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1 Introduction

Quadratic programming problems arise in a wide variety of scientific and engineering
applications including regression analysis, image and signal processing, parameter es-
timation, filter design, robot control, etc. See for example [3, 2, 40] and a study of
piecewise linear-quadratic programs by Cui et al. [12]. Optimization problems with
nonlinear objective functions are usually approximated by second-order (quadratic) sys-
tems and solved approximately by standard quadratic programming (QP) techniques
[29, 30]. In modeling many scientific problems, quadratic problems are obtained, such
as smoothing quadratic regularization methods [6], minimizing condition number [10]
and machine learning [19].

In recent years, convex QP has been studied by many researchers and many good
results have been obtained. For example, one can see [14, 16, 45, 48, 49] where several
methods for solving degenerate QP , convex quadratic bilevel programming, and convex
quadratic minimax problems have been proposed. A major difference between convex
and non-convex quadratic programming (NCQP) problems is that for the former any
local minimizer is also a global minimizer whereas the latter may have many local
minimizers. An analytic method for NCQP subject to a set of linear constraints is pre-
sented in [4, 8]. Jeyakumar et al. [23] establish Lagrange multiplier conditions for global
optimality of general non-convex quadratic minimization problems with quadratic con-
straints. They also obtain necessary global optimality conditions, which are different
from the Lagrange multiplier conditions for special classes of QPs (see [42, 43] for more
details). Moreover, Huang et al. [21] and Kong et al. [26] have used faster gradient-
free proximal stochastic methods to solve the non-convex non-smooth optimization.
QPs can also be solved indirectly using unconstrained optimization methods and op-
timization algorithms [34, 35, 46]. There are several direct methods to solve CQP
and NCQP , such as first-order methods [9], interior point algorithms [7], accelerated
gradient method [20] and combining stochastic adaptive cubic regularization [39].

The neural networks for solving mathematical programming problems were first
proposed by Tank and Hopfild [44, 17]. Their work has inspired many researchers to
investigate other neural network models for solving programming problems. One of the
efficient methods to solve CQP and NCQP is a recurrent neural network (RNN). The
main advantage of RNN to optimization is that they can solve optimization problems in
running time at orders of magnitude much faster than the most traditional optimization
algorithms [5, 50]. These networks have been used in many scientific applications, such
as complex-variable programming problems [28], classifiers with low model complexity
[38], and non-smooth constrained pseudo-convex optimization [47].

Xue and Bian [48] developed a project neural network for solving degenerate QP
problems with general linear constraints. In the theoretical aspects, the proposed Neu-
ral Network (NN) is shown to have complete convergence and finite time convergence.
Effati and Ranjbar [14] presented a new NN for solving CQP problems. This model
has a simple form, furthermore, it has a good convergence rate with a less number
calculation operation than the old models. Besides, Nazemi [37] has used a capable
NN for solving strictly CQP problems with general linear constraints. Nonetheless,
Malek and Hosseinipour-Mahani [31] in their paper demonstrated that the use of the
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RNNs to solve NCQP is efficient. In this work, based on a generalized KKT method,
a modified RNN model called M.RNN for a class of NCQP problems involving a so-
called Z-matrix has been proposed. By the study of the resulting dynamic system, it
is shown that under given assumptions, steady states of the dynamic system are stable
[1, 25].

There is similar research in the field of nonlinear and non-convex programming via
neural networks. Effati et al. [13] presented an efficient projection neural network for
solving bilinear programming problems. Also, Eshaghnezhad et al. [15] used a neu-
rodynamic model to solve the nonlinear pseudo-monotone projection equation and its
applications. Nonetheless, there are other types of numerical approaches to solving
optimization problems via neural networks. Mansoori and Effati [32, 33] applied a
parametric NCP-based recurrent neural network model to solve fuzzy non-convex op-
timization problems. Leung and Wang [27] proposed a neurodynamic method to solve
minimax and bi-objective portfolio problems.

