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1 Introduction

Currently, one of the most widely used parts of applied mathematics belongs to frac-
tional calculus. In recent years, this field has become an emerging position for science
and engineering researchers with a wide range of applications. The range of applica-
tions of fractional calculus is increasing rapidly, including in pharmacokinetics [32],
hyperchaotic system [30], radar-guided missile [36], quantum mechanics [20], stochastic
programming [7], control theory [23], and image processing [1]. Numerical methods
for solving fractional optimal control problems (FOCPs), on the other hand, have re-
ceived much attention in recent years due to their ease of use and flexibility. Increasing
the accuracy of these methods improves the results in practical applications, so the
development of more accurate methods is of interest to researchers. Direct and indi-
rect methods are the two main approaches in solving optimal control problems (OCPs)
and more recently FOCPs [26]. In the current paper, we use a direct method to solve
such problems. To use the direct method, a basic polynomial is needed to discretize
FOCP. Various methods are developed with different polynomials such as Legendre
[21], Jacobi [9], Bernstein [24], Boubaker [25] and Taylor polynomials [39]. Some other
works in solving FOCPs that have been done recently and are of high accuracy are
[3, 4, 15, 31, 37, 38]. Here, we use linear B-spline functions as basic polynomials [17].
Spline and B-spline polynomials were first introduced by Schoenberg in 1946 in his
landmark paper. In this article, he states the theoretical foundations for this issue
[28, 29, 34]. Due to the desirable properties of polynomial splines, they play a sig-
nificant role in numerical analysis and approximation theory. Lakestani et al. [18]
constructed the operational matrix of fractional derivatives using B-spline functions
and solved fractional differential equations with the help of this matrix. This matrix
was then used to solve various problems, including the problem of OCP in [11].

In numerical methods, sometimes an operational matrix of derivation [10, 11], and
sometimes an operational matrix of integration [6, 12], is used. We choose the oper-
ational matrix for Riemann-Liouville integration. We represent this matrix with the
equation.

IαΦM (t) ≈ IαΦM (t),

where Iα is the Riemann-Liouville integral operator of order α, Iα is the operational
matrix of fractional integration and the elements of ΦM (t) are B-spline basis functions.
We utilize this matrix to transform FOCPs into a nonlinear programming one and then
solve it by suitable algorithms. In this paper, the operational matrix of the Riemann-
Liouville fractional integral of B-spline functions are rewritten with the help of Laplace
transforms, then using this matrix and in the form of a new numerical method, the
fractional optimal control problem is solved. The results of the new numerical method
are compared with the results of the numerical methods described in [6, 13, 15, 21, 35].

The paper is organized as follows. First of all, in Section 2, some preliminaries
of fractional calculus and some necessary definitions of linear B-spline functions are
briefly reviewed. Details on the construction of the operational matrix of fractional
integration are reported in Section 3. The structure of the fractional optimal control
problems is stated in Section 4. The new numerical method is presented in Section 5.
In Section 6, the convergence of the proposed method is considered. In Section 7, we
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apply our numerical method to solve four examples. Finally, Section 8 completes this
paper with a brief conclusion.

2 Introductory Definitions

2.1 The Caputo Fractional Derivative and the Riemann-Liouville Integral
Operator

Definition 1. The Caputo fractional-order derivative is defined by [8]

Dαx(t) =
1

Γ(n−α)

∫ t

0

x(n)(τ)
(t − τ)α+1−n

dτ, n− 1 < α ≤ n, n ∈N, (1)

where α > 0 is the order of the derivative and n is the smallest integer not less than α.

Definition 2. The Riemann-Liouville fractional integral operator of order α is defined
by [8]

Iαx(t) =


1

Γ(α)

∫ t

0

x(τ)
(t − τ)1−α

dτ =
1

Γ(α)
tq−1 ∗ x(t), α > 0,

x(t), α = 0,
(2)

where ∗ indicates the convolution product.

The relationship between the Caputo derivative and Riemann-Liouville integral is
given in the following equation [8]

Iα(Dαy(t)) = y(t)−
n−1∑
k=0

tk

k!
y(k)(0), (3)

where n− 1 < α ⩽ n and y(k)(0) are the k-th order derivative of y(t) at t = 0.

2.2 Linear B-Spline Functions

A spline function of order n complies with a piecewise polynomial function of degree
n−1. In these functions, knots are the junction of the pieces. The B-spline is short for
base spline, first introduced by Isaac Jacob Schoenberg. These basic functions are semi-
orthogonal and have unique features that distinguish them for use in approximating
functions. One of the most important features of B-spline functions is the continuity
of themselves and their derivatives. An arbitrary function can be approximated by
a linear combination of B-spline functions [14]. Linear B-spline functions (the second
order) are as follows

ϕi,k(t) =


ti − k, k ≤ ti < k +1,

2− (ti − k), k +1 ≤ ti < k +2, k = 0, . . . ,2i − 2,
0, otherwise,

(4)
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with left-hand side boundary functions

ϕi,k(t) =

2− (ti − k), 0 ≤ ti < 1, k = −1,
0, otherwise,

(5)

and with right-hand side boundary functions

ϕi,k(t) =

ti − k, k ≤ ti < k +1, k = 2i − 1,
0, otherwise.

