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Abstract. Given any graph G, its square graph G? has the same vertex
set as G, with two vertices adjacent in G? whenever they are at distance 1
or 2 in G. The Cartesian product of graphs G and H is denoted by GOH.
One of the most studied NP-hard problems is the graph coloring problem.
A method such as Genetic Algorithm (GA) is highly preferred to solve the
Graph Coloring problem by researchers for many years. In this paper, we
use the graph product approach to this problem. In fact, we prove that
x((D(m’,n’) 0 D(m,n))?) <10 for m,n > 3, where D(m, n) is the graph obtained
by joining a vertex of the cycle C,, to a vertex of degree one of the paths P,
and x(G) is the chromatic number of the graph G.
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1 Introduction

Let G =(V,E) be a finite and simple graph. For any graph G, we denote the vertex-
set and the edge-set of G by V(G) and E(G), respectively. A proper vertex k-coloring
of a graph G is a mapping c : V(G) — {1,...,k}, with the property that c(u) = c(v)
whenever uv € E(G). The smallest k for which there exists a k-coloring of G, called the
chromatic number of G, is denoted by x(G). Graph coloring has numerous applications
in scheduling and other practical problems. The square of a graph G, denoted by G2,
is a graph with V(G) = V(G?), in which two vertices are adjacent if their distance
in G is at most two. A 2-distance coloring of G is a vertex coloring of G such that
any two distinct vertices at distance less than or equal to 2 are assigned different
colors. The 2-distance chromatic number of a graph G is the minimum number of
colors necessary to have a 2-distance coloring of G, which is denoted by x,(G). Hence
x2(G) is equal to x(G?). The 2-distance coloring of graphs was introduced by Wegner
in [15]. Wegner conjectured that if G is a planar graph with maximum degree A(G) > 8,
then x(G?) <[3/2A(G)]+ 1. The best known upper bound is [5/3A(G)]+ 78 for all A
in [9]. The problem of determining the chromatic number of the square of particular
graphs has attracted a lot of attention, with a particular focus on the square of planar
graphs (see, for example [3, 5, 14, 7, 9, 4]). The Cartesian product of graphs G and
H is the graph GOH with the vertex set V(G)x V(H) and (x1,x,)(y1,v2) € E(GOH)
whenever x;y; € E(G) and x, =y, or x,y, € E(H) and x; =, , see [13]. The subgraph
of GOH induced by u x V(H) is isomorphic to H. It is called an H-fiber and denoted
by H*. An (m,n)-dragon graph denoted by D(m,n) is the graph obtained by joining a
vertex of the cycle C,, to a vertex of degree one of the path P, introduced in [8]. It has
(m+ n) vertices and (m + n) edges. The Dragon graph D(6,3) is shown in Figure 1.

Figure 1: Dragon graph D(6,3).

In [6], Jamison et al. established acyclic colorings of products of trees. Chiang and
Yan studied the chromatic number of the square of Cartesian products of paths and
cycles and proved the following result.

Theorem 1 (Chiang and Yan [2]). If G = C,,0P, with m >3 and n > 2, then

4, if n=2and m=0(mod 4),
6, if n=2and me{3,6},

6, if n>3and mz 0(mod5),
5, Otherwise.

X(G?) = (1)

Theorem 2 ([11]). If T, ,, = C,,0C,, with 3 > m > n, then x(T2,) < 7 except X(T3%3) =9
and x(Tg5) = x(T7,) = 8.
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Shao and Vesel in [10] worked on the chromatic number square of Cartesian product
of two cycles and proved the following theorem.

Theorem 3. If m,n > 40, then x(T;2,) < 6.

In [1], Chegini et al. studied the square chromatic number of the torus and proved
the following.

Theorem 4. If m,n € 5(5,6), then X(T,ﬁyn) <6.

In this paper, the 2-distance chromatic numbers of Cartesian products of square
two dragon graphs are investigated. In particular, we extend Theorem 4. In fact we
establish the 2-distance chromatic number for (D(m’, n’)0D(m,n)) and we find an upper
bound for x,(D(m’,n")aD(m,n)) for all n,m,m’,n" > 3.