In this paper, an RNN network is designed to solve the NCQP problems. We call
this network µRNN . µRNN is similar to M.RNN in reference [31]. The authors in [31]
could have designed the M.RNN more easily, thus reducing calculations and proofs.
Accordingly, we have designed an RNN as µRNN that is simple and highly efficient.
µRNN is stable in the sense of Lyapunov and has a high speed of convergence. Thus
µRNN not only solves CQP and NCQP , but also has the following advantages:

• µRNN has a simple structure, so it is easy to design and use.

• The convergence rate of µRNN is sometimes equal to the convergence rate of
M.RNN , and somtimes it is better.

In terms of run time, the µRNN network is similar to the M.RNN network. In some
problems where it is necessary to choose a small Rung-Kutta numerical method step
length, the run time increases in both methods (as in Example 2). But in many convex
and non-convex problems, the run time is about a few seconds.

2 Preliminaries

This section provides the necessary mathematical background used to study the pro-
posed method and its usage. We list some necessary notations and introduce some
necessary preliminary results in this section.

• ∥.∥ denotes the l2−norm on Rn (∥x∥ = (
∑n

i=1 x
2
i )

1/2) and ei denotes the column
vector with a 1 in the i-th coordinate and 0’s elsewhere.

• The space of all n×n symmetric matrices is denoted by Sn.

• For g : Rn→ R, ∇g(x) ∈ R and ∇2g(x) ∈ Rn×n stand for gradient and the Hessian
of g at x.

• The notation A ≽ 0 (A ≼ 0) shows that the matrix A is positive (negative) semi-
definite.
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• If there exists a non-zero vector x ∈ Rn such that xTAx < 0 then A % 0.

Consider the following smooth non-convex quadratic optimization problem.{
Min f (X)
s.t : gi(X) ≤ 0, i = 1,2, . . . ,m,

(1)

where f ,gi : Rn→ R are defined by

f (X) =
1
2
XTAf X + bTf X + cf , gi(X) =

1
2
XTAgiX + bTgi + cgi ,

and S0 = {X ∈ Rn|gi(X) ≤ 0, i = 1,2, . . . ,m} is the feasible set. We suppose that Af % 0,
and define Hf , Hgi for i = 1,2, . . . ,m by

Hf =
(
Af bf
bTf 2cf

)
, Hgi =

(
Agi bgi
bTgi 2cgi

)
. (2)

Definition 1. A matrix A ∈ Sn is called a Z-matrix if aij ≤ 0 for all i , j. Therefore
any diagonal matrix is a Z-matrix.

In this paper, the RNN will be designed based on the following statement.

Proposition 1. (Jeyakumar et al. [23]) For general non-convex quadratic program-
ming problem (1), let X∗ ∈ S0. If there exists λ = (λ1, . . . ,λm)T ∈ Rm

+ − {0} such that the
conditions 

(a) Af +
∑m

i=1λiAgi ⪰O,
(b) (Af x

∗ + bf ) +
∑m

i=1(λiAgix
∗ +λibgi ) =O,

(c)
∑m

i=1λigi(x∗) = 0,
(3)

hold, then X∗ is a global minimizer of (1).

Remark 1. In the problem (1) when m = 1 and the strict feasibility condition holds,
conditions (3) are necessary and sufficient conditions [24]. Also, for m > 1 the condition
(a) of (3) is just a sufficient (not necessary) global optimality condition [31].

Theorem 1. (Jeyakumar et al. [22]) For the non-convex quadratic problem (1), sup-
pose that Hf and Hgi , i = 1, . . . ,m are Z-matrices and the Slater condition holds, that
is, there exists X0 ∈ Rn such that gi(X0) < 0, i = 1, . . . ,m. Then a feasible point X∗ is a
globally optimal solution if and only if the conditions (3) hold.

Lemma 1. If A is a real square matrix, then:

XTAX = XTATX.

Proof. We know that any square matrix A can be written as [18]

A =
1
2
(A+A∗) +

1
2
(A−A∗) ≡ B+C,

where B = 1
2 (A+A∗) is the Hermitian part of A, and C = 1

2 (A−A
∗) is the skew-Hermitian

part of A. We have
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XTAX = XTBX +XTCX,

where XTCX = 0. Thus, if the matrix A is real,

XTAX =
1
2
XT (A+AT )X ⇒ XTAX = XTATX.