(6)

The relation between t and ti is ti = 2it [17].

2.3 Approximation by B-Spline Functions

To approximate an arbitrary function f (t) ∈ L2[0,1] through the B-spline functions,
first let i =M and then assume [18]

f (t) ≃
2M−1∑
k=−1

akϕM,k(t) = ATΦM (t), (7)

where
ΦM = [ϕM,−1(t),ϕM,0(t), . . . ,ϕM,2M−1(t)]

T , (8)
is a (2M +1)-vector of the basis function similar to (4), (5) and (6) as follows

ϕM,−1(t) =

2− (2
M t +1), 0 ≤ t < 1

2M ,

0, otherwise,
(9)

ϕM,k(t) =


2M t − k, k

2M ≤ t < k+1
2M ,

2− (2M t − k), k+1
2M ≤ t < k+2

2M ,

0, otherwise,

k = 0, . . . ,2M − 2, (10)

ϕM,2M−1(t) =

2
M t − (2M − 1), 2M−1

2M < t ≤ 1,

0, otherwise,
(11)

and
A = [a−1, a0, . . . , a2M−1]

T , (12)
with

ak = f (tk) , tk =
k +1
2M

, k = −1, . . . ,2M − 1, (13)

where the points tk are the collocation points [16, 17].
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3 The Operational Matrix of Fractional Integration

This operational matrix was first obtained in [27] that we rewrite with some little
changes. It is easy to see that the linear B-spline functions (9)-(11) can be written by

ϕM,−1(t) =
(
1− 2M t

)(
µ0(t)−µ 1

2M
(t)

)
, (14)

ϕM,k(t) =
(
2M t − k

)(
µ k

2M
(t)−µ k+1

2M
(t)

)
(15)

+
(
2− 2M t + k

)(
µ k+1

2M
(t)−µ k+2

2M
(t)

)
, k = 0, . . . ,2M − 2, (16)

ϕM,2M−1(t) =
(
2M (t − 1) + 1

)(
µ 2M−1

2M
(t)−µ1(t)

)
, (17)

where µa(t) is the unit step function defined by

µa(t) =

1, t ≥ a,

0, t < a.

By taking the Laplace transform from Equations (14)-(17) we get

L
{
ϕM,−1(t)

}
=
1
s

(
1+

2M

s

(
e−

s
2M
−1)) , (18)

L
{
ϕM,k(t)

}
=
2M

s2

(
e−

ks
2M − 2e−

(k+1)s
2M + e−

(k+2)s
2M

)
, k = 0,1, . . . ,2M − 2, (19)

L
{
ϕM,2M−1(t)

}
=
2M

s2

(
e−

(2M−1)s
2M − e−s

)
− e−s

s
. (20)

According to Equation (2), the fractional integration of linear B-spline functions
ϕM,k(t) of order α is

IαϕM,k(t) =
1

Γ(α)

(
tα−1 ∗ϕM,k(t)

)
,

therefore, we have
L

{
IαϕM,k(t)

}
=

1
sα
L

{
ϕM,k(t)

}
. (21)

From Equations (18)-(20) and Equation (23), we get

L
{
IαϕM,k(t)

}
=

2M

sα+2



(
s
2M − 1

)
+ e−

s
2M , k = −1,

e−
ks
2M − 2e−

(k+1)s
2M + e−

(k+2)s
2M k = 0,1, . . . ,2M − 2,

e−
(2M−1)s

2M −
(

s
2M +1

)
e−s, k = 2M − 1.

(22)

Taking the inverse Laplace transform of Equation (22), we get

IαϕM,k(t) =
2M

Γ(α +2)
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(
t − 1

2M

)α+1
µ 1

2M
(t)−

(
t − α+1

2M

)
tα , k = −1,(

t − k
2M

)α+1
µ k

2M
(t)− 2

(
t − k+1

2M

)α+1
µ k+1

2M
(t)

+
(
t − k+2

2M

)α+1
µ k+2

2M
(t), k = 0,1, . . . ,2M − 2,(

t − 2M−1
2M

)α+1
µ 2M−1

2M
(t)

−
(
t − 1+ α+1

2M

)
(t − 1)αµ1(t), k = 2M − 1.

