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proposed method and the well-known gradient method. The results show that the
trust-region method is convergent in all instances, but the gradient method diverges
when the dimension of nonlinear hydraulic equations of water distribution networks
increases. In addition, our results convince us that the solution obtained from the
trust-region method is more accurate compared to the gradient method. Thus,
using the trust-region method in solving the network equations can lead to a better
hydraulic analysis of the network.
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1 Introduction

Head and flow regulation in water distribution networks (WDNs) is a significant con-
cern for water utilities. Effective head and flow control throughout pipe networks are
essential to ensure rational sufficient service levels to customers for daily fluctuating
demand patterns. Simulation models are applied to estimate the distribution of pipe
flow rates and residual nodal heads (pressures) within pipe networks, in which these
hydraulic parameters have to be computed for different loading and operating condi-
tions [3]. For finding head, flow, and also hydraulic analysis some nonlinear equations
have to be solved [15, 52].

There are many methods done to solve the nonlinear equations in WDNs [40]. An
iterative method for solving these equations was first proposed by Cross [12] (This
method was also used for solving gas network equations; see [8]). Cross proposed an
approach that is used to solve the equations Q, ∆Q, and H related to WDNs. The
number of calculations required for convergence in the Cross method depends on the
convergence criterion (accuracy of the solution), the initial solution, the flow rate of
the pipes, and also the resistance of the pipes (R).

Cross’s method [12] solves only one equation at a time with some assumptions, such
as ignoring the effect of adjacent loops. Martin and Peter [34] proposed the Newton–
Raphson method for solving nonlinear WDNs equations, which solves all equations
simultaneously. This method is used to solve flow and node equations. However,
their approach works better in solving node equations than flow equations. Shamir
and Howard [45] and Zarghamee [56] used the Newton–Raphson method for networks
with valves and pumps. They investigated the convergence conditions of the Newton–
Raphson method and the possibility of insolvable problems. In each iteration of the
Newton–Raphson method, in order to determine the correction of the pipe discharge
values, a linear equation system must be solved. This linear system is formed by the
Jacobian matrix in each iteration. Liu [30] modified the Jacobian matrix to a diagonal
matrix. He demonstrated that by using the diagonal matrix, the speed in solving the
linear equation is accelerated fast in each iteration. Moosavian and Jaefarzadeh [36]
illustrated that the approach proposed by Liu has two disadvantages. One of them is
the lack of convergence in large WDNs, and the other is high fluctuations to achieve
convergence. So, they suggested that some network pipes must be temporarily removed
during the analysis process. They also halved the amount of correction per repetition
to reduce fluctuations, but they increased the number of repetitions until the final
solution was reached; see [36]. It is also important how to choose the initial solution
in this method. If the wrong initial solution is chosen, then the Newton–Raphson
method diverges. There are more suggestions for improving the convergence of the
Newton–Raphson method. Most of these suggestions correct the pipe flow rates per
repetition (see [4, 14, 28, 29, 39, 43, 44, 46, 47]). Based on the Broyden method [9],
Tabesh [49] provided a relation for finding the correction rate of flow rate in each
iteration. Tanyimboh et al. [50] proposed a line search method in order to accelerate
the convergence.

Wood and Charles [53] used the linear theory method to solve flow equations. They
showed that their proposed method is too fast and independent of the initial solution.
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Also, Collins and Johnson [10] and Isaacs and Mills [22] used the linear theory for
solving node equations, which is usually better for solving flow equations than node
equations. Each iteration of this method assumes a value for the flow rate of the pipes
based on the flow rate obtained from the previous iterations. Using this hypothetical
value, a linear equation system that is approximately equivalent to a network equation
system is solved. During the convergence process of this method, fluctuations occur.
These fluctuations reduce the convergence rate of the linear theory method. Due to
these fluctuations, Nielsen [37] proposed using a combination of linear theory and the
Newton–Raphson method, so the initial solution of the Newton–Raphson method is
produced by linear theory. For the purpose of increasing the speed of convergence,
Bhave [6] provided a method for determining the hypothetical flow rates of each iter-
ation. He suggested using the hypothetical mean flow rate of mth and the flow rate
obtained in the mth repeat as the hypothetical flow rate of m+1.

