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Abstract. In 2010, Alvarez et al. proposed an algorithm for morphological
snakes that could detect objects whose edges consist of convex sets and
polygonal edges. However, the algorithm may not detect the boundary well if
the edges of an object contain a convex set or if there are several separated
objects in an image. In this paper, we present two optimal sub-algorithms
that are modifications to the Alvarez et al. algorithm. Our algorithms provide
optimal edge detection for images and we present examples to demonstrate
their effectiveness.
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1 Introduction

An important problem in image analysis is object segmentation. It involves the isolation
of a single object from the rest of the image which may include other objects and
a background. Here, we focus on boundary detection of one or several objects by
a morphological approach to the solution of the PDE associated with snake model
evolution [2]. Snakes are deformable models that are based on minimizing energy along
a curve. The curve, or snake, deforms its shape to minimize “internal” and “external”
energies along its boundary. The internal component keeps the curve smooth, while
the external component attaches the curve to image structures, such as edges, lines and
etc.

For object segmentation in images, such as tracking the moving objects in a sequence
of images, an unconditionally stable numerical scheme has been introduced in [5] that
implements a fast version of the geodesic active contour model. In [10], a new level
set model is proposed for the segmentation of biomedical images. The image energy of
the proposed model is derived from a robust image gradient feature. It gives the active
contour as a global representation of the geometric configuration which makes it more
robust in dealing with image noise, weak edges, and initial configurations. In [6] an
algorithm is given for automatically detecting contours using the snake algorithm. A
piece of prior knowledge is first used to locate the initial contours of the snakes. Also,
a supervised active contour model, named the Self-Organizing active contour model,
is introduced in [1] which combines a variational level set method with the weights
of the neurons of two Self-Organizing Maps. Moreover, in [9] a local- and global-
statistics-based active contour model for image segmentation has been given which
applies the globally convex segmentation method. Another morphological approach has
been introduced in [2]. By combining the morphological operators associated with the
PDE components they achieve a new snakes evolution algorithm. In 2019, Wang et al.
proposed a multi-atlas active contour segmentation method using template optimization
algorithm [8]. In 2021, by minimizing the energy of the segmentation process, Fox et
al. have introduced a Hybrid Morphological Active Contour for Natural Images [4].

The algorithm given in [2], which we abbreviate it by ABHM hereafter, is simple
and detects an object whose edges consist of convex sets and polygonal edges. When
the edges of an object are polygon or convex set, the ABHM algorithm detects well the
edges. However, in some cases where the edges of an object involve a concave set, the
ABHM algorithm is unable to detect the edges.

Figure 1(a) shows the letter S as an object and Figure 1(b) shows its edges obtained
by the ABHM algorithm that is clearly a false boundary. Figure 1(c) sharps the false
edges obtained in Figure 1(b).

In another case, when we are dealing with multiple objects in an image, sometimes
the ABHM algorithm is unable to detect the correct boundary. Figure 2(a) shows three
objects in an image. The detected edges with this algorithm are shown in Figure 2(b)
and Figure 2(c) sharps the edges obtained in Figure 2(b). As it is seen, although the
boundary of the objects in Figure 2(a) is a polygon, the detected edges are false.

In this work, we improve the ABHM algorithm for
• detecting the edges of an object which consist of convex and concave sets,
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Figure 1: Finding the edges of a concave object by ABHM algorithm: (a) Original image, (b) boundary
detected with θ1 = 0.999, θ2 = 0.3 and θ3 = 0.1 and ν = −1, (c) sharpening the edges of (b).

Figure 2: Finding the edges of multiple objects by ABHM algorithm: (a) Original image, (b) boundary
detected with θ1 = 0.999, θ2 = 0.3 and θ3 = 0.7 and ν = −1, (c) sharpening the edges of (b).

• detecting the edges of multiple objects in an image.

The structure of this paper is as follows. In Section 2, we present some preliminaries
on active contours and level sets. In Section 3, we present the morphological evolution
of geodesic active contours given in [2]. Finally, to generalize the ABHM algorithm for
a wider range of images, our proposed method is given in Section 4.

2 Active Contours and Level Sets

For a given C(0), the evolution of a closed simple planar curve in time along its normal
direction N⃗ is defined by

C(p, t) = F.N⃗ ,

where C(p, t) : [0,1]× [0,T )→ R2 is the curve description, p denotes a mapping from a
unit interval to the simple closed curve, t is the time of evolution that starts from an
initially given curve and evolves by F, a smooth scalar velocity in the normal to the
curve direction N⃗ . Our purpose is to find some specific objects on an image by curve
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evolution. To this end, let (·, ·) denotes the usual inner product with Euclidean meter
and I : [0,M] × [0,N ] → R be a gray-scale image. In the specific case of the active
geodesic contours, the scalar F can be given below (see [2, 3]).