(23)

According to Equation (7), we expand IαΦM,k(t) by the linear B-spline functions as

IαϕM,k(t) �
2M−1∑
i=−1

skiϕM,k(t) = STk ΦM (t), (24)

where
ski = IαϕM,k

( i +1
2M

)
i, k = −1, . . . ,2M − 1, (25)

Sk is a (2M + 1)-vector and ΦM is the basis vector in Equation (8). Therefore, the
operational matrix of fractional integration is obtained as follows

IαΦM (t) � IαΦM (t). (26)

Using Equations (23)-(25), it is easy to see that Iα is a (2M + 1)× (2M + 1) matrix
given by

Iα =



0 η0 η1 η2 · · · η2M−1
κ ν1 ν2 · · · ν2M−1

κ ν1 · · · ν2M−2
. . .

. . .
...

κ ν1
κ


, (27)

where κ =
1

2MαΓ(α +2)
,

ηi = κ
[
(α − i)(i +1)α + iα+1

]
, i = 0,1, . . . ,2M − 1,

and
νi = κ

[
(i − 1)α+1 − 2iα+1 + (i +1)α+1

]
, i = 1,2, . . . ,2M − 1.

4 Problem Statement

This work aims to propose a new numerical method for approximating the solution of
the following FOCP:
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Min(Max) J(x,u) =
∫ 1

0
L(x(t),u(t), t)dt, (28)

s.t : Dαx(t) = f(x(t),u(t), t), (29)
x(k)(0) = xk , k = 0,1, . . . ,⌊α⌋, (30)
gj (x(t),D

αx(t),u(t), t) ≤ 0, j = 1,2, . . . ,w, (31)

where Dα = [Dα1 ,Dα2 , . . . ,Dαl ] is the fractional derivative operator with

ni − 1 < αi ≤ ni , ni ∈N, i = 1,2, . . . , l,

and

x(t) = [x1(t),x2(t), . . . ,xl(t)]
T ,

u(t) =
[
u1(t),u2(t), . . . ,uq(t)

]T
,

f = [f1, f2, . . . , fl ] .

Also, L, fi , and gj , i = 1,2, . . . , l, j = 1,2, . . . ,w are linear or nonlinear functions. In
addition, it should be noted that the elements of Equation (29) can be written as

Dαixi(t) = fi(x(t),u(t), t), i = 1,2, . . . , l. (32)

5 The Proposed Numerical Method

In this section, we use the linear B-spline functions to solve FOCP as given in Equations
(28)-(31). We expand Dαixi(t) in Equation (32) by the linear B-spline functions as

Dαixi(t) ≃ YT
i ΦM (t). (33)

By using Equations (3), (26) and (33), we have

xi(t) ≃ YT
i Iαi

ΦM (t) +
ni−1∑
k=0

tk

k!
x
(k)
i (0), (34)

where ni − 1 < αi ⩽ ni . The expansion of the second term on the right-hand side of
Equation (34) by the linear B-spline functions yields

xi(t) ≃ YT
i Iαi

ΦM (t) +AT
i ΦM (t) =

(
YT
i Iαi

+AT
i

)
ΦM (t), (35)

and by setting XT
i = YT

i Iαi
+AT

i , we get

xi(t) = XT
i ΦM (t). (36)

For the control variables, we obtain
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uj (t) ≃UT
j ΦM (t). (37)

Let
Iα =

[
Iα1

,Iα2
, . . . ,Iαl

]
,

and

Φ̂M,l (t) = Il ⊗ΦM (t), (38)
Îα = Il ⊗Iα (39)
Φ̂M,q(t) = Iq ⊗ΦM (t), (40)

where Il and Iq are identity matrices of order l and q respectively and ⊗ is the Kronecker
product [19]. Now, by using Equations (38) and (40), we have

x(t) ≃ XT Φ̂M,l (t), (41)
Dαx(t) ≃ YT Φ̂M,l (t), (42)
u(t) ≃UT Φ̂M,q(t), (43)

where X, Y and A are vectors of order l(2M+1)×1, and U is a vector of order q(2M+1)×1,
given by

X =
[
XT
1 ,X

T
2 , . . . ,X

T
l

]T
,

Y =
[
YT
1 ,Y

T
2 , . . . ,Y

T
l

]T
,

A =
[
AT
1 ,A

T
2 , . . . ,A

T
l

]T
,

U =
[
UT
1 ,U

T
2 , . . . ,U

T
q

]T
.

Moreover, by using Equation (39), we obtain X = YÎα +A. To approximate the
objective function, we have two approaches, one related to when L(x(t),u(t), t) in (28)
is quadratic as

L(x(t),u(t), t) = ξT (t)Qξ(t) +uT (t)Ru(t)

and we have
J(x,u) =

∫ 1

0

(
ξT (t)Qξ(t) +uT (t)Ru(t)

)
dt, (44)

then by substituting Equations (41) and (43) in Equation (44) we get

J(x,u) =XT

(∫ 1

0
Φ̂M,l (t)Q[Φ̂M,l (t)]

T dt
)
X

+UT

(∫ 1

0
Φ̂M,q(t)R[Φ̂M,q(t)]

T dt
)
U. (45)

