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1 Introduction

The matter of disease as well as the reasons why the models (SI, SIR, SEIR, etc.) are studied, may
dictate the need for different compartments to be included. For instance, SEIR models can be used
in cases where infected individuals are not immediately infected. People under investigation are first
exposed to the disease and become in compartment E, after a latent period, they become compartment
I. Some infectious diseases, such as measles, HCV, AIDS, HBV, and mumps have a latent period, from
the time of exposure to the occurrence of disease symptoms. The term SEIR epidemic model refers to
infectious diseases that have a latent period. By dividing a population into several subpopulations, using
mathematical models, we can study the evolution of a disease outbreak in different stages of disease
outbreak. For example, consider the SEIR model. A person who is not currently a carrier of a disease
but can develop the disease because of lack of immunity is called ’susceptible’. A person who has
contracted the disease but is not yet able to transmit it to others is called ’Exposed’. ’Infected’ is the part
where the person is reasonably infected with the disease and his disease can be spread to other people,
and in the ‘Recovered’, the person is no longer sick and is protected and will not be infected again.

In the literature, SEIR models have been discussed by researchers in different works. Moneim et al.
[32] considered an SEIR model with a fixed vaccination rate and infection during the incubation period
to investigate the behavior of HBV disease. Greenhalgh [10, 11] applied Hopf bifurcations to consider
SEIR and SEIRS models. Li, et al. [23, 24], and Zhang et al. [49] studied the SEIRS models with time
delay. Samples of SEIRS models were investigated by Avila et al. [3]. In these models, it has been
shown that a person from the latent class can transmit the disease to susceptible people. Li et al. [21, 22]
showed that diseases such as HIV/AIDS have two different infectious stages with different abilities to
transmit the disease. A delayed epidemic model was studied by Samantha et al. [41] in which the
contact rate was different. Moneim et al. [12, 31] found that some infectious diseases have fluctuations
in the number of occurrences due to certain conditions, for example, school opening and closing days or
changes in weather. Boni et al. [4] showed that in many countries, such as Vietnam, a significant peak of
H1N1 influenza is detected every year. A SIR model with vaccination rates was studied by Shulgin et al.
[45, 46]. A dengue disease model with a periodic contact rate was investigated by Jan and Xiao [14], in
which a pulse vaccination strategy was used. Several simple and continuous vaccination-based control
strategies were applied by Sen et al. [7, 8] in an SEIR model that considered the entire population as a
deterrent to consider disease transmission. They concluded that the susceptible, infectious, and infected
populations converge to zero asymptotically over time by applying these vaccination strategies. Moneim
[30] studied a SIRS model to investigate the outbreak of influenza H1N1, in which the vaccination rate
was periodic. Authors [38, 40, 42] have studied this disease. Moneim [28, 29, 30] concluded that no
fixed periodic vaccination provides good compliance to the periodic matter of some infectious diseases.

This paper aims to use the ability of artificial neural networks (ANNs) to approximate the states,
co-states, and control functions of the SEIR epidemic model. The main motivation for using neural net-
works is that the usage of neural networks provides differentiable solutions. In the last decade, ANNs
play an essential role in solving many problems, and their results can be compared with other methods
using mathematical algorithms. These methods have been used in solving ODEs and PDEs in [19]. Vra-
bie et al. [47] used ANNs to solve unknown nonlinear systems from a reinforcement learning scheme.
There are many references in theory and applications, modeling, algorithms, design, and mathematics of
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neural networks (see [13, 33]), in particular, the numerical solution of ordinary and partial differential
equations [18, 44], optimal control problems [5, 9] and mathematical programming [34, 36]. Moham-
madi and Mansoori [27] utilized ANN for identifying copy number variants that help the diagnosis of
many diseases. Mansoori et al. [25] investigated the fuzzy-constrained matrix game problems using
the concepts of recurrent neural networks. Yu et al. [48] employed a novel recurrent neural network to
deal with a kind of nonsmooth nonconvex optimization problem in which the objective function may be
nonsmooth and nonconvex, and the constraints include linear equations and convex inequations. Shi and
Chui [43] utilized fuzzy neural networks (FNNs) algorithm for detecting cardiovascular diseases. Acar
et al. [1], using the various types of ANN, applied the backpropagation (BP) algorithm for forecasting
diabetes mellitus. Afshar et al. [2] used the Levenberg-Marquardt learning algorithm for the recogni-
tion and prediction of leukemia. Khemphila et al. [16] employed ANN for heart disease classification.
Chowdhury et al. [6] applied MLP with a backpropagation learning algorithm for neonatal disease diag-
nosis. Recently, Effati and Pakdaman proposed the ANNs to solve optimal control problems [9]. They
have used this approach for optimal control of some nonlinear systems with one state variable. In this
work, we extend this approach for the optimal control of an important and complex real nonlinear system
with many state variables. This system is the SEIR (Susceptible, Exposed, Infected, Recovered) model
of infectious disease.

