,−,−
)
,

ỹ =

∣∣∣∣∣∣
(
(−4,1,2,−,−) (1,5,7,−,−)
(2,4,6,−,−) (1,2,3,−,−)

)∣∣∣∣∣∣∣∣∣∣∣∣
(
(−4,1,2,−,−) (4,7,8,−,−)
(2,4,6,−,−) (6,6,7,−,−)

)∣∣∣∣∣∣
=

(1128
1936

,
18
22

,
27445
21296

,−,−
)
,

which is shown in Figure 1.

Example 6. Consider the following dual fuzzy system:
1 2 −1
3 0 5
−2 4 1



x̃1
x̃2
x̃3

+


(−2,0,1,1,−,−)(
1,2,4,6,x − 1,

(
1− 1

4 (x,−4)
2
) 1
2

)
(−2,0,2,4,−,−)

 =

2 0 −3
1 −2 0
6 1 −1



x̃1
x̃2
x̃3

+

(
1,2,7,9,

(
1− (x − 2)2

) 1
2 ,

(
1− 1

4 (x − 7)
2
) 1
2

)
(−3,−2,1,3,−,−)
(−2,0,1,1,−,−)

 .
(22)
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Figure 1: The fuzzy solution to Example 5.

Example 6. Consider the following dual fuzzy system:
1 2 −1

3 0 5

−2 4 1



x̃1

x̃2

x̃3

+


(−2, 0, 1, 1,−,−)(

1, 2, 4, 6, x− 1,
(
1− 1

4(x,−4)2
) 1

2

)
(−2, 0, 2, 4,−,−)

 =


2 0 −3

1 −2 0

6 1 −1



x̃1

x̃2

x̃3

+


(
1, 2, 7, 9,

(
1− (x− 2)2

) 1
2 ,
(
1− 1

4(x− 7)2
) 1

2

)
(−3,−2, 1, 3,−,−)

(−2, 0, 1, 1,−,−)


(21)

Using (18) and the difference (7), we obtain:


−1 2 2

2 2 5

−8 3 2



x̃1

x̃2

3̃3

 ∼=


(
5
2 , 3, 7, 8,

(
1− (6− 2x)2

) 1
2

)(
−5,−9

1 ,−
3
2 ,−

1
2 , 2x+ 10,

(
1−

(
x+ 3

2

)2) 1
2

)
(
−13

4 ,−
5
4 ,

1
4 ,

5
4 ,

x
2 + 13

8 ,
5
4 − x

)


Finally, using the fuzzy Cramer method (16), fuzzy determinant (14), and
arithmetic operations (6) to (10), the solution to the dual fuzzy system (21)
is obtained as follows:

x̃1 =

∣∣∣∣∣∣∣∣∣∣

(
5
2 , 3, 7, 8,

(
1− (6− 2x)2

) 1
2 ,
(
1− (x− 7)2

) 1
2

)
2 2(

−5,−9
2 ,−

3
2 ,−

1
2 , 2x+ 10,

(
1−

(
x+ 3

2

)2) 1
2

)
2 5(

−13
4 ,−

5
4 ,

1
4 ,

5
4 ,

x
2 + 13

8 ,
5
4 − x

)
3 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−1 2 2

2 2 5

−8 3 2

∣∣∣∣∣∣∣∣
=
⋃
α

[
7523

4224
+

36

4224
α+

12

4224

√
1− α2,

8551

4224
− 88

4224
α+

88

4224

√
1− α2

]
,

Figure 1: The fuzzy solution to Example 5.

Using (19) and the difference (8), we obtain:


−1 2 2
2 2 5
−8 3 2



x̃1
x̃2
3̃3

 �


(
5
2 ,3,7,8,

(
1− (6− 2x)2

) 1
2

)
(
−5,−91 ,−

3
2 ,−

1
2 ,2x +10,

(
1−

(
x + 3

2

)2) 1
2
)

(
−134 ,−54 ,

1
4 ,

5
4 ,

x
2 +

13
8 , 54 − x

)


.