Equation (45) can be computed more efficiently by writing J as

J(x,u) =XT

(∫ 1

0
Q⊗ΦM (t)[ΦM (t)]T dt

)
X
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+UT

(∫ 1

0
R⊗ΦM (t)[ΦM (t)]T dt

)
U. (46)

Finally, J(X,U) can be rewritten as

J(X,U) = XT (Q⊗P)X+UT (R⊗P)U. (47)

Otherwise, in the case that L(x(t),u(t), t) in (28) is an arbitrary function, we calcu-
late it by a suitable Newton-Cotes numerical integration method [33] as

J(X,U) =
n∑
i=0

ωiL([Φ̂M,l (ti )]
TX, [Φ̂M,q(ti )]

TU, ti ), ti =
i
n
, i = 1,2, . . . ,n (48)

where the weight ωi is determined by

ωi =
∫ 1

0
li(t)dt,

and each li(t) is the Lagrange polynomial

li(t) =
n∏

j=0
j,i

t − τj
τi − τj

.

Finally, we approximate the dynamic system as follows.
Using Equations (41)-(43) the system constraints (29) and (31) become

YT Φ̂M,l (t) = f(XT Φ̂M,l (t),U
T Φ̂M,q(t), t), (49)

gj ([Φ̂M,l (t)]
TX, [Φ̂M,q(t)]

TU, t) ⩽ 0, j = 1,2, . . . ,w. (50)

We collocate Equations (49) and (50) at

tk =
k − 1
2M

, k = 1,2, . . . ,2M +1, (51)

as

YT Φ̂M,l (tk) = f(XT Φ̂M,l (tk),U
T Φ̂M,q(tk), tk), (52)

gj ([Φ̂M,l (tk)]
TX, [Φ̂M,q(tk)]

TU, tk) ⩽ 0, j = 1,2, . . . ,w. (53)

In this way, we were able to turn FOCP into a nonlinear programming problem
which can be stated as follows. Find X and U so that J(X,U) in Equations (47) or
(48) is minimized (or maximized) subject to Equations (52) and (53). To solve this
nonlinear programming problem, we use the NLPSolve command in Maple software,
which uses the sequential quadratic programming (SQP) method to solve NLP.
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6 Convergence of the Method

To check the convergence of the proposed numerical method, we first express the exis-
tence of the optimal solution in the form of Filippov’s existence theorem. Suppose the
usual set of augmented velocities defined by

(f ,L+) (x,U,t) := {(f (x,u, t) ,L(x,u, t) +γ)|u ∈U,γ ≥ 0} ⊂ Rn+1,

for all (x, t) ∈ Rn × [0,1]. Moreover let T ⊂ C stand for the set of all trajectories x that
can be associated with a control u such that the couple (x,u) satisfies all the constraints
of the problem FOCP has given in Equations (28)-(31).

Theorem 1. (Filippov’s existence theorem) Assume that U is compact, T is nonempty
and bounded in C, and (f ,L+)(x,U,t) is convex for all (x, t) ∈ Rn × [0,1]. Then problem
FOCP given in Equations (28)-(31) has at least one optimal solution.

Proof. Refer to [5].

Now we know that FOCP given in Equations (28)-(31) has at least one optimal
solution of the form (x∗,u∗). So, to show that the method is convergent, it is suf-
ficient ∥x − x∗∥ → 0 and ∥u − u∗∥ → 0 as M → ∞ where x and u are approximate
values obtained from the proposed numerical method and M is the parameter of
the method related to the collocation points. We consider a linear B-spline space
SM,τ = span{ϕM,−1,ϕM,0, . . . ,ϕM,2M−1} where ϕM,k , k = −1,0, . . . ,2M − 1 are B-spline
functions defined in Equations (4-6) also τ = (τj )

2M+1
j=1 where τj =

j−1
2M . Assuming that

hj = τj+1 −τj and h =maxj=1,...,2M+1hj , we have h = 1
2M . For an arbitrary function f we

consider the distance from f to S2,τ defined by

dist∞,[0,1](f ,SM,τ) = inf
g∈SM,τ

∥f − g∥∞,[0,1].

Theorem 2. Suppose that an arbitrary function f ∈ C3[0,1] is given. Then for the
linear B-spline space SM,τ

dist∞,[0,1](f ,S2,τ) ≤ Kh3∥D3f ∥∞,[0,1],

where K = 1
233! and D3f is the third derivative of the function f .

Proof. Refer to [22].

Now, according to h = 1
2M , by increasing the value of M sufficiently, we can bring

the values of the state and control variables closer to their optimal values.