Today, people of the world are challenged with many infectious diseases, and their optimal control
is the ultimate goal of the human being in this context. In the literature, some mathematical methods
have been proposed for this problem, such as Runge-Kutta (R-K) method [20].

In the present paper, based on the proposed approach in [9], ANNs are used to solve this problem. In
recent years, ANNs have been used to solve many nonlinear problems, successfully. This work proposes
the ANNs for the optimal control of the SEIR model of infectious diseases with four state variables. The
capabilities of this approach in the optimal control of the SEIR model have been shown in the simulation
results. In the future, we try to utilize this approach for the optimal control of more complex models of
infectious diseases, such as fuzzy and fractional models of infectious diseases.

The rest of the paper is organized as follows. Section 2 introduces the SEIR epidemic model. In
Section 3, the structure ofANNs and the related necessary optimal conditions are presented, and the states
and co-state functions in the SEIR epidemic model are approximated by ANN. Numerical simulations
are presented in Section 4, and Section 5 contains concluding remarks.

2 Model Description

Let S(t), I(t), E(t), and R(t) respectively denote the number of susceptible, infectious, exposed, and
recovered individuals, and N(t) represents the total number of people at the time t, so that N(t) =

S(t)+E(t)+I(t)+R(t), and let u(t), the control function, be the percentage of susceptible individuals
being vaccinated per unit of time. Due to the fact that vaccination of the entire susceptible population is
impossible, we bound the control with 0 ≤ u(t) ≤ 0.9. The dynamical system for the SEIR epidemic
model can be constructed as:
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S
′
(t) = bN(t)− dS(t)− cS(t)I(t)− u(t)S(t),

E
′
(t) = cS(t)I(t)− (e+ d)E(t),

I
′
(t) = eE(t)− (g + a+ d)I(t),

R
′
(t) = gI(t)− dR(t) + u(t)S(t),

N
′
(t) = (b− d)N(t)− aI(t),

(1)

where a is the death rate that occurs due to the disease in infected individuals, b is the natural exponential
birth rate, d is the natural exponential death rate, the term cS(t)I(t) is the frequency or incidence of the
disease, e, the rate of exposed individuals who become infected, and g is the infectious individuals’
recovery rate. Also, it is assumed that only susceptible people are vaccinated and that the vaccine is
compelling so that all vaccinated susceptible individuals become immune. In this model, S(0) = S0,
E(0) = E0, I(0) = I0,R(0) = R0, andN(0) = N0 are the number of individuals susceptible, exposed,
infected, recovered, and total population, respectively, in the first performance of the operation.
Assume that the objective functional of the optimal control problem can be formulated as follows:

min
u

∫ T

0

(
AI(t) + u2(t)

)
dt,

where the control variable is Lebesgue measurable and u : [0, T ] → [0, 0.9]. On the other hand, we are
going to minimize the total cost of vaccination and the number of infected people during T times. The
value of A in the objective functional determines the relative importance of the variables I and u and
is actually a balancing parameter. Since the variable R appears only in the R

′
differential equation and

the other variables do not depend onR, it is better to consider the dynamic system without this variable.
Finally, by obtaining approximate values S(t), E(t), I(t), and N(t), the value R(t) is obtained using
the formula R(t) = N(t)− S(t)− E(t)− I(t).

3 Artificial Neural Network for Solving the SEIR Model

ANNs process the calculation that involves training the network with representative data. The network
consists of several inputs and outputs, and between them, there are hidden layers consisting of some
hidden nodes. The number of hidden nodes and layers is empirically determined to optimize the perfor-
mance of a network and to obtain a better result. Before using ANNs in solving SEIR epidemic model,
we first shortly introduce ANNs.

Consider the following optimal control problem:

min
∫ tf
t0
f0

(
x(t), u(t), t

)
dt,

s.t. ẋ = g

(
x(t), u(t), t

)
,

x(t0) = x0,

where x(t) ∈ Rn and u(t) ∈ Rm are the state and control variables, respectively and t ∈ R. Assume
that the integrand f0, concerning all its arguments, has continuous first and second partial derivatives,
also the values of t0 and tf are constant and function g has the property of Lipschitz continuity on a set
Ω ⊂ Rn. The Hamiltonian can be defined as:
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H

(
x(t), u(t), λ(t), t

)
= f0

(
x(t), u(t), t

)
+ λ(t).g

(
x(t), u(t), t

)
,

where λ(t) ∈ Rn is the co-state vector, so one can have the first order necessary conditions by PMP
[39].

Theorem 1. ([17]) If u∗(t) and x∗(t) are optimal control and state functions for problem (1), then there
exists an adjoint variable λ(t) such that

H

(
x∗(t), u∗(t), λ(t), t

)
≤ H

(
x∗(t), u(t), λ(t), t

)
,

at each time.