The most common method currently used in many network simulation software,
such as EPANET, is the gradient method. Todini and Pilati [51] introduced this method
for WDNs. The gradient method finds the solution of the equations in each iteration
solving a linear equation system. Although more equations need to be solved in this
method, Todini and Pilati [51] have shown that this method is very computationally
robust. Powell [43] solved this algorithm by using Lagrange coefficients for optimization
problems with equality constraints. The gradient method is somewhat independent of
the initial solution, but if the initial solution is close to the final solution, then the
degree of convergence of this method is at least two [5]. See other works for solving
WDNs in [2, 7, 13, 18, 20, 21, 26, 24, 32, 33]. See the summary of literature review in
Table 1.

The trust region is a newer method compared to the gradient method. So far, the
trust-region method for solving equations of WDNs has not been investigated and we
use the trust-region method to solve WDN equations. The results show that the trust-
region method is more accurate in solving WDN equations compared to the gradient
method. So, the trust-region method can provide a better hydraulic analysis of WDN.
Here, we use the trust-region method for solving hydraulic equations in a WDN.

The rest of our work is organized as follows. In Section 2, we provide the necessary
definitions. We propose a trust-region method for solving flow equations in Section
3. In Section 4, we implement our proposed algorithm on several test problems and
compare them with the gradient method. Finally, conclusion will be resented in Section
5.

2 Preliminaries

WDNs are designed in different types. Serial networks, branching networks, looped
networks, and composite networks are among the types of WDNs. Here, we give some
basic definitions of WDNs.

Definition 1 (Node). [48] The point of intersection of several pipes, as well as the
starting and endpoints of each pipe, is called a node.
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Table 1: Survey of literature review

Names of authors Type of problem Solving methods
Cross’s method [12] Nonlinear WDNs equa-

tions
Iterative method

Martin and Peter [34] Nonlinear WDNs equa-
tions

Newton–Raphson method

Shamir and Howard [45] Nonlinear WDNs equa-
tions

Newton–Raphson method

Zarghamee [56] Nonlinear WDNs equa-
tions (Networks with
valves and pumps)

Newton–Raphson method

Liu [30] Nonlinear WDNs equa-
tions

Linearization approach

Moosavian and Jae-
farzadeh [36]

Nonlinear WDNs equa-
tions

Modified Liu’s method

Tabesh [49] Nonlinear WDNs equa-
tions

Iterative algorithm based on the
Broyden method

Tanyimboh et al. [50] Nonlinear WDNs equa-
tions

Iterative algorithm based on line
search method

Wood and Charles [53] Nonlinear WDNs equa-
tions

Linear theory method to solve flow
equations

Collins and Johnson
[10]

Nonlinear WDNs equa-
tions

Linear theory for solving node equa-
tions

Isaacs and Mills [22] Nonlinear WDNs equa-
tions

Linear theory for solving node equa-
tions

Nielsen [37] Nonlinear WDNs equa-
tions

Hybrid algorithm based on the
linear theory and the Newton–
Raphson method

Bhave [6] Nonlinear WDNs equa-
tions

Iterative algorithm for determining
the hypothetical flow rates of each
iteration

Todini and Pilati [51] Nonlinear WDNs equa-
tions

Gradient method

Powell [43] Nonlinear WDNs equa-
tions

Iterative algorithm by using La-
grange coefficients

Definition 2 (Consumption node). [48] The nodes from which water is removed are
called consumption nodes.

Definition 3 (Source node). [48] The nodes through which water enters the network
are called source nodes.

Definition 4 (Loop). [48] The closed environment that creates several interconnected
pipes is called a loop.

Each WDN consists of different components, such as storage tanks, pipes, valves,
pumps, and so on; see [48]. Each of these components can affect the head and flow.
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The characteristics of each of these components are described by the head-flow rela-
tionship in that component. For example, the head-flow relationship for network pipes
is obtained from the following relationship (see [48]):

hij =Hi −Hj = RijQij |Qij |n−1, (1)

where hij is the decrease of energy (hij shows the amount of head loss in the pipe
ij). Moreover, Qij and Rij represent the current passing through the pipe ij and the
resistance constant of the pipe ij , respectively. Also, Hi and Hj are equal to the head
in nodes i and j, respectively. The direction of water flow in the pipes of a distribution
network is always from more heads to fewer heads. When water is transferred from one
node to another through a pipe, its hydraulic energy is reduced due to friction [27].
This shows the decrease in energy in relation to (1), which is denoted by the symbol
hij . In other words, hij is equal to the amount of head loss in the pipe ij . Moreover, n
is the power of water flow, and to calculate it, we use the Hazen–Williams method. In
the Hazen–Williams method, the value of n is considered equal to 1,852, and the value
of Rij is obtained from the following equation:

Rij =
α.Lij

C1.852
HWij

.D4.87
ij

, (2)

where α is equal to 10.675 (in the metric system) and Lij , CHWij
, and Dij indicate the

length of the pipe ij (in meters), the Hazen–Williams coefficient of the pipe ij , and
the diameter of the pipe ij (in meters), respectively. The Hazen–Williams coefficient
depends on the characteristics of the pipe, such as the material, age, and so on, and it
is determined and announced by the pipe’s manufacturers [23].