7 Illustrative Examples

In this section, by solving numerical examples, we will clarify the steps of using the
proposed numerical method. We used the Maple 2015 program on a personal computer
to perform numerical calculations



87Edrisi-Tabriz, Y./ COAM, 7 (2), Summer-Autumn 2022

Example 1. We consider the following time-invariant FOCP from [2]

min J =
1
2

∫ 1

0
[x2(t) +u2(t)]dt, (54)

subject to the system dynamics

Dαx(t) = −x(t) +u(t), (55)

and the initial condition

x(0) = 1. (56)

The exact solution to this problem in the case α = 1 is

x̄(t) = cosh(
√
2t) + β sinh(

√
2t),

ū(t) = (1 +
√
2β)cosh(

√
2t) + (

√
2+ β)sinh(

√
2t),

where

β = −cosh(
√
2) +
√
2sinh(

√
2)

√
2cosh(

√
2) + sinh(

√
2)
≃ −0.979921727.

The optimal value of the performance index with the exact solution is J = 0.1929093.
Assume that x̃(t), ũ(t) and J̃(x,u) are the approximate values obtained from numerical
methods for the state, control, and objective functions respectively. Then the error is
given by

Ex =max
i

(|x̄(ti )− x̃(ti )|),

Eu =max
i

(|ū(ti )− ũ(ti )|),

EJ = |J̄ − J̃ |,

where ti =
i+1
2M , i = −1, . . . ,2M − 1. Figure 1 demonstrates state and control variables

obtained by our numerical method for M = 8 and different values of α. Figure 2 shows
the logarithmic graphs of MAEs (Maximum Absolute Errors) of x(t), u(t) and J for
α = 1 and different values of M. Given these figures, the convergence of the method
can be deduced. Tables 1 and 2 show the absolute errors of the approximate optimal
state x̃(t) and the absolute error of the optimal control ũ(t) respectively. Table 3 shows
the approximate value of the performance index J̃ and its error with the exact value of
J̄ .
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Figure 1: State x(t) and control u(t) functions for Example 1.

Figure 2: Logarithmic graphs of MAEs for Example 1.
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Table 1: The absolute errors of the approximate optimal states for Example 1

Method of [15] Method of [35] Method of [13] Presented method
t for N = 5 for N = 5 for M = 8 for M = 8

0.1 2.11× 10−5 6.90× 10−7 1.44× 10−6 3.52× 10−6

0.2 9.71× 10−6 3.62× 10−6 1.36× 10−6 1.86× 10−6

0.3 4.08× 10−7 1.97× 10−6 1.23× 10−6 1.40× 10−6

0.4 5.76× 10−7 2.58× 10−6 1.01× 10−6 1.74× 10−6

0.5 5.66× 10−6 4.46× 10−6 2.92× 10−7 4.89× 10−7

0.6 9.25× 10−6 1.65× 10−6 7.79× 10−7 1.08× 10−6

0.7 8.35× 10−6 2.80× 10−6 7.85× 10−7 3.67× 10−7

0.8 4.36× 10−6 3.49× 10−6 6.71× 10−7 2.44× 10−7

0.9 2.59× 10−6 1.22× 10−6 5.32× 10−7 5.24× 10−7

Table 2: The absolute errors of the approximate optimal controls for Example 1

Method of [35] Method of [15] Method of [13] Presented method
t for N = 5 for N = 5 for M = 9 for M = 9

0.1 1.90× 10−5 6.74× 10−6 1.26× 10−6 1.56× 10−6

0.2 5.01× 10−6 3.17× 10−6 4.68× 10−6 7.33× 10−7

0.3 1.46× 10−5 5.92× 10−7 4.49× 10−6 4.37× 10−7

0.4 1.47× 10−5 7.10× 10−7 1.23× 10−6 4.51× 10−7

0.5 1.25× 10−6 2.01× 10−6 7.31× 10−6 3.20× 10−7

0.6 1.07× 10−5 2.71× 10−6 1.19× 10−6 7.20× 10−8

0.7 1.27× 10−5 2.11× 10−6 3.83× 10−6 1.57× 10−7

0.8 7.62× 10−6 8.59× 10−7 3.68× 10−6 1.74× 10−7

0.9 1.74× 10−5 8.93× 10−8 1.15× 10−6 5.36× 10−8

Table 3: The approximate values and their errors with exact values of J̄ for Example 1

Method of [35] Presented method

N J̄ EJ = |J̄ − J̃ | M J̄ EJ = |J̄ − J̃ |

2 0.1926605504081 2.48× 10−4 5 0.192909340640602 4.25× 10−8

3 0.1929127052722 3.41× 10−6 6 0.192909300753628 2.66× 10−9

4 0.1929092715551 2.65× 10−8 7 0.192909298259509 1.66× 10−10

5 0.1929092982262 1.33× 10−10 8 0.192909298103643 1.04× 10−11

6 0.1929092980936 6.15× 10−13 9 0.192909298093859 6.59× 10−13

Example 2. Consider the following fractional optimal control problem that was intro-
duced in [21] and also was studied in [6]

Min J =
∫ 1

0

(x(t)− t2)2 +
u(t) + t4 − 20t

9
10

9Γ( 9
10 )

2
dt,
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subject to the dynamic constraints

D1.1x(t) = t2x(t) +u(t),

x(0) = ẋ(0) = 0.