2 Main Results

Given two integers x and y, let S(x,y) denote the set of all non-negative integer com-
binations of x and y defined as follows.

S(x,v) ={ax+ By : a, p non-negative integers}.

To prove the main theorems, we need the following auxiliary lemmas. The following
two lemmas are necessary and useful in proving the main theorems.

Lemma 1 ([12]). If x and p are relatively prime integers greater than 1, then n € S(x,p)
foralln>(x-1)(y—1).

Lemma 2. Let m,m’,m” >3, n,n’,n” >3, s,r>1, m” <m’, and k > 9 be integers

and let f be a k-coloring of (D(m’,n’)aD(m, n))?>. Consider g as the restriction of f to

(V(D(Zm,’n,)),..., V(D(’;’ffnf)“” ~1)). If g is a k-coloring of (D(m”,n”)aD(m, n))?, then
x((D(m’ + (s =1)ym”, 0’ + (r—1)n”)aD(m, n))?) < k.

Proof. Define a function h from V((D(m’ + (s—1)m”,n’ + (r — 1)n”)0D(m, n))?) onto the
set {1,2,...,k} by

£ j) ifi<m’,
fli—m’=(mod m’),j) if m"<i<m'+(s-1)m”,
h(i,j)=1g(i,j) if m +(s-1)m” <i<m'+(s-1)ym” +n’ -1,
tijeA if i=m'+(s—1)m” +n/,
g(i-3,7) ifi>m’+(s—1)ym” +n’,

where

A= {ti,j €{L,2,....k} [tim-1 €{tim—2,tim-3,1i,1,8(i =1, m=2),8(i = 1,m—1),g(i —1,m),
gli-2,m=2),8(i=2,m=1),8(i=2,m)}, t; y &{t;m-1,tim-2ti1,
ti,8(i—1,1),8(i=1,m—=1),8(i—1,m),g(i —1,m+1),g(i = 2,m)}, t; ; € {t; j_1,t j-2,
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gli—-1,j-1),8(i-1,j)gli~1,j+1)g(i~2,j-1)8(i~2j)gli~2,j+1)}8(i0)
= g(i,m) and t; _1,t; o€ (Z)}.

In order to see that h is a k-coloring of V(D(m’ + (s — 1)m”,n’ + (r — 1)n”)aD(m, n))?,
consider first the vertex (m’,j). This vertex is adjacent to (m’—2,j), (m"—1,j), (m" -
1,j—1), and (m"—1,j+1). Note that h(m’,j) = f(0,j), since (0,j) is also adjacent to
(m’=2,j), (m"=1,j), (m’'=1,j—1), and (m’—1,j+1) in (D(m’,n’)aD(m,n))?. Moreover,
f is a k-coloring of (D(m’,n’)D(m,n))?. Thus the case where (m’,j) € V(D(m’ + (s —
1)ym”,n"+(r-1)n”)oD(m,n)),j =1,2,..,m+n is proved.

If i =m’+(s—1)m” +n’, according to the definition of t; ;, it is obvious that h(i,]) is a
k-coloring of {(i,j)|(i,j) € V(D(m’+(s—1)m”,n’ + (r—1)n”)OD(m,n)),i <m’+(s—1)m” +
n and j=1,2,.,m+n}.

The vertex (m’+(s—1)m”+n’+1, j) is adjacent to (m’+(s—1)m”+n’+1,j=2), (m’+(s—1)m" +
n'+1,j-1), (m' +(s=1)m”+1,j+1), (m'+(s—=1)ym”+n"+1,j+2), (m"+(s—=1)m"” +n’,j—1),
(m +(s=1)ym”+n’,j), (m +(s—1)ym” +n’,j+1) and (m"+(s—1)m” +n’—1,j). Note that
h(i,j) = g(i-3,j) for i > m’+(s—1)m”+n’, since g is a k-coloring of (D(m”, n”")aD(m,n))>.
Therefore, g assigns distinct colors of the vertex (m’+(s—1)m”+n"+1,j) to the vertices
(m' +(s=1)m”"+n"+1,j=2), (m' +(s—1)m”+n"+1,j-1), (m"+(s—1)m” +1,j+1) and
(m +(s=1)ym”+n"+1,j-2).