Corollary 1. Without loss of generality, in (1) assume that the matrices Af and
Agi , i = 1, . . . ,m are symmetric. If the matrix A in XTAX is not symmetric then we can
replace it with 1

2 (A+AT ).

Consider the following differential equation:

Ẋ(t) = f (X(t)), X(t0) = X0 ∈ Rn. (4)

The following classical result on the existence and uniqueness of the solution to (4)
holds.

Theorem 2. (Uniqueness and Existence) Assume that g is a continuous mapping
from Rn to Rn. Then for arbitrary t0 ≥ 0 and X0 ∈ Rn there exists a local solution X(t),
t ∈ [t0,τ) to (4) for some τ > t0. If g is locally Lipschitzian continuous at X0 then the
solution is unique, and if g is Lipschitzian continuous in Rn then τ can be extended to
∞.

Proof. See [11].

3 Recurrent Neural Network

Based on the optimization conditions (3), we design an RNN that converges to the
optimal solutions to the problem (1). Consider{ dX

dt = −Af X − bf − 1
2
∑m

i=1µ
2
i (AgiX + bgi ),

dµ
dt = diag (µ1, . . . ,µm).g(X),

(5)

where g(X) = (g1(X), · · · , gm(X))T and µ = (µ1, · · · ,µm)T . Assuming y = (XT ,µT )T and

∇g(X) = (∇gT1 (X), · · · ,∇gTm(X))T , ∇gi =
(
∂gi
∂x1

,
∂gi
∂x2

, · · · ,
∂gi
∂xn

)T
.

We call system (5), µRNN and it is summarized as follows

ẏ = Kφ(y), (6)

where
φ(y) =

(
−∇f (X)− 1

2
∑m

i=1µ
2
i ∇gi

diag (µ1, · · · ,µm)gT (X)

)
, y(t0) = y0, (7)

and K is an adjusted parameter. A sufficiently large K could accelerate the µRNN .
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Lemma 2. If An×n and Bm×m are negative definite, then the following matrix is negative
definite.

F =


An×n | Cn×m
−− −− −−
−CT

m×n | Bm×m


(m+n)×(m+n)

. (8)

Proof. For all X = (x1, · · · ,xn,xn+1, · · · ,xm+n)T we have:

XTFX =XT


A | C
− − −
−CT | B

X
= (x1, . . . ,xn)A


x1
...
xn

+ (xn+1, . . . ,xm+n)B


xn+1
...

xm+n


+ (x1, . . . ,xn)C


xn+1
...

xm+n

− (xn+1, . . . ,xm+n)C
T


x1
...
xn

︸                                                          ︷︷                                                          ︸
=0

≤ 0,

so the matrix F is negative definite.

For simplicity of our analysis, we let K = 1. An indication of how the neural
networks (6) and (7) can be implemented on hardware is provided in Figure 1.

Figure 1: A simplified block diagram for the neural networks (6) and (7).

Theorem 3. Let Ω∗ ⊂ Rn+m be the set of equilibrium points of the system (6). If
y∗ = (X∗T ,µ∗T )T ∈Ω∗ where µ∗ = (µ∗1, · · · ,µ∗m)T , and

Af +
m∑
i=1

µ∗2i
2

Agi ≽ 0,
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then X∗ is a global optimal solution of (1). Also, if Hf and Hgi , i = 1, . . . ,m are Z-
matrices and x∗ is a global optimal solution of (1), then there exists µ∗ ∈ R+ − {O} such
that (X∗T ,µ∗T )T is an equilibrium point of the µRNN .

Proof. Since y∗ is an equilibrium point of the µRNN ,

−Af X
∗ − bf −

1
2

m∑
i=1

µ2i (AgiX
∗ + bgi ) = 0,∀i = 1, . . . ,m;µigi(X

∗) = 0. (9)

Let λ∗i =
µ∗2i
2 , (9) satisfies assumptions (3), therefore X∗ is a global optimal solution

of (1). On the other hand, if Hf and Hgi are Z-matrices then by using Theorem 1,
conditions (3) are necessary and sufficient for the optimality of x∗. Therefore, if x∗ is
a global optimal solution of (1), then there exists λ = (λ1, . . . ,λm) ≥ 0, λ , 0 such that
conditions (3) hold. Substituting λi =

µ2
i
2 into (3), we have

(a1) Af +
∑m

i=1
µ2
i
2 Agi ⪰O,

(b1) (Af X
∗ + bf ) +

∑m
i=1

µ2
i
2 (AgiX

∗ + bgi ) =O,

(c1)
∑m

i=1
µ2
i
2 gi(X

∗) = 0.