The exact solution to this problem is given by

x̄(t) = t2,

ū(t) =
20t

9
10

9Γ( 9
10 )
− t4,

J̄ = 0.

The exact and approximate values of the state and control variables are illustrated
in Figure 3, and their errors are plotted in Figure 4. The logarithmic graphs of MAEs
of state and control variables and performance index are shown in Figure 5. In Table
4, the approximate values of the performance index J for different values of M, are
presented. Also, these values are compared with similar methods in [6, 21]. According
to Table 4, the presented method is more accurate than the existing methods.

Figure 3: The values of x(t) and u(t) obtained by M = 8 for Example 2.
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Figure 4: The values of errors of x(t) and u(t) obtained by M = 8 for Example 2.

Figure 5: Logarithmic graphs of MAEs for Example 2.
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Table 4: Approximate values of J for Example 2

Methods Parameters of J(x,u)
method

Method of [21] (m = 3,n = 4) 6.0753× 10−6
(m = 4,n = 5) 1.67255× 10−6
(m = 5,n = 6) 5.91532× 10−7
(m = 7,n = 8) 1.21966× 10−7
(m = 8,n = 9) 7.03371× 10−8

Method of [6] N = 4 4.76932× 10−6
N = 5 1.47243× 10−6
N = 6 5.37825× 10−7
N = 8 1.06099× 10−7
N = 9 5.44304× 10−8

The present M = 4 1.72145571012670767× 10−6
method M = 5 1.26295831601775329× 10−7

M = 6 1.10567794682908139× 10−8
M = 7 1.57143831079185382× 10−9
M = 8 1.26073358425454064× 10−10

Example 3. Consider the following FOCP [21]

Min J =
∫ 1

0

[
exp(t)

(
x(t)− t4 + t − 1

)2
+
(
1+ t2

)u(t) + 1− t + t4 − 8000t
21
10

77Γ
(
1
10

)
2 ]

dt,

subject to the dynamic system

D1.9x(t) = x(t) +u(t), t ∈ [0,1],

and the boundary conditions

x(0) = 1, ẋ(0) = −1.

The exact solution is given by

x̄ = 1− t + t4,

J̄ = 0.

In Figure 6, the exact and approximate values of the state variable and approximate
value of the control variable with M = 8 are illustrated. Moreover, we plotted the error
value of x(t) in Figure 7. The MAEs of state vector x(t) and performance index J are
plotted in Figure 8.

Example 4. In this example, we present a problem involving a two-dimensional state
variable and an inequality constraint
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Figure 6: The values of x(t) and u(t) obtained by M = 8 for Example 3.

Figure 7: The values of errors of x(t) obtained by M = 8 for Example 3.

min J =
1
2

∫ 1

0
u2(t)d t,

subject to
Dα x1(t) = x2(t),

Dα x2(t) = u(t),

x1(t) ≤ 0.1,

x1(0) = x1(1) = 0,

x2(0) = −x2(1) = 1.

The exact values of the control variable for α = 1 are
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Figure 8: Logarithmic graphs of MAEs for Example 3.

Table 5: Approximate values of J for Example 3

Methods Parameters of the J(x,u)
method

The method of [21] m = n = 3 8.93768× 10−6
m = n = 4 5.42028× 10−7
m = n = 5 6.77757× 10−8
m = n = 7 2.84624× 10−9
m = n = 8 8.22283× 10−10

The present M = 4 1.80165706993258757× 10−5
method M = 5 1.12585635458861543× 10−6

M = 6 7.02177422426594986× 10−8
M = 7 4.12444733804727959× 10−9
M = 8 1.92637108047034916× 10−10

u∗(t) =


200
9 t − 20

3 , t ∈ [0,0.3],
0, t ∈ [0.3,0.7],
−2009 t + 140

9 t ∈ [0.7,1] .

Figure 9 shows the exact and approximate states and control variables obtained by
the proposed method for M = 8 and α = 1.
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Figure 9: State functions x1(t) and x2(t) and control function u(t) for Example 4.

8 Conclusion

In this paper, we presented a numerical method with an emphasis on better accuracy
than similar tasks. In this method, we used B-spline functions, and the distinguishing
feature of this work is the use of a fractional integral operational matrix in solving the
FOCPs. We managed to turn FOCP into NLP with the help of this matrix. Using
several numerical examples, we were able to show the high efficiency, and accuracy of
the proposed method. In addition, by increasing the value of M, the accuracy of the
method increases, and in cases where there is an exact solution, the approximate value
converges to the exact solution, and also the error is reduced. For future research,
more accurate approximations can be achieved by extending the basic functions for
approximation.



Using the Integral Operational Matrix of B-Spline .../ COAM, 7 (2), Summer-Autumn 202296

References

[1] Adams M. P. (2018). “Numerical schemes for the fractional calculus and their application
to image feature detection”, (Master’s thesis, Graduate Studies).