Moreover, according to the definition of t; ;, we have h(m’+(s—1)m”+n’+1, j) such that
h(m’+(s=1)ym” +n’,j), h(m"+(s=1)m” +n’,j—1), h(m"+(s=1)m” +n’,j+1) and h(m’+
(s—1)ym” +n’—1,j) are distinct. The proof for the other vertices is similar. Therefore,
h(i,j) is a k-coloring of {(i,7)|(i,j) € V(D(m"+ (s —1)m”,n" + (r = 1)n”)aD(m,n)),i > m’ +
(s=1)ym” +n’ and j=1,2,..,m+n}. This completes the proof. O

Theorem 5. If m’,m € S(6,5) and n’,n € S(4,3), then
x((D(m’,n)aD(m,n))?) < 10.

Proof. Let m’,m € §(6,5) and let n’,n € S(4,3). For convenience, a 10-coloring of
(D(m’, n’)aD(m,n))? will be represented as (m’+n’)-by-(m+n) patterns where the entry
on the ith row, jth column will be the coloring of vertex (i,j). We shall construct
explicit colorings using combinations of patterns given in matrix form. Each pattern
can be thought of as a proper coloring of the square of the dragon graph of the same
size. The following patterns A;, A,, Az and Ay, depicted in Figure 2 provide in an
obvious way a proper 10-coloring of the following graphs respectively.

(D(5,3)aD(5,4))%,(D(6,4)0D(5,4))%, (D(5,3)aD(6, 3))?, (D(6,4)0(6, 3))>.

Applying Lemmas 1 and 2 and combinations of A} and A,, we obtain an ((m’+n’)x9)
pattern As for graph (D(m’, n’)0D(5,4))?, and using combinations of A3 and Ay, we get
an ((m’+n’)x9) pattern Ag for the graph (D(m’,n’)OD(6,3))?. Moreover, using combi-
nations of As and Ag, we obtain an ((m’+n’)x (m+n)) pattern for (D(m’,n’)aD(m,n))>.
This provides a proper 10-coloring of (D(m’, n’)OD(m, n))?. O

By Theorem 5, we only need to find the value of x((D(m’,n’)aD(m,n))?) for m’ €
(3,4,7,8,9,13,14,19) and n’ = 5.
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1T 2 7 4 1 2 5 7 3
T 2 7 4 1 2 5 7 3
3 4 8 10 5 3 4 1 6
3 4 8 10 5 3 4 1 6 .
- 2 5 6 9 4 1 6 3 2
2 5 6 9 4 1 6 3 2
1 3 2 7 6 2 7 4 5
1 3 2 7 6 2 7 4 5 .
5 6 9 10 3 4 8 2 1
Ai=|5 6 9 10 3 4 8 2 1| Ap=
‘ 2 10 1 8 7 9 3 6 4
2 10 1 8 7 9 3 6 4 .
1 5 10 9 5 6 2 1 3
1 5 10 9 5 6 2 1 3
. 7 6 3 7 8 3 4 5 2
7 6 3 7 8 3 4 5 2
5 4 5 1001 9 7 6 4 3 4 5 10 1 2 7 6 4
2 1 9 2 7 6 1 3 8
1T 2 7 4 1 2 5 7 3
T 2 7 4 1 2 5 7 3
3 4 8 10 5 3 4 1 6
3 4 8 10 5 3 4 1 6 .
. 2 5 6 9 4 1 6 3 2
2 5 6 9 4 1 6 3 2
1 3 2 7 6 2 7 4 5
1 3 2 7 6 2 7 4 5 .
5 6 9 10 3 4 8 2 1
As=[5 6 9 10 3 4 8 2 1| Ag=|, o | g 7 g 3 & 4
2 10 1 8 7 9 3 6 4
! 1 5 10 9 5 6 2 1 3
1 5 10 9 5 6 2 1 3
. 7 6 3 7 8 3 4 5 2
7 6 3 7 8 3 4 5 2
5 4 5 1001 9 7 6 4 3 4 5 10 1 2 7 6 4
2 1 9 2 7 6 1 3 8

Figure 2: Patterns for Theorem 5.