Finally, using the fuzzy Cramer method (17), fuzzy determinant (15), and arith-
metic operations (7) to (11), the solution to the dual fuzzy system (22) is obtained as
follows:

x̃1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
5
2 ,3,7,8,

(
1− (6− 2x)2

) 1
2 ,

(
1− (x − 7)2

) 1
2

)
2 2(

−5,−92 ,−
3
2 ,−

1
2 ,2x +10,

(
1−

(
x + 3

2

)2) 1
2
)

2 5(
−134 ,−54 ,

1
4 ,

5
4 ,

x
2 +

13
8 , 54 − x

)
3 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−1 2 2
2 2 5
−8 3 2

∣∣∣∣∣∣∣∣
=

⋃
α

[7523
4224

+
36

4224
α +

12
4224

√
1−α2,

8551
4224

− 88
4224

α +
88

4224

√
1−α2

]
,

x̃2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−1

(
5
2 ,3,7,8,

(
1− (6− 2x)2

) 1
2 ,

(
1− (x − 7)2

) 1
2

)
2

2
(
−5,−92 ,−

3
2 ,−

1
2 ,2x +10,

(
1−

(
x + 3

2

)2) 1
2
)

5

−8
(
−134 ,−54 ,

1
4 ,

5
4 ,

x
2 +

13
8 , 54 − x

)
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−1 2 2
2 2 5
−8 3 2

∣∣∣∣∣∣∣∣
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=
⋃
α

[
−8069
8448

+
35

2112
α − 11

132

√
1−α2,−4595

8448
− 21
2112

α +
61

1056

√
1−α2

]
,

x̃3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−1 2

(
5
2 ,3,7,8,

(
1− (6− 2x)2

) 1
2 ,

(
1− (x − 7)2

) 1
2

)
2 2

(
−5,−92 ,−

3
2 ,−

1
2 ,2x +10,

(
1−

(
x + 3

2

)2) 1
2
)

−8 3
(
−134 ,−54 ,

1
4 ,

5
4 ,

x
2 +

13
8 , 54 − x

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−1 2 2
2 2 5
−8 3 2

∣∣∣∣∣∣∣∣
=

⋃
α

[
−14367
4224

+
35

4224
α − 64

4224

√
1−α2,−13936

4224
− 20
4224

α +
70

4224

√
1−α2

]
,

which is shown in Figure 2.

Example 7. Consider the following fuzzy system:

(−1,1,3,−,−)
(
1,2,4,

(
1− (x − 2)2

) 1
2 ,

(
1− 1

4 (x − 2)
2
) 1
2

)
(1,3,6,−,−)

(−2,−2,2,−,−)
(
3,4,5,

(
1− (x − 4)2

) 1
2 ,5− x

) (
4,7,9, 13 (x − 4),

(
1− 1

4 (x − 7)
2
) 1
2

)
(2,3,5,−,−) (2,6,8,−,−)

(
8,9,10,x − 8,

(
1− (x − 9)2

) 1
2

)


x̃1x̃2
x̃3



=


(2,4,7,−,−)(

1,2,6,
(
1− (x − 2)2

) 1
2 ,

(
1− 1

16 (x − 2)
2
) 1
2

)
(3,6,8,−,−)

 .
(23)

Assuming:

Ã =


(−1,1,3,−,−)

(
1,2,4,

(
1− (x − 2)2

) 1
2 ,

(
1− 1

4 (x − 2)
2
) 1
2

)
(1,3,6,−,−)

(−2,−2,2,−,−)
(
3,4,5,

(
1− (x − 4)2

) 1
2 ,5− x

) (
4,7,9, 13 (x − 4),

(
1− 1

4 (x − 7)
2
)) 1

2

(2,3,5,−,−) (2,6,8,−,−)
(
8,9,10,x − 8,

(
1, (x − 9)2

) 1
2

)


,

we have ac
(
|Ã|

)
= 0 (because

∣∣∣∣∣∣∣∣
1 2 3
−2 4 7
3 6 9

∣∣∣∣∣∣∣∣ = 0), that is, the coefficient matrix of the

system is singular, and the system (23) does not have a fuzzy solution.

