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1 Introduction

In this paper, we deal with the optimization problem to compute an approximated
minimizer of the function which is the summation of the finite number of component
functions. This problem arises in many applications such as machine learning and Data
Mining. This minimization problem is as follows

minP(x), (1)

in which P(x) = F(x)+R(x). The function F(x) is the average of many smooth component
functions such as

F(x) =
1
n

n∑
i=1

fi(x), (2)

and the function R(x) can be non-differentiable. A large number of training examples
makes the problem more practical. This problem is also known as regularized empirical
risk minimization [1]. In such problems, we have training examples (a1, b1), . . . , (an, bn),
where each of ai ∈ Rd is a feature vector and bi ∈ R is the desired response.

Now, let us mention some methods which have been proposed by some researchers.
One of the methods used for solving (1) is the Proximal Full Gradient (Prox-FG) [7].
Now, let us mention some methods which have been proposed by some researchers.
One of the methods used for solving (1) is the Proximal Full Gradient (Prox-FG)
(see Equation (6), [15]). In this method, in each iteration k = 1,2, . . . , an ik is chosen
randomly from {1, . . . ,n}. Shwartz and Zhang [11, 12] proposed an effective function
fi(x) = ϕi(a

T
i x), for solving the problem (1) which is choosing Fenchel conjugate func-

tions of ϕi and R . The Fenchel conjugate function is

f ∗(y) = sup
x∈domf

(yT x − f (x)),

where f ∗ is a closed and convex function and

dom(f ) := {x ∈ Rd |f (x) < +∞}.

The inner product which is used in the previous equality is a vector space V over
the field F, which is a map

⟨·, ·⟩ : V ×V → F.

Assuming R(x) is µ-strongly convex, they indicated that a proximal stochastic dual
coordinate ascent (Prox-SDCA) method has the same complexity as the other meth-
ods. Le Roux et al., set R(x) ≡ 0 and offered a new Stochastic Average Gradient
(SAG) method [4]. Another scheme that was proposed by Johnson and Zhang, is called
Stochastic Variance-Reduced Gradient (SVRG) [3]. The SVRG method uses a multi-
stage plan to gradually reduce the variance generated through the stochastic gradient.
Later, the various reduction in SVRG was extended, so the method was developed to
a Proximal SVRG (Prox-SVRG) [15]. Also, in this method, uniform sampling of the
component functions was applied. Then, Li and Li proposed another method that was
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termed Prox-SVRG+ [5]. Although this algorithm is based on variance reduction, it
does not have the geometric convergence in expectation.

Recently, a method that is called Prox-GEN [17] has been proposed, in which the
regulator can be non-smooth and non-convex. It uses a unified framework for stochastic
proximal gradient descent and shows that the whole family has the same convergence
rate. For more detail, refer to [13, 14, 16].

Let us consider two following assumptions that are necessary to use as the primary
rules [15].

Assumption 1. Suppose that R(x) is a lower semi-continuous and also convex function
with a closed domain dom(R) := {x ∈ Rd |R(x) < +∞}. All fi(x) for i = 1, . . . ,n , are
differentiable on a supposed open set with dom(R), and their gradients are Lipschitz
continuous. For Lipschitz continuity, there exists Li , such that for all x,y ∈ dom(R) we
get

∥ ∇fi(x)−∇fi(y) ∥⩽ Li ∥ x − y ∥ . (3)

Assumption 2. Suppose that P(x), the cost function in (1), is strongly convex, then
there exists τ > 0 such that for all x ∈ dom(R) , y ∈ Rd and ∂P as a partial derivative
of P satisfy. We obtain

P(y) ⩾ P(x) + ζT (y − x) + τ
2
∥ y − x∥2, ∀ζ ∈ ∂P(x). (4)

In this paper, we propose a proximal method of the SAG approach which makes it
more practical. Applying a proximal operator in this method implies that our method
executes easier than the original SAG method in the case of R(x) , 0. The mentioned
operator can help us to achieve the optimal value readily.

The rest of this paper is as follows. In Section 2, we describe some essential defi-
nitions. Then, in Section 3, we explain the proximal method. Section 4 is devoted to
explaining the new algorithm. In Section 5, the convergence properties are analyzed.
Finally, in Section 6, we illustrate the numerical experiments.