Theorem 6. If m¢({3,4,7,8,9,13,14,19} and n = 5, then
x((D(3,n")aD(m,n))*) < 10.
Proof. Consider the following patterns By, By, B3, and By for graphs
(D(3,3)aD(5,4))%,(D(3,4)0D(5,4))% (D(3,3)aD(6,3))? and (D(3,4)aD(6, 3))?,

respectively.
T 2 9 10 1T 2 5 7 3
I 2 9 10 I 2 5 7 3
. 3 4 1 8 5 3 4 1 6
3 4 1 8 5 3 4 1 6
- 7 5 6 7 4 8 6 9 2
7 5 6 7 4 8 6 9 2
Bi= Bo=|4 3 2 9 6 10 7 4 5
4 3 2 9 6 10 7 4 5 .
5 6 4 10 3 4 5 2 1
5 6 4 10 3 4 5 2 1 ;
s 9 1 5 9 1 3 6 4 3 2 1 5 2 1 3 6 4
4 7T 3 8 7 6 8 9 10
I 2 9 10 I 2 5 7 3
1 2 9 10 1T 2 5 7 3
3 4 1 8 5 3 4 1 6
3 4 1 8 5 3 4 1 6 .
7 5 6 7 4 8 6 9 2
7 5 6 7 4 8 6 9 2
By= . By=| 4 3 2 9 6 10 7 4 5
4 3 2 9 6 10 7 4 5 !
5 6 4 10 3 4 5 2 1
5 6 4 10 3 4 5 2 1
3 2 1 5 2 1 3 6 4 302 152 13 64
4 7 3 8 7 6 8 9 10

By combinations of B; and B,, we get a ((3 +n’) x 9) pattern Bs for the graph
(D(3,1n’)aD(5,4))?, and using combinations of B; and By, we obtain a ((3 + n’) x 9)
pattern Bg for the graph (D(3,n’)aD(6,3))%. Moreover, using combinations of Bs and
B, we get a ((3 + n’) x (m + n)) pattern (D(3,n")aD(m,n))?>. This provides a proper
10-coloring of (D(3,n’)aD(m, n))?. O

Corollary 1. If m¢{3,4,7,8,9,13,14,19} and n = 5, then
x((D(3k,n"YaD(m,n))?) < 10,

where k is any positive integer.
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Proof. By using Theorem 6, it is obvious that x((D(3k, n’)aD(m,n))?) < 10. O
Theorem 7. If me({3,4,7,8,9,13,14,19} and n = 5, then

x((D(4,n")aD(m,n))?) < 10.
Proof. Consider the following patterns Cy, C,, C3, and C4 for graphs

(D(4,3)aD(5,4))%,(D(4,4)0D(5,4))%, (D(4,3)aD(6,3))* and (D(4,4)0D(6,3))?,

respectively.
1T 2 7 9 1 2 5 7 3
1 2 7 9 1 2 5 7 3 .
3 4 1 8 5 3 4 1 6
3 4 1 8 5 3 4 1 6
. 7 5 6 4 7 8 6 9 2
7 5 6 4 7 8 6 9 2
1 3 2 10 6 2 7 4 5
Ci=|1 3 2 10 6 2 7 4 5| Cp=
5 6 4 9 3 4 5 2 1
5 6 4 9 3 4 5 2 1
3 2 1 6 2 1 3 8 4
3 2 1 6 2 1 3 8 4 -
6 4 7 3 5 8 2 7 9 6 4 7 3 5 & 2.7 9
2 1 10 2 7 6 1 3 8
1 2 7 9 1 2 5 7 3
1 2 7 9 1 2 5 7 3 e
. 3 4 1 8 5 3 4 1 6
3 4 1 8 5 3 4 1 6
\ 7 5 6 4 7T 8 6 9 2
7 5 6 4 7 8 6 9 2 2
1 3 2 10 6 2 7 4 5
C3=|1 3 2 10 6 2 7 4 5| C=
. . 5 6 4 9 3 4 5 2 1
5 6 4 9 3 4 5 2 1
3 2 1 6 2 1 3 8 4
3 2 1 6 2 1 3 8 4 X )
6 4 7 3 5 8 2 7 9 6 4 7 3 5 8 2.7 9
2 1 10 2 7 6 1 3 8