If the head is specified at both ends of a pipe, then the value of Qij is calculated
based on (1) as follows:

Qij =


∣∣∣Hi −Hj

∣∣∣
Rij

(
1
n )

sgn(Hi −Hj ), (3)

where sgn is the sign function. For the hydraulic analysis, as well as determining the
parameters of a WDN, the nonlinear equations in the network components must be
solved. These equations are obtained according to the network components and using
the two basic laws of continuity and energy survival.

Definition 5 (Continuity rule). [48] According to this rule, the sum of the input
current values in each node is equal to the sum of the output current values from that
node. In other words, ∑

ij∈IJj

Qij


in

−

 ∑
ij∈IJj

Qij


out

= qj , for all j = 1, . . . ,NJ, (4)

where qj is the input or output flow rate of node j, IJj represents all the pipes connected
to node j, and NJ is the number of nodes in the network. Some of the equations
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obtained from this relation may not be independent. In fact, the number of independent
equations obtained from (4) is equal to the number of consumption nodes. Therefore,
(4) is not used for source nodes.

Definition 6 (Energy rule). [48] This rule is used for all loops in the distribution
network to write equations. According to this law, the total head loss inside a loop is
considered equal to zero, that is,∑

ij∈IJL

hij =
∑
ij∈IJL

RijQij |Qij |n−1 = 0, for all L = 1, . . . ,NL, (5)

where, IJL represents all loop pipes L and NL is equal to the number of network loops.
If the direction for water flow in the pipe is clockwise, then the head loss sign for that
pipe in (5) will be positive; otherwise, it will be negative (In the equations written in
terms of flow, the mentioned symbol is included in the coefficient of resistance of the
pipe).

Note: The direction of water flow in the pipes cannot be determined before solving
the network equations. For this reason, first, the direction of flow in the pipes is
hypothetically determined, and the network equations are written based on it. After
solving the equations, whenever the flow of a pipe is obtained as a negative number, it
means that the direction of flow in this pipe is assumed to be the opposite. However,
the amount of current is correct, and there is no need to solve the equations again.

According to Definitions 5 and 6, different equations can be written for the analysis
of WDNs, including Flow, node, ring equations, ∆H equations, and head-flow equations.
Here, we solve equations of the flow system. The number of flow equations is equal to
the number of pipes in the network, and the unknown of these equations is the flow
rate of the pipes. Flow equations are written by using both the laws of continuity
and energy. In the flow equations, the equations derived from the law of continuity
are all linear, and the equations derived from the law of energy are all nonlinear. By
combining (4) and (5), the system of flow equations is obtained.

Now, using the laws of continuity and energy, we write the flow equations for the
network in Figure 1 as follows:

Figure 1: A small sample of WDN [51].

Node 3 :Q1 −Q3 − 0.3 = 0,
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Node 4 :Q2 +Q4 −Q5 − 0.2 = 0,

Node 5 :Q5 +Q7 − 0.4 = 0, (6)
Node 6 :Q6 −Q65 − 0.1 = 0,

Loop I : 20Q2|Q2|n−1 − 30Q4|Q4|n−1 − 10Q3|Q3|n−1 − 40Q1|Q1|n−1 = 0,

Loop II : 40Q5|Q5|n−1 − 50Q7|Q7|n−1 − 20Q6|Q6|n−1 +30Q4|Q4|n−1 = 0.

By solving a system of equations (6), the flow rate of all network pipes is obtained.
Methods such as Cross, Newton-Raphson, linear theory, and Gradient have been used
to solve the equations of water supply networks. In this paper, the trust-region method
is used to solve these equations. We will explain more about this in the following
section.

3 Trust-Region Method for Solving the System of Flow Equations

As a kind of numerical method for solving nonlinear optimization problems, the trust-
region method has been widely studied in recent decades [55]. The trust-region method
was first used to solve unconstrained optimization problems by Powell [43], of which
the distance between the iteration points in the current iteration cycle and the cycle
before should be limited. In this method, by applying the Taylor-series expansion, a
quadratic model is used to approximate the objective function. It can be thought that
there is a neighborhood around the current iteration point within which we trust the
surrogate model. Such a neighborhood is called a trust region. The size of the trust
region is tuned by the performance of the algorithm in the previous search; see [38].
See other works [11, 16, 35, 54].