(10)

Since for all X ∈Ω∗, we have gi(X) ≤ 0, µ ≥ 0, so there are two cases, one µi = 0 and
the other µi , 0. If µi = 0 then µigi(X) = 0, and if µi , 0, then µigi(X) = 0 is established
again (from condition (c1)). Thus (X∗T ,µ∗T )T is an equilibrium point of the µRNN .

4 Stability and Convergence Analysis

In this section, the stability and convergence properties of the µRNN are exactly an-
alyzed. It is clear that φ is continuously differentiable. Thus φ is locally Lipschitz
continuous in Rn+m with positive constant ∥∇φ∥ where ∇φ is the Jacobian matrix for
φ(y). So, by Theorem 2 the solution y(t), for t ∈ [t0,τ) to the µRNN , for some τ > t0
is unique as τ→∞.

Definition 2. ([25]) The equilibrium point y∗ is Lyapunov stable if, for each ϵ > 0,
there is δ > 0 such that if ∥y(t0)− y∗∥ < δ, then ∥y(t)− y∗∥ < ϵ, for all t ≥ t0.

Definition 3. ([41]) A set G is an invariant set for a dynamic system if every system
trajectory which starts from a point in G remains in G for all future times.

Theorem 4. (Local Invariant Set Theorem) Consider an autonomous system of
the form Ẋ = f (X), with f continuous, and let V (X) be a scalar function with continuous
first partial derivatives. Assume that

• for some l > 0, the region Ωl defined by V (X) < l is bounded.

• d
dtV (X) ≤ 0 for all X in Ωl .
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Let R be the set of all points withinΩl where d
dtV (X) = 0, M be the largest invariant

set in R. Then, every solution X(t) originating in Ωl tends to M as t→∞.

Proof. See [41].

Theorem 5. Let y∗ be an equilibrium point for (5) and D ⊂ Rn+m be a domain con-
taining y∗. Let V :D→ R be a continuously differentiable function such that

V (y∗) = 0, V (y) > 0, inD − {y∗}, (11)

dV
dt

(y) ≤ 0, inD, (12)

then, y∗ is stable. Moreover, if

dV
dt

(y) < 0, inD − {y∗},

then, y∗ is asymptotically stable.

Proof. See [25].

Theorem 6. If y = (XT ,µT )T ∈M⊂ Rn+m, X ∈ S0 and assume that

A = Af +
m∑
i=1

µ2i
2
Agi ≽ 0.

Then the Jacobian matrix ∇φ(y) of the mapping φ defined in (6) is a negative semi-
definite matrix for all y ∈M.

Proof. It can be proved that the Jacobian matrix of φ is

∇φ =
[
−Af −

∑m
i=1

µ2
i
2 Agi

]
(n×n)

|
[
−∇gT (x).diag (µ1, . . . ,µm)

]
(n×m)

− − −
[diag (µ1, . . . ,µm).∇g(x)](m×n) | [diag (g1(x), . . . , gm(x))](m×m)

 ,
where ∇φ is an (n +m) × (n +m) matrix. ∇φ is exactly in the form of matrix F in
Lemma 2. Since for any feasible point y = (XT ,µT )T we have gi(X) ≤ 0, i = 1, . . . ,m
and using the assumption and Lemma 2 we obtain that ∇φ is a negative semi-definite
matrix.

Theorem 7. Let the assumptions of Theorem 6 hold. If Ω∗ ⊂M⊂ Rn+m and S0 is the
feasible set of (1), then system (6) satisfies the following statements:

(i) Equilibrium points of (6) are stable in the sense of Lyapunov,

(ii) For all points y(t0) = (XT
0 ,µ

T
0 )

T ∈M where X0 ∈ S0 the trajectory of y(t) starting
from y(t0) tends to Ω∗ as t→∞.
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(iii) For all ŷ = (X̂T , µ̂T )T ∈Ω∗ there exists a trajectory y(t) with initial point y(t0) ∈M
converges to ŷ, where X̂ is a global optimal solution of problem (1).