[2] Agrawal O. P. (1989). “General formulation for the numerical solution of optimal control
problems”, International Journal of Control, 50, 627-638.

[3] Baghani O. (2021). “Second Chebyshev wavelets (SCWs) method for solving finite-time
fractional linear quadratic optimal control problems”, Mathematics and Computers in
Simulation, 190, 343-361.

[4] Baghani O. (2022). “SCW-iterative-computational method for solving a wide class of non-
linear fractional optimal control problems with Caputo derivatives”, Mathematics and
Computers in Simulation, 202, 540-558.

[5] Bergounioux M., Bourdin L. (2020). “Pontryagin maximum principle for general Caputo
fractional optimal control problems with Bolza cost and terminal constraints”, ESAIM:
Control, Optimisation and Calculus of Variations, 26, 35.

[6] Bhrawy A. H., Doha E. H., Baleanu D., Ezz-eldien S. S., Abdelkawy M. A. (2015). “An
accurate numerical technique for solving fractional optimal control problems”, Differential
Equations, 15, 23.

[7] Darehmiraki M. (2018). “An efficient solution for stochastic fractional partial differential
equations with additive noise by a meshless method”, International Journal of Applied and
Computational Mathematics, 4, 14.

[8] Das S. (2011). “Functional fractional calculus”, Springer-Verlag Berlin Heidelberg.

[9] Doha E. H., Bhrawy A. H., Baleanu D., Ezz-Eldien S. S., Hafez R. M. (2015). “An effi-
cient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving
fractional optimal control problems”, Advances in Difference Equations, 15.

[10] Edrisi Tabriz Y., Heydari A. (2014). “Generalized B-spline functions method for solving
optimal control problems”, Computational Methods for Differential Equations, 2, 243-255.

[11] Edrisi Tabriz Y., Lakestani M. (2015) “Direct solution of nonlinear constrained quadratic
optimal control problems using B-spline functions”, Kybernetika, 51, 81-98.

[12] Edrisi Tabriz Y., Lakestani M., Heydari A. (2016). “Two numerical methods for nonlinear
constrained quadratic optimal control problems using linear B-spline functions”, Iranian
Journal of Numerical Analysis and Optimization, 6, 17-38.

[13] Edrisi-Tabriz Y., Lakestani M., Razzaghi M. (2021). “Study of B-spline collocation method
for solving fractional optimal control problems”, Transactions of the Institute of Measure-
ment and Control, 43(11), 2425-37.

[14] Goswami J. C., Chan A. K. (2011). “Fundamentals of wavelets: theory, algorithms, and
applications”, John Wiley & Sons.

[15] Habibli M., Noori Skandari M. H. (2019). “Fractional Chebyshev pseudo spectral method
for fractional optimal control problems”, Optimal Control Applications and Methods,
40(3), 558-572.

[16] Lakestani M., Razzaghi M., Dehghan M. (2006). “Semiorthogonal spline wavelets approx-
imation for Fredholm integro-differential equations”, Mathematical Problems in Engineer-
ing.



97Edrisi-Tabriz, Y./ COAM, 7 (2), Summer-Autumn 2022

[17] Lakestani M., Razzaghi M., Dehghan M. (2005). “Solution of nonlinear Fredholm-
Hammerstein integral equations by using semiorthogonal spline wavelets”, Mathematical
Problems in Engineering, 113-121.

[18] Lakestani M., Dehghan M., Irandoust-Pakchin S. (2012). “The construction of operational
matrix of fractional derivatives using B-spline functions”, Communications in Nonlinear
Science and Numerical Simulation, 17, 1149-1162.

[19] Lancaster P., Tismenetsky M. (1985). “The theory of matrices: with applications”, Else-
vier.

[20] Laskin N. (2018). “Fractional quantum mechanics”, World Scientific.
[21] Lotfi A., Yousefi S. A., Dehghan M. (2013). “Numerical solution of a class of fractional

optimal control problems via the Legendre orthonormal basis combined with the oper-
ational matrix and the Gauss quadrature rule”, Journal of Computational and Applied
Mathematics, 250, 143-160.

[22] Lyche T., Morken K. (2008). “Spline methods draft”, Department of Informatics, Center
of Mathematics for Applications, University of Oslo, Oslo, 3-8.

[23] Magin R., Vinagre B., Podlubny I. (2018). “Can cybernetics and fractional calculus be
partners?: Searching for new ways to solve complex problems”, IEEE Systems, Man, and
Cybernetics Magazine, 4(3), 23-28.

[24] Nemati A., Yousefi S., Soltanian F., Ardabili J. S. (2016). “An efficient numerical solution
of fractional optimal control problems by using the Ritz method and Bernstein operational
matrix”, Asian Journal of Control, 18, 2272-2282.

[25] Rabiei K., Ordokhani Y., Babolian E. (2016). “The Boubaker polynomials and their appli-
cation to solve fractional optimal control problems”, Nonlinear Dynamic, 88, 1013-1026.