The equations of WDNs are nonlinear. So far, different methods have been proposed
to solve nonlinear equations; see [1, 17, 19, 25, 41]. One of the desirable and efficient
methods to solve the system of nonlinear equations is to use the existing methods in
optimization. In other words, solving the system of equations is equivalent to solving
an optimization problem. Therefore, instead of solving the system of equations, the
equivalent optimization problem can be solved. To use these methods, the system of
equations must first be turned into an optimization problem. Then, using the trust-
region method solves it.

In this section, first, we explain how to convert a system of equations into an
optimization problem and then propose a trust-region algorithm to solve it.

3.1 Converting the System of Equations into an Optimization Problem

In this section, we explain how to convert a system of equations to an optimization
problem. Consider the system of equations r(x) = 0, in which r : Rn → Rn is a vector
function as follows:
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r(x) =


r1(x)
...

rn(x)

 , (7)

where ri : Rn → R, for i = 1,2, . . . ,n, is the ith equation of the system r(x) = 0. The
following lemmas can be obtained easily.

Lemma 1. The vector x∗ is the solution to the system of equations r(x) = 0 if and only
if ||r(x∗)|| = 0.

Lemma 2. The vector x∗ is the solution to the system r(x) = 0 if and only if the optimal
solution to the problem min ||r(x)|| be zero.

Proof. Suppose that x∗ is the solution to r(x) = 0, based on Lemma 1, ||r(x∗)|| = 0. On
the other hand, ||r(x)|| is always positive, so, the solution to the problem min ||r(x)|| is
zero.
The converse of the theorem follows similarly.

Therefore, instead of solving the system of nonlinear equations, the equivalent op-
timization problem can be solved. If the solution to the optimization problem is zero,
then the system of equations will have a solution, and the solution is equal to the so-
lution to the optimization problem. Indeed if the solution to the optimization problem
is a nonzero number, then the system of equivalent equations will not have a solution.
The system of equations may also have more than one solution, in this case, the equiv-
alent optimization problem will have several optimal solutions. Hence, the following
optimization problem can be considered equivalent to solving the system r(x) = 0:

min
1
2
||r(x)||2. (8)

Now, considering the system of flow equations as r(Q) = 0, according to (8), we
have

min
Q∈Rn

1
2
||r(Q)||2. (9)

Problem (9) can also be written according to the flow equations as follows:

min
Q∈Rn

1
2


NJ∑
j=1

 ∑
ij∈IJj

Qij + qj


2

+
NL∑
L=1

 ∑
ij∈IJL

RijQ
n
ij


2 , (10)

where Rij is the constant of ijth pipe resistance constant and IJj and IJL, respectively,
represent the pipes connected to node j and the pipes in the L ring. Also, NJ and NL
are equal to the number of nodes and network pipes, respectively. Therefore, model
(10) is an unconstrained and nonlinear optimization problem. This model can be solved
by different optimization methods. Here, we use the trust-region method to solve (10).
In what follows, we describe this method.



61Ahmadnia, M., et al./ COAM, 7 (2), Summer-Autumn 2022

3.2 Trust-Region Method

Algorithms solving optimization problems usually start from an initial solution and
then improve the current point in each iteration. For this reason, these algorithms
are also known as iterative algorithms. The strategy of transition from one iteration to
another is a factor that distinguishes iterative algorithms. In general, iterative methods
are divided into two main categories [38]:

• Line search methods,

• Trust-region methods.

In the line search methods, first, the direction of movement is determined and then the
length of the step is decided. Indeed in the methods of the trust-region, first, the length
of the movement step is determined and then the direction is decided according to the
selected step length. We explain the trust-region method for solving the optimization
problem (9) assuming f (Q) =

1
2
||r(Q)||2 as follows.