2 Some Basic Definition

We need to describe a special operator. Suppose that h : Rn → R ∪ {+∞} be a closed
convex function where

epi h = {(x,u) ∈ Rn ×R|h(x) ⩽ u},

is a nonempty closed convex set. Also, the proximal operator [8] proxh : Rn → Rn is
defined by

proxh(υ) = argmin
x

(h(x) + (1/2) ∥ x −υ ∥22), (5)

where ∥ · ∥2 shows the Euclidean norm. The function is strongly convex and it is not
everywhere infinite, then it has a unique optimal (minimizer) for every υ ∈ Rn.

We have the scaled function λh, where
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proxλh(υ) = argmin
x

(h(x) + (1/2λ) ∥ x −υ ∥22), λ > 0.

Figure 1 demonstrates that applying this operator causes the red points to converge
to the minimum of the function, even when some points, such as the blue points, are
either within or outside the function’s domain.

Figure 1: Evaluating a proximal operator at different points [8].

The definition of the mentioned operator indicates that proxh(υ) is a point that
compromises between being close to υ and minimizing h. The proximal operator can
be interpreted as a gradient step for function h. Hence, we obtain

proxλh(υ) ≈ υ −λ∇h(υ),

once λ is small and h is differentiable. As a result, we can see a connection between
proximal operation and gradient methods [8].

3 Proximal Method

In this section, we will describe one of the popular methods used to solve problem (1).
Additionally, we will provide some details regarding this method.

The proposed method used to solve the problem (1) is the proximal gradient method.
An initial point is given as the input of the algorithm. The update rule for the proximal
method is

xk = argmin
x∈Rd

{∇F(xk−1)T x +
1

2γk
∥ x − xk−1∥2 +R(x)}, k = 1,2, . . . , (6)

where γk is the step size at the k-th iteration and R(x) = λ1 ∥ x ∥1, R(x) = λ2/2 ∥ x ∥22,
or the sum of these two forms R(x) = λ1 ∥ x ∥1 +λ2/2 ∥ x ∥22 , in which λ1 and λ2
are nonnegative regularization parameters. The loss function is logistic loss as fi(x) =
log(1+exp(−biaTi x)) and it can be added to any of the regularization terms. Throughout
this paper, to simplify, we use ∥ · ∥ instead of ∥ · ∥2, where it shows the Euclidean norm.

As in the Proximal SVRG in [15], the operator is used as a gradient step, so we can
apply it to the SAG method.
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So, in proximal gradient, we have

xk = proxγkR(xk−1 −γk∇F(xk−1)), (7)

where n, the number of component functions, can be very large. Hence, the Prox-
FG method would be too expensive. The alternative method which has a lower cost is
Prox-SG which uses some training examples. Choosing these limited number of training
examples that leads to a limited number of component functions is through a random
process. So, (7) is written as

xk = proxγkR(xk−1 −γk∇fik (xk−1)), (8)

where ik is chosen randomly among the set of {1, . . . ,n}.
Also, we have

E∇fik (xk−1) = ∇F(xk−1). (9)

4 Prox-SAG+ Method

This section is allocated to explain how we get the idea of the new method. Also, the
proposed algorithm is described in detail.

In the SAG method [10] such as the previous methods for solving the problem (1),
the initial point x0 is given, and the update rule is defined as follow.

xk+1 = xk −
γk
n

n∑
i=1

yki , (10)

where ik is drawn randomly and yki computed by

yki =

∇fi(xk−1), if i = ik ,
yk−1i , otherwise.

(11)

Our method (Prox-SAG+) has been done even in the case where R(x) , 0. In the
case of R(x) , 0, algorithms are complicated, especially for implementing test problems.
We propose a proximal method that is equipped with the proximal operator

xk = proxγkR(xk−1 −γkvk), (12)

vk = vk−1 − yki +∇fik (x), (13)

where is obtained from [11].
Now, let us introduce the Prox-SAG+ algorithm.
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Algorithm 2 Prox-SAG+ algorithm
v = 0, yi = 0 for i = 1,2, . . . ,n
for k = 1,2, . . . do

Sample i from {1,2, . . . ,n}
vk = vk−1 − yi +∇fi(x)
yi = ∇fi(x)
xk = proxγkR(xk−1 −γkvk)

end for

5 Convergence Analysis

To analyze the convergence of the new method, we express some lemmas. These lemmas
are used to prove the principle theorem.

The following lemmas are similar to the ones in [15].

Lemma 1. P(x) is considered as satisfied in (1) and (2). Let Assumption 1 holds,
x∗ = argminxP(x) and Ls =maxiLi /n. So

1
n

n∑
i=1

∥ ∇fi(x)−∇fi(x∗)∥2 ⩽ 2LS [P(x)−P(x∗)].