Example 8. Suppose you want to calculate the approximate prices of pistachios and
almonds in 1390, while you know that one of your colleagues bought about 1 kg (1̃ =
(0,1,2,−,−)) of pistachios and about 2 kg (2̃ = (1,2,4,−,−)) of almonds this year at
a price of about 10 tomans (1̃0 = (8,10,11,−,−)), and your other colleague bought
about 3 kg (3̃ = (2,3,5,−,−)) of pistachios and about 4 kg (4̃ = (3,4,7,−,−)) of almonds
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Figure 2: The fuzzy solution to Example 6.

Example 8. Suppose you want to calculate the approximate price of pista-
chios and almonds in 1390, while you know that one of your colleagues bought
about 1 kg (1̃ = (0, 1, 2,−,−)) of pistachios and about 2 kg (2̃ = (1, 2, 4,−,−))
of almonds that year at a price of about 10 tomans (10̃ = (8, 10, 11,−,−)),
and your other colleague bought about 3 kg (3̃ = (2, 3, 5,−,−)) of pistachios
and about 4 kg (4̃ = (3, 4, 7,−,−)) of almonds that year at a price of about
24 tomans (24̃ = (22, 24, 25,−,−)). (Shopping malls had incentive packages
for shoppers). Now, considering the approximate price of pistachios as x̃ and

Figure 2: The fuzzy solution to Example 6.

this year at a price of about 24 tomans (2̃4 = (22,24,25,−,−)). (Shopping malls had
incentive packages for shoppers.) Now, considering the approximate price of pistachios
as x̃ and the approximate price of almonds as ỹ, we form the following fuzzy system:{

1̃.x̃ + 2̃.ỹ = 1̃0,
3̃.x + 4̃.ỹ = 2̃4.

(24)

Using the fuzzy Cramer method (17), fuzzy determinant (14), and TA-based arith-
metic operations (2) to (6), the solution to the fuzzy system (24) is obtained:

x̃ =

∣∣∣∣∣ (8,10,11,−,−) (1,2,4,−,−)
(22,24,25,−,−) (3,4,7,−,−)

∣∣∣∣∣∣∣∣∣∣(0,1,2,−,−) (1,2,4,−,−)
(2,3,5,−,−) (3,4,7,−,−)

∣∣∣∣∣ =
(
−37
8
,4,

75
8
,−,−

)
,
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ỹ =

∣∣∣∣∣(0,1,2,−,−) (8,10,11,−,−)
(2,3,5,−,−) (22,24,25,−,−)

∣∣∣∣∣∣∣∣∣∣(0,1,2,−,−) (1,2,4,−,−)
(2,3,5,−,−) (3,4,7,−,−)

∣∣∣∣∣ =
(
−3,3, 15

2
,−,−

)
.

That is, the price of pistachios was about 4 tomans (4̃ =
(
−378 ,4, 758 ,−,−

)
), and the price

of almonds was about 3 tomans (3̃ =
(
−3,3, 152 ,−,−

)
).

5 Conclusion

An analytical method for solving a system of fuzzy linear equations is the Cramer
method. We can find some limitations in the methods used in the literature. The
methods based on arithmetic operations using the extension principle and α-cuts have
problems in subtraction and division operations, as well as problems in attaining mem-
bership functions for the operators and also the dependence effect in the fuzzy arith-
metic operations. Therefore, in this paper, using TA-based fuzzy arithmetic, which is
more realistic than other arithmetic operations, we solved a fuzzy system by a Cramer
method, which does not have the limitations of the other methods presented by e.g.,
Allahviranloo et al. or Radhakrishnan et al. In other words, the proposed method was
used for all fuzzy systems such as the fully fuzzy and the dual fuzzy systems with all
numbers such as quasi-triangular and quasi-trapezoidal numbers as inputs and calcu-
lates all the solutions of the fuzzy systems, including non-negative and non-positive
solutions. Finally, using the proposed method and assuming that the 1-cut coefficient
matrix of the fuzzy system is non-singular, the fuzzy system always contains a fuzzy
solution.
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