Suppose that Qk is the flow rate in the kth iteration. In iterative methods for
solving optimization problems, Qk+1 is updated as follows:

Qk+1 =Qk + pk , (11)

where the vector pk is selected in such a way that the maximum improvement for the
problem objective function occurs. In each iteration of the trust-region method, for
finding pk , by using the Taylor series, an approximation of the objective function is
obtained as follows:

f (Qk + p) = fk + gTk p +
1
2
pT∇2f (Qk + tp)p, (12)

where fk = f (Qk), gk = ∇f (Qk), and t is a number in the range (0,1). The Jacobian
matrix (J) can be used as a suitable approximation instead of ∇f and ∇2f [38]. By
replacing ∇f = JTk rk and ∇2f = JTk Jk , a suitable approximation is obtained in each
iteration of the objective function of the problem. Also,

mk(p) = fk + pT JTk rk +
1
2
pT JTk Jkp =

1
2
||rk + Jkp||2, (13)

where mk(p) is an approximation of the function f (Q) around the point Qk . The
difference between the approximate function mk(p) and the function f (Qk +p) is equal
to O(||p||2). If the value of p is small, then the difference between the two functions will
be small. Therefore, in each iteration of the trust-region method, to find the suitable
direction, the following optimization problem must be solved:

min
p∈Rn

mk(p) = fk + pT JTk rk +
1
2
pT JTk Jkp s.t. ||p|| ≤ ∆k , (14)

where ∆k is the radius of the trust-region in the kth iteration. The value of ∆k should
be chosen such that mk(p) and f (Q) are approximately equal in this region. Moreover,
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pk is the solution of (14). In fact, pk is the direction in which the most reduction for
mk(p) occurs. As mentioned, if p is small, then the value of mk(p) and f (Q) will be
close to each other. If small ∆k with ||p|| ≤ ∆k is selected, then the two functions mk(p)
and f (Q) in this region behave similarly. Hence, for f (Q), the largest possible reduction
occurs by moving from the point Qk in the direction of pk . Therefore, in each iteration
of the trust-region method, instead of solving the main problem, problem (14) will be
solved.

As mentioned, choosing the radius of the trust region is important. If the perfor-
mance of the algorithm is good, then the radius of the region must be increased in order
to have a better speed of convergence. If the algorithm performance is poor, then the
trust region decreases for greater accuracy. The performance of the algorithm in each
iteration is determined by the following formula:

ρk =
f (Qk)− f (Qk + pk)
mk(0)−mk(pk)

=
||r(Qk)||2 − ||r(Qk + pk)||2

||r(Qk)||2 − ||r(Qk) + J(Qk)pk ||2
. (15)

If ρk = 1, then the approximate function mk and f will be closer to each other in
the existing area. In other words, if the value is closer to one, then the algorithm has
a better performance. The main steps of trust-region can be summarized by a pseudo
code as Algorithm 2 below.

Algorithm 2 Trust-region algorithm

Input: ∆̂ > 0, ∆0 ∈ (0, ∆̂), and η ∈ [0, 14 ).

1: For k = 0,1,2, . . . , do the following operations:

1-1 : Obtain the value of pk by solving (14).
1-2 : Calculate the value of ρk using relation (15).
1-3 : Find ∆k+1, using ρk by
1-3-1: If ρk <

1
4 , then ∆k+1 =

1
4∆k .

1-3-2: If ρk >
3
4 and ||pk || = ∆k , then ∆k+1 =min(2∆k , ∆̂); else ∆k+1 = ∆k .

1-4: Find Qk+1, using ρk and η by
1-4-1: If ρk > η, then Qk+1 =Qk + pk ; else Qk+1 =Qk .

Output: Qk and f (Qk).

The details of the steps associated with Algorithm 2 are described next.
The maximum trust-region radius, the trust-region radius for the first iteration, and η
should be given as input to the algorithm. The parameters of our proposed algorithm
are set by IRACE PACKAGE [31] to ensure fair space, ∆̂ = 0.9, ∆0 = 0.9 and η = 0.2.

In step 1-2, the optimal solution is obtained through an iterative process. For this
purpose, in each iteration in step 1-1, a quadratic approximation (14) of the original ob-
jective function (12 ||r(Q)||2) is calculated based on the solution of the previous iteration.
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Then by solving the updated equation (14), the previous iteration solution improves.
To solve equation (14), the Dogleg algorithm (The Dogleg algorithm is described be-
low) is used. In step 1-2, based on the solution obtained in step 1-1, the value of ρk
is calculated. A larger ρk (close to 1) indicates that the approximate function of (14)
and the original objective function are close to each other.

Based on the calculated ρk in step 1-3, the trust-region radius of the next iteration
is decided. Also, ρk < 1

4 indicates that the approximation obtained from step 1-1 is
not an appropriate approximation for the original objective function. In this case, in
order to increase accuracy, the trust-region radius becomes smaller. In addition, ρk > 3

4
indicates that the approximation obtained from step 1-1 is a very good approximation
for the original objective function. In this case, in order to increase the speed of
convergence, the trust-region radius increases. Moreover, 1

4 < ρk < 3
4 indicates that

the approximation obtained from step 1-1 is a normal approximation for the original
objective function. In this case, the trust-region radius does not change.