F = g (I )κ + g (I )ν − (∇g (I ) , N⃗ ),

where κ is the curvature, ν is a constant value and g(I ) can be given in the following
forms.

g(I ) =
1√

1+α|∇Gσ ∗ I |
,

g(I ) = |Gσ ∗ I |,
g(I ) = 1,

g(I ) =
1

1+ |∇I |
.

The Osher-Stethian [7] level set method represents the curve in an implicit form as
the level set of an embedding function. Let u : R+×R2→ R be an implicit representation
of C such that C(t) = {(x,y)|u(t, (x,y)) = 0}, i.e., C is the zero level set of u. The evolution
of any function u(x,y) which embeds the curve as one of its level sets is (see [3])

∂u
∂t

= F.|∇u|.

By knowing that κ = div(∇u/ |∇u|), curve evolution for the geodesic active contours
gets (see [2] for more details)

∂u
∂t

= g(I )|∇u|(div(∇u
|u|

) + ν) + (∇g(I ),∇u). (1)

3 Morphological Evolution of Geodesic Active Contours

In this section, we present an abstract of the morphological evolution approach that
has been given in [2]. Of course, in Subsection 3.4 we add some comments on the
balloon force term and the selection of suitable parameters for the attraction force
term. First, we consider the implicit representation u(0,x) of the closed simple curve
C(0) = {x : u(0,x) = 0} as a binary piecewise constant function so that

u(0,x) =

1, if x is an interior point of the curve C(0),
0, if x is an exterior point of the curve C(0).

3.1 The balloon force term

The balloon force operator term is given by the equation
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∂u
∂t

= g(I )ν |∇u|.

According to the sign of ν, for a constant value θ1 such that 0 ≤ θ1 < 1, the
numerical solution of the above equation can be given by

un+1(xi ) =


Ddu

n(xi ), if g(I )(xi ) ≥ θ1 and ν > 0,

Edu
n(xi ), if g(I )(xi ) ≥ θ1 and ν < 0,

un(xi ), otherwise,
(2)

where Dd and Ed are the discrete version of dilation and erosion that are defined as

(Ddu)(x) = max
y∈B

u(x− y), (3)

(Edu)(x) = min
y∈B

u(x− y), (4)

in which B is the neighborhood 3× 3 of pixels.

3.2 The attraction force term

The attraction force PDE term is given by the equation

∂u
∂t

= ∇g(I )∇u.

The morphological discretization of this PDE term is given by

un+1(xi ) =


1, if (∇un(xi ),∇g(I )(xi )) > 0 and g(I )(xi ) > θ2,
0, if (∇un(xi ),∇g(I )(xi )) < 0 and g(I )(xi ) > θ2,
un(xi ), otherwise,

(5)

where 0 ≤ θ2 < 1 is a constant value.

3.3 The smoothing term

The smoothing operator term can be thought of as the following equation:

∂u
∂t

= g(I )|∇u|(div( ∇u
|∇u|

)). (6)

The solution of (6) can be approached using line morphological operators as follows.
Let

β =


{(0,0), (1,0), (−1,0)}
{(0,0), (0,1), (0,−1)}
{(0,0), (1,1), (−1,−1)}
{(0,0), (1,−1), (−1,1)}

 ,



Optimal Edges in Morphological Snakes/ COAM, 8 (1), Winter-Spring 202360

be the set of the line segments of length 2 centered at the origin. The morphological
discrete line operators are defined as

(SIdu)(x) = max
B∈β

min
y∈x+B

u(y), (7)

(ISdu)(x) = min
B∈β

max
y∈x+B

u(y). (8)

The morphological evolution of the PDE (6) for a known value un can be given by

un+1(xi ) =

(SId ◦ ISdun)(xi ), if g(I )(xi ) ≥ θ3,
un(xi ), otherwise ,

(9)

where 0 ≤ θ3 < 1 is a constant value. The instruction of SId ◦ISd operator, is illustrated
in Figures 3, 4 and 5.

Figure 3: Some examples of the effect of the SId operator on individual pixels of binary images. In
those cases where a straight line is found (marked in red), the central pixel remains active ((a) and (b)).
When the central pixel does not belong to a straight line of active pixels, it is made inactive ((c) and (d)).
For exemplification purposes, we assume the pixels on the borders are not affected by the operator.