Proof. Consider the following function

ψi(x) = fi(x)− fi(x∗)−∇fi(x∗)T (x − x∗).

It is easy to check ∇ψi(x∗) = 0, so minxψi(x) = ψi(x∗) = 0. As ∇ψi(x) is Lipschitz
continuous with constant Li , and from (Theorem 2.1.5, [6]), we have

1
2Li
∥ ∇ψi(x)∥2 ⩽ ψi(x)−min

y
ψi(y) = ψi(x)−ψi(x∗) = ψi(x).

This implies that

∥ ∇fi(x)−∇fi(x∗)∥2 ⩽ 2Li [fi(x)− fi(x∗)−∇fi(x∗)T (x − x∗)].

Now by multiplying the last inequality by 1/n, in addition to summing over i = 1, . . . ,n,
it is obtained that

1
n

n∑
i=1

∥ ∇fi(x)−∇fi(x∗)∥2 ⩽ 2LS [F(x)−F(x∗)−∇F(x∗)(x − x∗)].

As x∗ is the optimal point,

x∗ = argmin
x

P(x) = argmin
x
{F(x) +R(x)},

there exists ζ∗ ∈ ∂R(x∗), which ∂R is a partial derivative, that ∇F(x∗) + ζ∗ = 0. Then

F(x)−F(x∗)−∇F(x∗)(x − x∗) = F(x)−F(x∗) + ζ∗(x − x∗)
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⩽ F(x)−F(x∗) +R(x)−R(x∗)
=P(x)−P(x∗).

In the previous inequality, the convexity of R(x) is supposed (from Assumption 1).
So we have

1
n

n∑
i=1

∥ ∇fi(x)−∇fi(x∗)∥2 ⩽ 2LS [P(x)−P(x∗)].

Corollary 1. Let υk be as defined in (13) (Corollary 3, [15]), suppose that at the point
of xk−1 we have Eυk ⩽ ∇F(xk−1) then

E ∥ υk −∇F(xk−1)∥2 ⩽ 4LS [P(xk−1)−P(x∗)] +M.

Proof. Conditioned on xk−1, it is taken expectation concerning ik to gain

E
[
∇fik (xk−1)

]
=

n∑
i=1

1
n
∇fik (xk−1) = ∇F(xk−1).

Now, the following inequality can be achieved

E ∥ υk −∇F(xk−1)∥2 = E ∥ υk−1 − yki +∇fik (xk−1)−∇F(xk−1)∥
2

⩽ 2E ∥ υk−1 − yki ∥
2 +2E ∥ ∇fik (xk−1)−∇F(xk−1)∥

2

⩽ 2E ∥ υk−1 − yki ∥
2 +2E ∥ ∇fik (xk−1)∥

2 − 2 ∥ ∇F(xk−1)∥2

⩽ 2E ∥ υk−1 − yki ∥
2 +2E ∥ ∇fik (xk−1)∥

2

= 2 ∥ υk−1 − yki ∥
2 +2E ∥ ∇fik (xk−1) +∇fik (x

∗)−∇fik (x
∗)∥2

⩽ 2 ∥ υk−1 − yki ∥
2 +4E ∥ ∇fik (xk−1)−∇fik (x

∗)∥2 +4 ∥ ∇fik (x
∗)∥2

⩽M + 4E ∥ ∇fik (xk−1)−∇fik (x
∗)∥2

⩽ 4LS [P(xk−1)−P(x∗)] +M.

In the first and fourth inequality, we used ∥ α + β∥2 ⩽ 2 ∥ α∥2 + 2 ∥ β∥2 and finally, the
second equality is achieved from Lemma 1 and, the fact that for any random vector
xi ∈ Rd , we have E ∥ ξ −Eξ∥2 = E ∥ ξ∥2− ∥ Eξ∥2.

We need two more lemmas to use and complete proving the convergence theorem
(Section 31, [9]).

Lemma 2. Consider R being a closed convex function on Rd and also x,y ∈ dom(R).
So

∥ proxR(x)−proxR(y) ∥⩽∥ x − y ∥ .

To obtain a lower bound we use the next lemma (Lemma 3, [2]).
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Lemma 3. Consider P(x) = F(x) +R(x), in which ∇F(x) is Lipschitz continuous with
its parameter L. Also, F(x) and R(x) has strong convexity parameters τF and τR. For
any x ∈ dom(R) and arbitrary υ ∈ Rd , we define

x+ = proxγR(x −γυ),

d =
1
γ
(x − x+),

∆ = υ −∇F(x),

where 0 < γ ⩽ 1/L is a step size. Now for any y ∈ Rd , we have

P(y) ⩾ P(x+) + d
T (y − x) +

γ

2
∥ d∥2 + τF

2
∥ y − x∥2 + τR

2
∥ y − x+∥2 +∆T (x+ − y).