In step 1-4, a decision is made based on ρk whether or not to accept the current
iteration solution. Also, ρk < η indicates that the approximation obtained from step 1-1
is not a suitable approximation for the original objective function. Therefore, accepting
the solution obtained from the approximate function may complicate the convergence
process of the algorithm. For this reason, in this case, the solution obtained from step
1-1 will not be accepted. In this case, step 1-1 is repeated with the same approximation
function as the previous one, except that the trust-region radius is reduced in step 1-3.
Hence, it is expected that repeating step 1-1 will lead to a more accurate solution.

The parameters and variables of the proposed method for solving the equations of
the WDN are reported in Table 2.

Table 2: Parameters and variables of the proposed method for solving the equations of the WDN

symbol Type Expression
R Parameter The resistance constant of the pipe;
Q0 Parameter The initial flow of pipes (initial solution);
q Parameter The flow that exits (or enters) the network at each node;
∆0 Parameter The radius of the trust-region is the first iteration;
∆̂ Parameter Maximum radius of the trust-region;
η Parameter The value used to reject or confirm the solution to each iteration;
Q Variable The flow that passes through the network pipes.

3.3 Dogleg Algorithm

This section describes the Dogleg algorithm. The Dogleg algorithm first removes the
quadratic phrase of the objective function (14) (12pT J

T
k Jkp) and solves the following

linear optimization problem:

min
p∈Rn

fk + pT JTk rk s.t. ||p|| ≤ ∆k . (16)
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The solution obtained from the problem (16) is called psk . Since the objective
function of problem (16) is linear, it can be solved easily. We know that the value
of the objective function always decreases by moving in the direction −gk = −JTk rk .
Therefore, the lowest value of the objective function (16) is obtained for psk = −αJ

T
k rk ,

so that the higher α, the lower the value of the objective function (16). Given that in
problem (16) ||psk || ≤ ∆k , α value is equal to ∆k

||JTk rk ||
. Hence, the solution to problem (16)

is obtained from

psk = −
∆k

||JTk rk ||
JTk rk . (17)

Linearizing the objective function of problem (14) reduces the accuracy of the ob-
tained solution. For this reason, after calculating the solution to problem (16), the
Dogleg algorithm solves the following quadratic problem in order to increase accuracy:

min
τ≥0

mk(τp
s
k) s.t. ||τpsk || ≤ ∆k . (18)

The solution obtained from the problem (18) is called τk . Since the objective func-
tion (18) is a univariate quadratic function, solving problem (18) is very simple (Set
the differential of the function equal to zero and solve a simple equation). Accordingly,
the least value of the objective function (18) occurs for τk =

||JTk rk ||
3

∆kr
T
k Jk(J

T
k Jk )J

T
k rk

. According
to the constraints of problem (18), it must be ||τkpsk || ≤ ∆k . Since ||psk || = ∆k (according
to (17)), it must be τk ≤ 1. Thus τk is obtained from (19).

τk =min{1,
||JTk rk ||

3

∆kr
T
k Jk(J

T
k Jk)J

T
k rk
}. (19)

So, if τk < 1, then τkp
s
k is a better solution to the problem (14) compared to psk .

The τkp
s
k is called pck . and it obtains accordingly as follows.

pck = −τk(
∆k

||JTk rk ||
)JTk rk . (20)

If ||pck || = ∆k , then the Dogleg algorithm considers pk = pck as the approximation
solution to (14). If ||pck || < ∆k , then we provide another direction to calculate the
solution to (14) for increasing the convergence speed. To determine this direction, the
following problem must be solved unconstrained:

min
p∈Rn

mk(p) = fk + pT JTk rk +
1
2
pT JTk Jkp. (21)

The solution to the problem (21) is called p
j
k . Problem (21) is an unconstrained

quadratic problem. Therefore, to obtain p
j
k , it suffices to set the differential of the

objective function to zero (JTk rk +
1
2 J

T
k Jkp = 0 ). By solving this simple linear equation,

we have
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p
j
k = −(J

T
k Jk)

−1(JTk rk) = −J
−1
k rk . (22)

For finding the approximation solution to problem (14), the Dogleg algorithm uses
the combination of the two directions pck and p

j
k . The main steps of the Dogleg algorithm

can be summarized as Algorithm 3 below.

Algorithm 3 Dogleg algorithm

Input: Trust-region radius (∆k), Jacobian matrix (Jk) and Vector of transactions
(rk)

1: Calculate the value of pck using relation (20).