By combining the above subpatterns, similar to the proofs of the above theorems,
we find a proper coloring for the graph (D(4,n’)aD(m, n))?> with 10 colors. O

Corollary 2. If m¢{3,4,7,8,9,13,14,19} and n = 5, then
x((D(4k,n)aoD(m,n))?>) <10  k=1,2,3,....
Theorem 8. If m¢{3,4,7,8,9,13,14,19} and n # 5, then
x((D(7,n')0D(m,n))*) < 10.
Proof. Consider the following patterns D;, D,, D3, and Dy for graphs

(D(7,3)aD(5,4))%, (D(7,4)0D(5,4))?,(D(7,3)aD(6,3))* and (D(7,4)nD(6,3))%,

respectively.
T 2 3 10 9 3 1 2 4
T 2 3 10 9 3 1 2 4
. : 3 4 5 6 8 5 6 3 7
3 4 5 6 8 5 6 3 7 .
2 1 7 2 10 7 2 1 5
2 1 7 2 10 7 2 1 5
4 3 6 4 9 6 4 T 8
4 3 6 4 9 6 4 7 8 .
L 2 5 1 2 5 1 9 3 1 2 5 1 2 5 1 9 3
Di= D=|3 4 7 6 4 3 6 8 5
3 4 7 6 4 3 6 8 5
8 10 9 2 1 7 9 10 6
§ 10 9 2 1 7 9 10 6 . . ‘
- . 4 5 6 4 10 5 4 3 8
4 5 6 4 10 5 4 3 8
, 1 2 7 1 9 6 1 7 5
1 2 7 1 9 6 1 7 5
3 6 4 s 7 3 8 6 9 3 6 4 8 7 3 8 6 2
5 8 3 9 6 4 7 5 4
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< D= 10 00 M 10 © 0010
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< =D 00 M 10 © 010
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O N OO
MO - © 10 M I~ ©
cwZ ot~ o
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M - O - S © I
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— M A<~ M0 <K

By combining the above subpatterns, we find a proper coloring for the following

graph with 10 colors.

(D(7,n")aD(m, n))>.

Corollary 3. If m¢{3,4,7,8,9,13,14,19} and n # 5, then

x((D(7k,n")aD(m,n))?) <9,

where k is a positive integer.

Theorem 9. If m¢{3,4,7,8,9,13,14,19} and n # 5, then

x((D(13,n")aD(m,n))?) < 10.

Proof. Consider the following patterns Eq, E,, E3, and E4 for graphs

(D(13,3)aD(5,4))%,(D(13,4)aD(5,4))%, (D(13,3)aD(6,3))? and (D(13,4)aD(6,3))?,

respectively.

W~ -0~ S oo o
< Mo OO N M~ W0~ <t MmO
HANH MO O N NI O N M
M0 — N <K —H AN — N - < O N
O 000 O 00 H M NI~ O D M — D=
—H O N M ANID ~ ©O A~ N
MIDI~ O F NN HMANF — O M
N = D NI O O M N
HOMON T A NN M N D

[l

o

%)
DI~ FHI-DO~0n S oo
MDD N M NI — DO H
—H O NI O~ M N ID O N ™
M0 N = N D O
Q< N0 O 00 N A= O D )
O N M NI O e D
MO~ O F A M ANHN N F A O
N 0 D O — O DD <
HM N AN~ M AN N

I

—

28]
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< ™ N D N DO D I~
- 1D O H M NI O N MDA H
ReYRY) HH N N O N M
o © 00 M N I~ ©OID M — =0
— © M AN O I~ D O
ReRYs) FHH DN NN~ O
< MO O — O M F Ao
— ™M — M AN~ MOt o™ —~ <

I

5
¥ FI~-oo~on G wo S o w
< O N NI D 0 I~
— NID O~ NI O N M
™ N A NI N~ O N ™
™~ 10 © 00 H M N I~ O D e
— NI O e IO O
™ O H A DN NN F O M
™~ NI OO O MO H N D
— HH DN AN N

I

o

28]

By using combinations of E; and E,, we get a proper 10-coloring of (D(13,n)0D(5, 4))?

as Es, and by combining patterns E; and E4, we obtain a proper 10- coloring for

(D(13,7)0D(6,3))? as E¢. Finally by combinations of E5 and E4, we obtain a proper

10-coloring of (D(13,n)0D(m,n))?.