3.4 Complete numerical solution of evolution equation

The active contour equation (1) is made up of three different components: a smoothing
force, a balloon force, and an attraction force. Let un : R2 → {0,1} be the snake
evolution at n-th iteration. By (2), (9) and (5), the morphological evolution scheme at
iteration n+1, can be given by the following three steps.

un+
1
3 (xi ) =


(Ddun)(xi ), if g(I )(xi ) = 1 and ν > 0,

(Edun)(xi ), if g(I )(xi ) = 1 and ν < 0,

un(xi ), otherwise.
(10)
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Figure 4: Some examples of the ISd operator.

Figure 5: Some examples of the SId ◦ ISd operator iterated until convergence.

To be satisfied the value un+ 1
3 (xi ) in the first or second condition of (10) for g(I )(xi )

so many close to 1, the above step can be modified by

un+
1
3 (xi ) =


(Ddun)(xi ), if g(I )(xi ) > θ1 and ν > 0,

(Edun)(xi ), if g(I )(xi ) > θ1 and ν < 0,

un(xi ), otherwise,
(11)

where θ1 = 1 − ϵ > 0 is a constant value and ϵ is an enough small real number. Also,
the factor ν in the above step implies we take a different threshold level for the balloon
operator. Indeed, the dilation (erosion) occurs if ν > 0 (ν < 0).

By (5), the second step is given by

un+
2
3 (xi ) =


1, if (∇un+ 1

3 (xi ),∇g(I )(xi )) > 0 and g(I )(xi ) > θ2,
0, if (∇un+ 1

3 (xi ),∇g(I )(xi )) < 0 and g(I )(xi ) > θ2,
un+

1
3 (xi ), if (∇un+ 1

3 ,∇g(I )(xi )) = 0.

(12)

A suitable selection of the constant value θ2 can be given by

θ2 = max
xi∈∂Ω

{g(I )(xi)}, (13)

where ∂Ω is the boundary of the domain Ω. Finally, the numerical solution of the
smoothing term can be stated by
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un+1(xi ) =

(SId ◦ ISdun+
2
3 )(xi ), ifg(I )(xi ) > θ3,

un+
2
3 (xi ), otherwise.

(14)

4 Modification on the ABHM Algorithm

Although the ABHM algorithm works well in many practical cases, however, there are
some images in which the ABHM algorithm fails to find out the edges of the object(s)
in the images. In this section, we present some modifications to the ABHM algorithm
to generalize the method given in [2] for a wider class of images. To this end, we present
some sub-algorithms to modify the ABHM algorithm. In all of the sub-algorithms we
use:

g(I ) :=
1

1+ |∇I |
.

4.1 Concave edge recognition

When we are dealing with an object whose edges form a convex set or a polygon, the
ABHM algorithm works well. However, when the edges of an object form a concave
set including nonlinear segment(s), or the object is made up of two or more separate
sets, the ABHM algorithm does not usually work well. Figure 6(a) shows the number
5 as an object and Figure 6(b) shows its edges obtained by the ABHM algorithm that
is clearly a false boundary. Also, Figure 6(c) sharps the false edges obtained in Figure
6(b). This defect can be described as follows.

Suppose that xi is a false boundary pixel shown in Figure 6(b) The pixel xi is close
to the real boundary that yields ∇g(I )(xi ) , 0. Moreover, the angle between the vectors
∇u(xi ) and ∇g(I )(xi ) is more than π

2 , i.e., (∇un+
1
3 (xi ),∇g(I )(xi )) < 0. Furthermore,

since xi is not a boundary pixel, hence, by (13), we clearly observe that the inequality
g(I )(xi ) > θ2 holds. Thus, by (9) we have un+ 2

3 (xi ) = 0. On the other hand, in different
directions passing xi , we have a change of intensities, so by (10) we have un+1(xi ) = 1
(see Figure 7). To modify the ABHM algorithm, we enter the following sub-algorithm.
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Algorithm 4 Sub-Algorithm 1
•The structure of Sub-Algorithm 1
Step 1.
g(I )(xi ) > θ1 and ν > 0 un+

1
3 (xi ) = (Ddun)(xi )

g(I )(xi ) > θ1 and ν < 0 un+
1
3 (xi ) = (Edun)(xi ) Step 2.

(∇un+
1
3 (xi ),∇g(I )(xi )) > 0 and g (I )(xi ) > θ2 un+

2
3 (xi ) = 1

(∇un+
1
3 (xi ),∇g(I )(xi )) < 0 and g (I )(xi ) > θ2 un+

2
3 (xi ) = 0 Step 3.

un+
2
3 (xi ) = un+

1
3 (xi ) g(I )(xi ) > θ3un+1(xi ) = (SId ◦ ISd )un+

2
3 (xi )

We note that based on the Sub-Algorithm 4, when (∇un+
1
3 (xi ),∇g(I )(xi )) > 0 or

(∇un+
1
3 (xi ),∇g(I )(xi )) < 0, Step 3 would not be run. In other words, Step 3 would be

run, if (∇un+ 1
3 (xi ),∇g(I )(xi )) = 0.