1-1: If ||pck || = ∆k , then set pk = pck .
1-2: else, do the following:
1-2-1: Calculate the value of pjk using relation (22).
1-2-2: Set pk = pck + τ(pjk − p

c
k).

1-2-3: Calculate the maximum value of τ ∈ [0,1] as ||pk || ≤ ∆k .

Output: Vector pk .

3.4 Convergence of the Proposed Method

In this paper, to solve equations of WDN, the optimization problem (10) is solved using
the trust-region method. problem (10) is an unconstrained optimization problem. So
if ∇(f (Q)) = 0, then Q will be the optimal solution. In [38], it proved that the gradient
sequence created in the trust-region method converges to zero (for η > 0). Hence,
to solve the problem (10) the trust-region method is convergent. In addition, the
convergence of the trust-region method in the general case has also been proved in [38].

4 Numerical Results

In the hydraulic analysis software of WDN, the use of the gradient method to solve
network equations is popular. Therefore, in this section, we compare the performance
of the proposed method with the gradient method using several numerical examples.
All executions are done on a notebook with characteristics of CPU: intel core i5 2520M
2.5GHz with 8 GB RAM under Windows 7 home premium in MATLAB R2017b soft-
ware. In the following, the gradient method for solving the equations of WDN is briefly
explained. Then, study examples are introduced, and finally, the performance of the
two methods of trust-region and gradient are compared in terms of accuracy and speed.
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4.1 Gradient Method

In order to hydraulically analyze a WDN, its hydraulic equations must be solved.
The gradient method is currently used in many popular commercial software, such as
WATERGEMS and EPANET to solve these equations. For solving the equations of
the WDN, the gradient method solves a linear equation system in each iteration. This
system includes two types of equations. The first type is continuity equations (4) that
do not need to be updated in each iteration. The second type is the below equations
(23), which must be updated in each iteration according to the solution of the previous
iteration.

Ht+1,oi −Ht+1,oj − (nRox |Qt,ox |n−1)Qt+1,x =(1−n)RoxQ
n
t,ox , x = 1, . . . ,NP , (23)

where, Ht+1,oi and Ht+1,oj represent the head in nodes i and j in the iteration of t +1,
respectively. Also, Rox indicates the resistance of the pipe and Qt,ox the pipe flow x in
the iteration of t. Thus the gradient method in each iteration forms a linear equation
system and then solves it. For more information, we refer the reader to [51].

4.2 Examples

In this section, some study examples are introduced.

Example 1. [49] Figure 2 shows a simple WDN. This network has no valve and pump
and also has two source nodes and four consumption nodes. The flow equation system
of this network has seven equations. This system includes four linear equations and
three nonlinear equations.

Figure 2: WDN of Example 1 [49].

Example 2. Figure 3 shows a WDN having two source nodes and four consumption
nodes. This network consists of four loops. The system of equations related to this
network consists of four linear equations and five nonlinear equations. Therefore, in
this example, the number of nonlinear equations is more than linear equations. The
resistance constant of the pipes of this network is reported in Table 3, and the amount
of harvest in the consumption nodes is reported in Table 4.
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Table 3: Constant resistance of network pipes of Figure 3

Pipe R Pipe R
1 20 6 10.7365
2 30 7 30
3 40 8 200
4 100 9 200
5 23.53

Table 4: Water withdrawal from network consumption nodes of Figure 3

Consumption node 2 3 4 5
Harvest rate 0 0.2 1.1590 0.7059

Figure 3: WDN of Example 2.

Example 3. [49] The WDN of Figure 4 consists of a pump and two spring nodes.
The flow equations of this network have eleven variables. These equations consist of
seven linear equations and four nonlinear equations. The pipe resistance constant of
this network is given in Table 5.

Figure 4: WDN of Example 3 [49].
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Table 5: Constant resistance of network pipes of Figure 3

Pipe R Pipe R
1 0.0072 7 68.5175
2 0.1202 8 16.8791
3 0.0801 9 102.7762
4 0.4329 10 102.7762
5 0.2886 11 0.3055
6 1.7573

Example 4. The WDN of Figure 5 consists of seventeen nodes, twenty pipes, and
four loops. The flow equations for this example have twenty variables. The amount of
discharge from the nodes of this network, as well as the resistance constant of its pipes,
is given in Table 6. The values of nodes 1 and 13 are 300 and 250, respectively.