Proof. (i). In this case, we prove that the equilibrium point is stable in the sense of
Lyapunov. Consider the Lyapunov function L :M→ R as

L(y) = ∥y − ŷ∥2, (13)

where ŷ ∈Ω∗, and y(t) is a trajectory obtained for system (6) starting from y(t0).
Taking the time derivative from (13) and using (6), we have

dL(y)
dt

= 2(y − ŷ).
dy

dt
= 2(y − ŷ)φ(y).

Now by using the mean value theorem, there exists ỹ between y and ŷ, such that

φ(y)−φ(ŷ) = ∇φ(ỹ)(y − ŷ).

By using Theorem 6 ∇φ(y) is negative definite, by multiplying both sides of the
above equation by (y − ŷ)T , we have

(y − ŷ)T (φ(y)−φ(ŷ)) = (y − ŷ)T∇φ(y)(y − ŷ).

Since the right side of the above equation is negative and φ(ŷ) = 0, we have

(y − ŷ)Tφ(y) ≤ 0 =⇒
dL(y)
dt

≤ 0.

(ii). To prove this part, we use Theorem 4. Note that system (6) is autonomous.
The function L :M→ R, as stated in (13), is a scalar function with continuous
first-order partial derivatives. For all l > 0, the following set

Ωl = {y ∈M|L(y) ≤ l},

is bounded and for all y ∈ inn(Ωl ), we have
dL(y)
dt ≤ 0 where inn(Ωl ) is the interior

of Ω(y). Now, Theorem 4 implies that every solution y(t) of (6) starting from an
arbitrary point belongs to M, converges to a set of M =Ω∗. It should be noted
that in this discussion, the two sets R and M in Theorem 4 are the same as Ω∗.

(iii). If y(t0) is a feasible point, then the trajectory y(t) obtained for the system of (6)
starting from y(t0) cannot be unbounded, otherwise, we have limk→+∞ ∥y(tk) −
ŷ∥2 = +∞ which leads to a contradiction with Lyapunov stability of system (6).
As a result limk→+∞ ∥y(tk) − ŷ∥2 = 0 or M > 0, if limk→+∞ ∥y(tk) − ŷ∥2 = 0, then
limk→∞ y(tk) = ŷ(t). If not, we have:

lim
k→+∞

∥y(tk)− ŷ∥2 =M > 0,

which implies that limk→+∞ y(tk) = ȳ, where ȳ ∈Ω∗ and ∥ȳ − ŷ∥2 =M. Therefore,
there is a trajectory {y(tk)}+∞k=1 that converges to an equilibrium point of system
(6). According to Theorem 3, each equilibrium point of the system (6) is a global
optimal solution of the problem (1). Therefore, the statement in item (iii) is true.

In fact, all RNNs are autonomous.
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Remark 2. In many problems, the attraction region of an equilibrium point is large,
so the system (6) can be stable by starting from outside the feasible set.

5 Numerical Examples

In this section, some experiments are given to illustrate the efficiency and good per-
formance of µRNN for solving optimization problems (1). The numerical testing was
carried out on a Dell laptab (2.1 GHz, 2.00 GB of RAM) with the use of MATLAB
(2008). The first three examples are for the non-convex problems and then the two
examples are written for the convex problems. The numerical results of the non-convex
examples are compared to the numerical results of Malk et al. [31] and convex examples
are compared with Nazemi [36, 37].

Example 1. Consider the following non-convex quadratic optimization problem [31,
49].

min 8x1x2 +3x22 +14x1 +12x2
s.t. 18x21 +8x22 +2x1 − 1 ≤ 0,

13x21 − 4x1x2 +8x22 +4x2 − 1 ≤ 0,
5x21 − 10x1x2 +5x22 +16x1 +18x2 − 1 ≤ 0.