Now, consider the following convergence theorem.

Theorem 1. Let Assumptions 1 and 2 are satisfied, and x∗ = argminxP(x) and LS =
maxiLi /n. Furthermore, suppose that 0 < γ < 1/(4LS ) and

ρ = 1−
2γ − 2

τ

8γ2LS
< 1. (14)

Then, the Prox-SAG+ method has the geometric convergence in expectation

EP(xk)−P(x∗) ⩽ ρk[P(x0)−P(x∗)]. (15)

Proof. The stochastic gradient mapping is defined for convergence

dk =
1
γ
(xk−1 − xk) =

1
γ
(xk−1 −proxγR(xk−1 −γυk)),

then the proximal gradient step (12) can be rewritten as

xk = xk−1 −γdk .

To complete the proof of Theorem 1, we need to know the distance between xk and x∗.

∥ xk − x∗∥2= ∥ xk−1 −γdk − x∗∥2

= ∥ xk−1 − x∗∥2 − 2γdTk (xk−1 − x
∗) +γ2 ∥ dk∥2.

Using Lemma 3 with x = xk−1, υ = υk , x+ = xk , d = dk and y = x∗, we have

−dTk (xk−1 − x
∗) +

γ

2
∥ dk∥2 ⩽ P(x∗)−P(xk)−

τF
2
∥ xk−1 − x∗∥2 −

τR
2
∥ xk − x∗∥2 +∆Tk (xk − x

∗),

in which ∆k = υk −∇F(xk−1). By using the assumption in theorem 1 we get

η < 1
/
(4LS ) < 1/L

since LS ⩾ (1/n)
∑n
i=1Li ⩾ L. As a result,
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∥ xk − x∗∥2 ⩽∥ xk−1 − x∗∥2 −γτF ∥ xk−1 − x∗∥2 −γτR ∥ xk − x∗∥2

- 2γ [P(xk)−P(x∗)]− 2γ∆Tk (xk − x
∗)

⩽∥ xk−1 − x∗∥2−2γ [P(xk)−P(x∗)]− 2γ∆Tk (xk − x
∗). (16)

Then, we find an upper bound −2γ∆Tk (xk − x
∗). In addition, we mention the proximal

full gradient updates as

x̃k = proxγR(xk−1 −γ∇F(xk−1)),

which is independent of the random variable ik . So,

−2γ∆Tk (xk − x
∗)= −2γ∆Tk (xk − x̃k)− 2γ∆

T
k (x̃k − x

∗)

⩽ 2γ ∥ ∆k ∥∥ xk − x̃k ∥ −2γ∆Tk (x̃k − x
∗)

⩽ 2γ ∥ ∆k ∥∥ xk−1 −γυk)− (xk−1 −γ∇F(xk−1)) ∥ −2γ∆Tk (x̃k − x
∗)

= 2γ2 ∥ ∆k∥2 − 2γ∆Tk (x̃k − x
∗),

where the Cauchy-Schwarz inequality was used in the first inequality, and in the second
inequality, Lemma 2 was used. Combining with (16), the following result was obtained

∥ xk − x∗∥2 ⩽∥ xk−1 − x∗∥2−2γ[P(xk)−P(x∗)] + 2γ2 ∥ ∆k∥2 − 2γ∆Tk (x̃k − x
∗).

E ∥ xk − x∗∥2 ⩽ ∥ xk−1 − x∗∥2 − 2γ[EP(xk)−P(x∗)] + 2γ2E ∥ ∆k∥2 − 2γE[∆Tk (x̃k − x∗)]

⩽∥ xk−1 − x∗∥2 − 2γ[EP(xk)−P(x∗)] + 2γ2(4LS [P(xk−1)−P(x∗) +M].

Now, by taking expectations again over the last inequality we obtain the desired
result

E ∥ xk−1 − x∗∥2 − 2γ[EP(xk)−P(x∗)] + 2γ2 × 4LS [EP(xk−1)−P(x∗)] + 2γ2M

⩽ ∥ x0 − x∗∥2 − 2η[P(x0)−P(x∗)] + 8γ2LS [P(x0)−P(x∗)] + 2γ2M,

and then by using the last inequality, we have

8γ2LS [EP(xk−1)−P(x∗)] ⩽ ∥ x0 − x∗∥2 − 2γ[P(x0)−P(x∗)] + 8γ2LS [P(x0)−P(x∗)].