Figure 6: Finding the edges of a concave object by ABHM algorithm: (a) original image, (b) boundary
detected with θ1 = 0.1, θ2 = 0 , θ3 = 0.18 and ν = −1, (c) shaped b.

Figure 7: (a) point xi would be an active pixel in Step 1, (b) point xi would be an inactive
pixel by smoothing in Step 3, (c) the pixel xi don’t change in the directions {(−1,−1), (0,0), (1,1)} and
{(−1,0), (0,0), (1,0)} in Step 3.

4.2 Edge recognition of separated objects

When we are dealing with several separated objects in an image, the ABHM algorithm
can not detect the true boundary (see Figure 8). We describe this occurrence for Figure
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8(a). Suppose that xi is a false boundary pixel. Because g(I )(xi ) = 1 in (10), for a given
ν < 0, we have un+ 1

3 (xi ) = (Edun)(xi ) = 0 in (11). In other words, the pixel xi would be
inactive. In Step 2, ∇g(I )(xi ) = 0 that implies un+ 2

3 (xi ) = un+
1
3 (xi ). Finally, in a similar

comment, it is seen that un+1(xi ) = (SId ◦ ISdun+
2
3 )(xi ) in Step 3, i.e., the pixel xi would

be active, that implies the curve evolution is stopped (see Figure 11). A modification
of the ABHM algorithm in the presence of several separated objects in an image can
be given by the sub-algorithm 5:

Algorithm 5 Sub-Algorithm 2
•The structure of Sub-Algorithm 2
Step 1.
g(I )(xi ) > θ1 and ν > 0 un+

1
3 (xi ) = (Ddun)(xi )

g(I )(xi ) > θ1 and ν < 0 un+
1
3 (xi ) = (Edun)(xi ) Step 2.

(∇un+
1
3 (xi ),∇g(I )(xi )) > 0 and g (I )(xi ) > θ2 un+

2
3 (xi ) = 1

(∇un+
1
3 (xi ),∇g(I )(xi )) < 0 and g (I )(xi ) > θ2 un+

2
3 (xi ) = 0

Indeed, the Sub-Algorithm 5 is run when the Sub-Algorithm 4 stops. Also, we note
that in Sub-Algorithm 5, Step 3 is removed.

In the end, we present some examples for each sub-algorithm and compare them with
the ABHM algorithm. These examples show that some modifications to the ABHM
algorithm are needed to detect the true edges of the object(s) in images.

Figure 8: Finding the edges of a concave object by ABHM algorithm: (a) original image, (b) boundary
detected with θ1 = 0.1, θ2 = 0, θ3 = 0.8 and ν = −1, (c) sharped b.

Figure 9: (a) Point xi would be an active pixel in Step 1, (b) point xi would be an inactive pixel by
smoothing in Step 3, (c) the pixel xi do not change in the direction {(−1,−1), (0,0), (1,1)} in Step 3.
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Figure 10: (a) Original image, (b) finding the edges by ABHM algorithm with θ1 = 0.999, θ2 = 0.3,
θ3 = 0.1 and ν = −1, (c) finding the edges by our algorithm with θ1 = 0.999, θ2 = 0.3, θ3 = 0.1 and
ν = −1.

Figure 11: (a) Original image, (b) finding the edges by ABHM algorithm with θ1 = 0.999, θ2 = 0.7,
θ3 = 0.7 and ν = −1, (c) finding the edges by our algorithm with θ1 = 0.999, θ2 = 0.7, θ3 = 0.7 and
ν = −1.

Table 1 shows the CPU time, the number of iterations, and the assigned quantities
θ1,θ2,θ3 and ν in Algorithm ABHM.

Table 1: The CPU time, the number of iterations, and the assigned quantities θ1,θ2,θ3 and ν in
Algorithm ABHM

Figure 6 Figure 8 Figure 10 Figure 11
CPU time(s) 15 18 22 25
Iteration 57 64 68 70

θ1 = 0.1 0.1 0.999 0.999
Quantities θ2 = 0 0 0.3 0.7

θ3 = 0.18 0.8 0.1 0.7

5 Conclusion

In this paper, we presented two optimal sub-algorithms that were modifications to the
Alvarez et al. algorithm. Our algorithms provided optimal edge detection for images
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and we presented examples to demonstrate their effectiveness. Here, we showed that
the modified version of the algorithm finds better the edges of an image.
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