O]

Theorem 10. If m ¢ {3,4,7,8,9,13,14,19} and n = 5, then

x((D(19,n")aD(m, n))?) < 10.

Proof. Consider the following patterns J;, J», J3, and J4 for graphs

(D(19,4)0D(5,4))%,(D(19,3)aD(5,4))%, (D(19,4)aD(6, 3))? and (D(19,3)aD(6,3))?,

]

i)

jin)

0

]

Iy

0

h=

J3=
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2 3 4 1 2 5 3 4 1 2 5 3 4 1 2 5 3 4 1 2 4 3
4 1 2 5 3 4 1 2 5 3 4 1 2 5 3 4 1 2 5 3 1 6
5 6 3 4 1 2 5 3 4 1 2 9 3 4 1 2 9 3 4 6 5 2
3 4 1 9 5 3 4 9 2 5 3 7 6 2 5 3 7 6 1 2 4 7
Jp.=|8 2 5 3 4 1 2 5 3 4 9 2 5 3 9 6 1 2 5 8 1 6
13 4 1 9 5 3 4 1 2 5 3 4 6 1 2 3 7 4 6 5 2
4 6 2 5 3 4 1 2 5 3 4 6 1 2 3 7 4 5 1 2 4 9
21 3 4 1 2 5 3 4 1 2 5 3 4 5 1 8 2 6 5 1 8
T 9 8 7 6 8 7 6 & v 6 1 9 8 7 4 5 9 3 7 9 3

Applying Lemmas 1 and 2 and combinations of J; and J,, we get a proper 9-coloring
of (D(19,1n)0D(5,4))? as J5, and by combining the patterns J5 and J4, we obtain a proper
9-coloring for (D(19,n)0D(6,3))? as Je. Finally by combinations of J5 and Jg, we obtain
a proper 9-coloring of (D(19,n)0D(m, n))?.

O
Theorem 11. If n# 5, then x((D(m’,5)aD(m,n))?) < 10.
Proof. Consider the following patterns F;, F,, F3, and F, for graphs
(D(3,5)aD(5,4))%,(D(4,5)aD(5,4))%,(D(3,5)aD(6,3))* and (D(4,5)aD(6,3))?,

respectively.
T 2 3 1 8 3 1 2 4
T 2 3 1 8 3 1 2 4
3 4 5 6 9 5 6 3 1
3 4 5 6 9 5 6 3 1
2 1 7 2 10 7 2 4 8
2 1 7 2 10 7 2 4 8
; - 4 3 6 4 3 8 1 5 9
4 3 6 4 3 8 1 5 9
Fi= Fp=| 1 2 5 10 7 4 3 6 1
1 2 5 10 7 4 3 6 1
! 3 4 7 8 5 6 2 4 3
3 4 7 8 5 6 2 4 3
2 1 6 2 4 7 5 1 9
2 1 6 2 4 7 5 1 9 - .
5 7 3 5 1 3 4 8 6 5o 5 13486
6 8 1 7 2 5 7 3 4
T 2 3 1 8 3 1 2 4
T 2 3 1 8 3 1 2 4 ° 2
2 3 4 5 6 9 5 6 3 1
3 4 5 6 9 5 6 3 1
2 1 7 2 10 7 2 4 8
2 1 7 2 10 7 2 4 8 -
4 3 6 4 3 8 1 5 9
4 3 6 4 3 8 1 5 9
F3= . Fy=|1 2 5 10 7 4 3 6 1
1 2 5 10 7 4 3 6 1 .
3 4 7 8 5 6 2 4 3
3 4 7 8 5 6 2 4 3
2 1 6 2 4 7 5 1 9
2 1 6 2 4 7 5 1 9 -
s 7 3 5 1 3 4 s 6 5 7 3 5 1 3 4 8 6
6 8 1 7 2 5 7 3 4

Similar to Theorem 9, by combining the above subpatterns, we find a proper coloring
for the graph (D(m’,5)0D(m, n))?> with 10 colors. O
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