(14)

By performing Network µRNN and starting from random initial points

y(t0) = [rand,rand,rand,rand,rand ]T ,

we obtain X∗ = (−0.21901076,−0.26801087)T and µ∗ = (2.00739048,0.0001376,0)T .
From λi =

µ
∗2
i
2 we have λ∗ = (2.014807306,0,0)T . We note that

A = Af +
1
2

3∑
i=1

µ∗2i Agi =
(
72.5330630160 8

8 38.236916895

)
≻ 0,

and det(A) = 2709.44 > 0. In the system (6) a sufficiently large K could accelerate the
µRNN . In other words, as the amount of K increases, the settling time of the system
decreases significantly. Figure 2 presents the state trajectories of network µRNN with
five random initial points and K = 1, K = 1000. According to the numerical results, it
can be said that the convergence rate of networks µRNN and M.RNN are equal.

Example 2. (Global solution for the CDT problem, [31]) Consider the following prob-
lem:

min f (d) = 1
2d

TBd + bT d
s.t. ∥AT d + a∥ ≤ θ,

∥d∥ ≤ δ,
(15)

where B ∈ Sn, A ∈ Rn×m(m ≤ n), b ∈ Rn, a ∈ Rm, θ > 0 and δ > 0. The problem
(15) comes from applying the successive quadratic programming method and the trust-
region technique to minimize a general function q(X) subject to h(X) = 0 (for the details
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Figure 2: The transient behavior of the µRNN with different initial points for Example 1, K = 1 left
side and K = 1000 right side.

see [31]). To solve the CDT problem (15) by the theory developed in this paper, we
replace (15) by:

min f (d) = 1
2d

TBd + bT d
s.t. g1(d) = ∥AT d + a∥2 −θ2 ≤ 0,

g2(d) = ∥d∥2 − δ2 ≤ 0.δ,
(16)

where for n =m = 2,

B =
(
−2 0
0 2

)
, A =

(
1 0
0 1

)
, a = (0,−6)T , b = (0,−6)T , δ = 5, θ = 5,

Hf =
(
B b
b 0

)
, Hg1 = 2

(
AAT Aa
(Aa)T ∥a∥2−θ2

)
, Hg2 =

(
In 0
0 −δ2

)
.

By performing network µRNN and starting from random initial points, we obtain

d∗I =
(
3.98163
3.00000

)
, µ∗I =

(
1.82558
1.82558

)
, (17)

and
d∗II =

(
−3.98163
3.00000

)
, µ∗II =

(
1.82558
1.82558

)
, (18)

are two different global optimal solutions for Example 2.
Note that

A = Af +
2∑

i=1

µ∗2i
2

Agi =
(
4.6654 0

0 8.6654

)
≻ 0.

Figure 3 presents the state trajectories of network µRNN with 2 random initial
points and K = 100.

Example 3. Consider the following non-convex programming problem ([31]).

min −3x21 + x22 +
3
2x

2
3 +2x24 +3x25

s.t. 1
4 (x

2
1 + x22 + x23 + x24 + x25 − 14) ≤ 0,

1
4 (x

2
1 + x22 + x23 + (x4 − 3)2 + x25 − 17) ≤ 0,

−x2x3 − 0.5x23 − 1.5x4 + x25 − 2.5 ≤ 0,
−2x2x3 +0.5x24 − 9x5 ≤ 0, −x2x3 − 9x5 ≤ 0.

(19)
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Figure 3: The transient behavior of the µRNN with different initial points for Example 2 for K = 100.

Using the network M.RNN , Malek and Hossinipour [31] obtained the optimal so-
lutions as follows

X∗ = (3.6051,0.0000,0.0000,1.0000,0.0556)T ,

X∗∗ = (−3.6051,0.0000,0.0000,1.0000,0.0556)T ,

with
λ∗ = λ∗∗ = (5.2840,6.7160,0.0000,0.0741,0.0000)T .