Figure 5: WDN of Example 4.
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Table 6: Flow rate picked up and constant resistance of network pipes of Figure 5

Row Constant pipe resistance R flow rate picked up
1 40 *
2 10 0.7956
3 60 0.2089
4 60 0.3536
5 10 0.7716
6 10 0.5142
7 80 2.0484
8 120 0.1157
9 15 0.1726
10 12 0.0511
11 240 0.0931
12 80 0.2092
13 120 *
14 120 0.3559
15 10 0.8339
16 10 1.2614
17 20 0.1186
18 120 *
19 120 *
20 120 *

Example 5. The WDN of Figure 6 consists of sixty-three nodes, 110 pipes, and 48
loops. The flow equations for this example have 110 variables. The resistance constant
of the pipes related to this network is written on the pipes of Figure 6. The amount of
discharge from the nodes of this network is given in Table 7. The head of nodes 1 and
55 are 200 and 100, respectively.

Table 7: Flow rate picked up and constant resistance of network pipes of Figure 6

Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
flow rate picked up - 0.3 0.2 0.1 0.3 0.5 0.3 0.7 0.2 0.5 0.3 0.2 0.1 0.4 0.1 0.3 0.5 0.2 0.5 0.1 0.2

Row 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
flow rate picked up 0.3 0.6 0.5 0.3 0.2 0.3 0.2 0.5 0.2 0.3 0.4 0.2 0.3 0.2 0.3 0.2 0.3 0.1 0.3 0.3 0.2

Row 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
flow rate picked up 0.1 0.3 0.5 0.3 0.2 0.3 0.2 0.5 0.2 0.7 - 0.3 0.2 0.5 0.4 0.5 0.3 0.5 0.1 0.5 0.6

4.3 Examining the Trust-Region Method

In the following, we compare the trust-region method with the gradient method in
terms of convergence speed and accuracy. Table 8 shows the results of the trust-region
and gradient methods for Examples 1 to 5. In Table 4 the stopping criterion for both
methods is considered |f (Qk)− f (Qk−1)| < ϵ.
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Figure 6: WDN of Example 5.

Table 8: Comparison of trust-region and gradient methods

Convergence Example 1 Example 2 Example 3 Example 4 Example 5
Dimension 7 9 11 20 110
Gradient Time 0.018 0.011 0.020 0.023 -

Iteration 5 5 5 4 -
Accuracy 0.0054 2.52e − 05 60.2242 0.0961 Not converge

Trust-Region Time 0.052 0.032 0.043 0.045 1.49
Iteration 8 8 31 6 26
Accuracy 2.88e − 31 1.20e − 29 0.0224 5.87e − 28 9.85e − 27

By using the value of the objective function of problem (10), we can conclude that
if the value of the objective function of problem (10) is low then the accuracy of the
obtained solution is high. Hence table 8 compares the accuracy of the trust-region
method and the gradient method based on the objective function value of problem
(10). As can be seen, in Examples 1 to 4, the accuracy of the trust-region method is
much better than the gradient method. Example 5 is related to a relatively large water
distribution network. The gradient method does not achieve convergence in solving the
hydraulic equations of this network, but the trust-region method solves the equations
of this network with reasonable accuracy and implementation time.

EPANET software is a common software in the hydraulic analysis of WDNs. This
software uses the gradient method to solve network equations. For a more applied
comparison, the following network (Figure 7) was implemented in EPANET software.
Also, the hydraulic equations governing this network were solved by the trust-region
method.
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Figure 7: Implement a WDN in the EPANET software.

Table 9 compares the accuracy of the trust-region method with the accuracy of
solving equations by EPANET.

Table 9: Comparison of trust region and EPANET software

Method Solution accuracy Dimension
EPANET (Gradient) 0.0080 40

Trust-region 0.0010 40

As can be seen, solving the network equations using the trust-region method is more
accurate than the solution obtained from the EPANET software.

In general, more convergence and better accuracy are the advantages of the trust-
region method compared to the gradient method. Hence, using the trust-region method
compared to the gradient method can provide a better hydraulic analysis of a water
distribution network.

The gradient method has performed somewhat better in terms of convergence speed.
Therefore, changes in the method of trust-region to increase the speed of convergence
can be considered for future research.

5 Conclusion

Here, for solving nonlinear hydraulic equations, we proposed a trust-region method.
We solved some randomly generated test examples and made a comparative study
to show the effectiveness of our proposed algorithm with the gradient method. The
results showed that the trust-region method is more accurate than the gradient method,
and also, the results show that the gradient method can not be converged when the
dimensions of the problem become high, while the trust-region method solved these
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equations with suitable accuracy. Therefore, using the trust-region method can provide
a better hydraulic analysis of a WDN.
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