In addition, we have ∥ x0 − x∗∥2 ⩽ 2
τ [P(x0)−P(x

∗)]. Therefore,

8γ2LS [EP(xk−1)−P(x∗)] ⩽ (
2
τ
− 2γ +8γ2LS )[P(x0)−P(x∗)]

EP(xk−1)−P(x∗) ⩽
(2τ − 2γ +8γ2LS )

8γ2LS
[P(x0)−P(x∗)]

=

1− 2γ − 2
τ

8γ2LS

 [P(x0)−P(x∗)].
Now, [1− 2γ− 2

τ
8γ2LS

] can be defined as ρ. Therefore,

EP(xk−1)−P(x∗) ⩽ ρk−1[P(x0)−P(x∗)].

We have successfully proven Theorem 1.
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6 Numerical Experiments

In this section, the numerical results of the proposed method are described. To get
the desired result, we used the regularized logistic regression problem for binary clas-
sification. We are given training examples of (a1, b1), . . . , (an, bn), where ai ∈ Rd and
bi ∈ {−1,+1} and bi ∈ {0,1}. The aim is to find the optimal point x ∈ Rd as a predictor
by solving

min
x∈Rd

1
n

n∑
i=1

log(1 + exp(−biaTi x)) +
λ2
2
∥ x ∥22 +λ1 ∥ x∥1,

where λ1 and λ2 are regularization parameters. The component functions can be one
of the following forms

fi(x) = log(1+ exp(−biaTi x)) +
λ2
2
∥ x ∥22,R(x) = λ1 ∥ x∥1,

or
fi(x) = log(1+ exp(−biaTi x)), R(x) =

λ2
2
∥ x ∥22 +λ1 ∥ x∥1. (17)

We use MATLAB software for the implementation of all the considered algorithms
(MATLAB v9.9.0 R2020b environment on a PC with CPU Intel Core i5 8500, 3.00
GHz, and 16GB RAM).

We compared the Prox-SAG+ algorithm with the following algorithms:
• Prox-SVRG: Algorithm Prox-SVRG in [15]

• SAG: Algorithm 1 in [10]

• Prox-SG: Eq. (8) in [15]

• Prox-FG: Algorithm 3.3 in [7]
Moreover, we investigate a stochastic dataset and two other datasets called (Ma-

chine Predictive Maintenance Classification) [18] and (Phishing Website Detector) [19].
Moreover, Cross-validation is used for generating and assessing the data. In this tech-
nique, the data divides into two groups 75 percent and 25 percent of the dataset. Then
75 percent of the data is trained for the algorithm and the rest of the data is examined.
In each stage, an error is counted. λ1 and λ2 are chosen by the user. During the
execution of the code, a stochastic dataset is normalized. So we have ∥ ai∥2 = 1 for each
i = 1, . . . ,n, which causes us to get the same upper bound on the Lipschitz constants
L = Li = ∥ ai ∥22 /4. In the implementation, we used (17) and uniform sampling of the
component functions.

In Figure 2, we chose λ1,λ2 = 10−4 and m = 2n. In addition, γ = 0.1/L is our
step size. We consider a dataset of 100 elements (n = 100). As we can see in Figure
2, in Prox-SAG+ after a few iterations the gap between P(xk) and P∗ becomes zero,
i.e. P(xk) − P∗ = 0 . For other methods after some more iterations, the objective gap
P(xk)−P∗ decreases.

Figures 3 and 4 illustrate that the objective gap P(xk) − P(x∗) is lower for Prox-
SAG+ than all other methods. Hence, it has better performance in comparison to
other examined methods.
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Table 1: Datasets and regularization parameters

Data sets n d source λ2 λ1
Random 100 6 10−4 10−4

Pre 10000 6 [18] 10−4 10−4

Phishing 11054 31 [19] 10−4 10−4
13

Figure 2: Comparing the objective gap of some methods with Prox-SAG+.
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Figure 4: Comparing some methods with Prox-SAG+ on the Phishing dataset.

7 Conclusion

We proposed a new proximal stochastic method that uses a proximal operator to im-
prove the SAG method. Additionally, the algorithm is simpler when the regularization
function is not zero

(
R(x) , 0

)
. Furthermore, it outperforms Prox-SVRG since it does

not require a multi-stage approach. Using the multi-stage approach makes the method
more complicated than the newly proposed one. Prox-SAG+ has a geometric conver-
gence in expectation, allowing it to solve optimization problems in machine learning
effectively.
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