Now by using network µRNN , we obtain

x∗I =


3.606758

0
0

0.999630707
0.05558959

 , µ∗I =


3.249422
3.663398

0
0.3848944

0

 , (20)

and

x∗II =


−3.605471

0
0

0.999979
0.0555559

 , µ∗II =


3.251679
3.666151

0
0.384872

0

 . (21)

Moreover, we get

A =


18.014 0 0 0 0

0 26.014 −0.1481 0 0
0 −0.1481 27.0140 0 0
0 0 0 28.0881 0
0 0 0 0 30.0140

 . (22)
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In this problem, since Hf and Hgi , i = 1, . . . ,m are Z-matrices, we can conclude by
Theorem 1 X∗I and X∗II are two different global solutions of this problem. Figures 4 and
5 present the state trajectories of network µRNN with two random initial points and
K = 1, K = 300, K = 1300. According to the numerical results, it can be said that the
convergence rates of network µRNN are better than the network M.RNN .
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Figure 4: The transient behavior of the µRNN with different initial points for Example 3 for K = 1.
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Figure 5: The transient behavior of the µRNN with different initial points for Example 3, K = 300 left
side and K = 1300 right side.

To check the µRNN performance, we want to solve two examples for convex prob-
lems.

Example 4. Consider the following convex nonlinear optimization problem [36].

min x21 +2x22 +2x1x2 − 10x1 − 12x2
s.t. z1 +3x2 ≤ 8,

x21 + x22 +2x1 − 2x2 ≤ 3.
(23)

The exact solution is X∗ = (1,2)T . By performing the network µRNN and starting
from 5 random initial points we get

x∗ =
(
1.000075
2.000020

)
,

(
µ1
µ2

)
=

(
0.001533
1.414195

)
, (24)
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and note that

A = Af +λ1Ag1 +λ2Ag2 =
(
3.99994 2.0000
2.0000 5.999947

)
≻ 0. (25)

Figure 6 displays the transient behavior based on the network µRNN with 5 random
initial points. All trajectories of the network converge to X∗ = (1,2)T . Moreover, when
the initial point is chosen as an infeasible point, the trajectory of the network µRNN
still converges to X∗.
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Figure 6: Transient behaviors of y(t) = (XT ,µT )T of network µRNN with 5 various initial points in
Example 4 for K = 1 and K = 10.

Example 5. Consider the following convex nonlinear optimization problem [37]:
min 10x21 +2x22 +2x23 − 2(x1x2 +3x1x3 − x2x3)
s.t. −1 ≤ x2 − x1 ≤ 0,

−1 ≤ x3 − 3x1 ≤ 1,
1 ≤ x2 + x3 ≤ 2.

(26)

The first constraint is equivalent to (x2 − x1)(x2 − x1 +1) ≤ 0. Similarly, the constraints
of the problem (26) are equivalent to the following constraints.

x21 + x22 − 2x1x2 + x2 − x1 ≤ 0,
9x21 + x23 − 6x1x3 − 1 ≤ 0,
x22 + x23 +2x2x3 − 3x2 − 3x3 +2 ≤ 0.

Since the problem is convex, the unique exact solution is X∗ = (14 ,
1
4 ,

3
4 )

T . By performing
the network µRNN and starting from 4 random initial points we obtain

x∗ =


0.250452
0.248640
0.75135

 ,

µ1
µ2
µ3

 =

0.146195

0
1.999987

 . (27)

Note that

A = Af +
3∑

i=1

λiAgi =


5.02 −0.50 −1.50
2.00 5.99 2.01
−1.50 2.01 2.51

 ≻ 0, (28)

and det(A) = 8.128. Figures 7 and 8 show that the trajectories of the network µRNN
to solve the above problem with 4 random initial points and K = 15,120,1000, converge
to the optimal solution of this problem. It is seen that the proposed network converges
to the exact solution X∗ independent of the way that we may choose the starting points.
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Figure 7: The transient behavior of the µRNN with 4 initial points for Example 5 for K = 15.
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Figure 8: The transient behavior of the µRNN with 4 initial points for Example 5, K = 120 left side
and K = 1000 right side.

6 Conclusion

In this paper, we presented a recurrent neural network (µRNN ) for solving non-convex
quadratic problems based on the Lyapunov theory. This network is a modified M.RNN
and has a simpler structure compared to that. The capability of this network is equal
to and sometimes better than M.RNN . Finally, to show the efficiency of the proposed
network, some numerical examples (convex and non-convex) were presented.
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