[26] Rao A. V. (2009). “A survey of numerical methods for optimal control”, Advances in the
Astronautical Sciences, 135, 497-528.

[27] Saeedi H. (2017). “The linear b-spline scaling function operational matrix of fractional
integration and its applications in solving fractional-order differential equations”, Iranian
Journal of Science and Technology, Transaction A, 41, 723-733.

[28] Schoenberg I. J. (1973). “Cardinal spline interpolation”, Society for Industrial and Applied
Mathematics.

[29] Schoenberg I. J. (1946). “Contributions to the problem of approximation of equidistant
data by analytic functions Part B. On the problem of osculatory interpolation. A second
class of analytic approximation formulae”, Quarterly of Applied Mathematics, 4(2), 112-
141.

[30] Shukla M. K., Sharma B. B., Azar A. T. (2018). “Control and synchronization of a frac-
tional order hyperchaotic system via backstepping and active backstepping approach”, In
Mathematical Techniques of Fractional Order Systems, Elsevier, 559-595.

[31] Skandari M. H. N., Habibli M., Nazemi A. (2020). “A direct method based on the
Clenshaw-Curtis formula for fractional optimal control problems”, Mathematical Control
& Related Fields, 10(1), 171.

[32] Sopasakis P., Sarimveis H., Macheras P., Dokoumetzidis A. (2018). “Fractional calculus in
pharmacokinetics”, Journal of pharmacokinetics and pharmacodynamics, 45(1), 107-125.

[33] Stoer J., Bulirsch R. (2013). “Introduction to numerical analysis”, Springer Science &
Business Media.



Using the Integral Operational Matrix of B-Spline .../ COAM, 7 (2), Summer-Autumn 202298

[34] Unser M., Blu T. (2000). “Fractional Splines and Wavelets”, SIAM Review, 42, 43-67.

[35] Xiaobing P., Yang X., Skandari M. H. N., Tohidi E., Shateyi S. (2022). “”A new high
accurate approximate approach to solve optimal control problems of fractional order via
efficient basis functions”, Alexandria Engineering Journal, 61(8), 5805-5818.

[36] Yaghi M., Efe M. Ö. (2018). “Fractional order PID control of a radar guided missile
under disturbances”, In: Information and Communication Systems (ICICS), 2018 9th
International Conference, 238-242.

[37] Yang Y., Noori Skandari M. H. (2020). “Pseudo spectral method for fractional infinite
horizon optimal control problems”, Optimal Control Applications and Methods, 41(6),
2201-2212.

[38] Yang X., Yang Y., Skandari M. N., Tohidi E., Shateyi S. (2022). “A new local non-integer
derivative and its application to optimal control problems”, AIMS Mathematics, 7(9),
16692-16705.

[39] Yonthanthum W., Rattana A., Razzaghi M. (2018). “An approximate method for solving
fractional optimal control problems by the hybrid of block-pulse functions and Taylor
polynomials”, Optimal Control Applications and Methods, 39, 873-887.

How to Cite this Article:
Edrisi-Tabriz, Y. (2022). “Using the Integral Operational Matrix of B-Spline Functions
to Solve Fractional Optimal Control Problems”, Control and Optimization in Applied
Mathematics, 7(2): 77-98. doi: 10.30473/coam.2022.62261.1207

COPYRIGHTS
© 2022 by the authors. Lisensee PNU, Tehran, Iran. This article
is an open access article distributed under the terms and conditions
of the Creative Commons Attribution 4.0 International (CC BY4.0)
(http:/creativecommons.org/licenses/by/4.0)


	Integrated Fault Detection and Robust Control for Linear Uncertain Switched Systems with Mode-Dependent Time-Varying State Delayto.44em.
	Sayyed Hossein Ejtahed, Naser Pariz, Ali Karimpour 
	A New Optimization Method Based on Dynamic Neural Networks for Solving Non-convex Quadratic Constrained Optimization Problemsto.44em.
	Kobra Mohammadsalahi, Farzin Modarres Khiyabani, Nima Azarmir Shotorbani 
	Solving Nonlinear Hydraulic Equations of Water Distribution Networks by Using a Trust-Region Methodto.44em.
	Mahdi Ahmadnia, Reza Ghanbari, Khatere Ghorbani-Moghadam 
	Using the Integral Operational Matrix of B-Spline Functions to Solve Fractional Optimal Control Problemsto.44em.
	Yousef Edrisi-Tabriz 
	Application of the Mixed-Integer Programming Method in Fishery Supply Chain Network Management: A Case Study of Shrimp in Golestan Provinceto.44em.
	Javad Mahdavi Varaki, Iraj Mahdavi, Shahrzad Mirkarimi 
	A Cramer Method for Solving Fully Fuzzy Linear Systems Based on Transmission Averageto.44em.
	Fatemeh Babakordi, Tofigh Allahviranloo 