PMP provides a necessary condition for optimal control. This theorem shows that if x(t), λ(t), and
u(t) are the optimal values of the state, co-state, and control, respectively, they must satisfy the following
conditions: 

∂H(x, u, t, λ)

∂x
= −λ̇(t),

∂H(x, u, t, λ)

∂λ
= ẋ(t),

∂H(x, u, t, λ)

∂u(t)
= 0.

(2)

From (2), a system of ODEs is obtained, and nowadays, there are various numerical methods to solve
such problems. We are trying to propose an approximation scheme for solving (2). Now we define the
trial solutions in such a way that the initial conditions apply to it, so we have:

xT = x0 + (t− t0)nx,

λT = (t− tf )nλ,

uT = nu,

wherenx, nu, andnλ are ANN for variables of the state x(t), control u(t), and co-stateλ(t), respectively,
and each ANN model contains its particular adjustable parameters as following:

nx =

n∑
i=1

vixσ(z
i
x), zix = wi

xt+ bix,

nλ =

n∑
i=1

viλσ(z
i
λ), ziλ = wi

λt+ biλ,

nu =

n∑
i=1

viuσ(z
i
u), ziu = wi

ut+ biu,

for i = 1, 2, · · · , n, where for each ANN, the number of neurons is shown by n, which may be different,
w is a weight vector of the input layer, b is a vector containing bias weight, v is output layer weights, z is
a vector of the hidden layer, and σ is an arbitrary activation function, where in this work, the activation
function is tanh function. Based onKolmogorov’s theorem, any continuous function can be implemented
with an MLP [15]. Since the initial conditions must satisfy, then xT (t0) = x0. Note that if x(tf ) is free,
then λ(tf ) = 0. Appropriate trial functions should be defined for other initial/boundary conditions. The
functions x, λ, and u can be replaced in the Hamiltonian with xT , λT , and uT respectively, as:
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HT

(
xT (t), uT (t), λT (t), t

)
= f0T

(
xT (t), uT (t), t

)
+ λT (t).gT

(
xT (t), uT (t), t

)
.

By applying conditions (2) in the obtained Hamiltonian, the following relationships are obtained

∂HT

∂xT
+ λ̇T = 0,

∂HT

∂λT
− ẋT = 0,

∂HT

∂uT
= 0.

(3)

Hence, the optimization problem can be constructed as follows:

minE(ϕ) =
1

2
{E1(t, ϕ) + E2(t, ϕ) + E3(t, ϕ)},

where ϕ = (wx, wλ, wu, bx, bλ, bu, vx, vλ, vu), and

E1(t, ϕ) =

[
∂HT

∂xT
+ λ̇T

]2
,

E2(t, ϕ) =

[
∂HT

∂λT
− ẋT

]2
,

E3(t, ϕ) =

[
∂HT

∂uT

]2
.

(4)

To solve (4), the interval [t0, tf ] can be discretized to m points and solve the unconstrained opti-
mization problem.

Lemma 1. ([35]) If ϕ∗ = (w∗
x, w

∗
λ, w

∗
u, b

∗
x, b

∗
λ, b

∗
u, v

∗
x, v

∗
λ, v

∗
u), satisfies the following relationship

η(ϕ) =

[
E1(t1, ϕ), · · · , E1(tm, ϕ), E2(t1, ϕ), · · · , E2(tm, ϕ), E3(t1, ϕ), · · · , E3(tm, ϕ)

]T
= 0,

then ϕ∗ is an optimal solution of (3).

Due to Lemma 1, the system in (4) can be considered equivalent to the following minimization
problem.

min
ϕ
E(ϕ) =

1

2
||η(ϕ)||2. (5)

The unconstrained optimization problem (5) can be solved using optimization algorithms, such as
Newton, Quasi-Newton, or steepest descent methods, etc.

Now we consider the optimal control problem due to the SEIR epidemic model. We have:

min
u

∫ T

0

(
AI(t) + u2(t)

)
dt,

S
′
(t) = bN(t)− dS(t)− cS(t)I(t)− u(t)S(t),

E
′
(t) = cS(t)I(t)− (e+ d)E(t),

I
′
(t) = eE(t)− (g + a+ d)I(t),

N
′
(t) = (b− d)N(t)− aI(t),

S(0) = S0, E(0) = E0, I(0) = I0, N(0) = N0,
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Note that we have removed the variable R. The Hamiltonian function can be constructed as the follow-
ing:

H = AI + u2 + λS(bN − dS − cSI − uS) + λE(cSI − (e+ d)E)

+ λI(eE − (g + a+ d)I) + λN ((b− d)N − aI),

where the values λS , λE , λI , and λN are the associated adjoints for the state variables S,E, I, and N ,
respectively. Based on first part of (2), by deriving the Hamiltonian concerning all the state variables,
we get the differential equations for the associated adjoints. Therefore, the adjoint system is stated as
follows:

λ
′

S = λS(d+ cI + u)− λEcI,

λ
′

E = λE(e+ d)− λIe,

λ
′

I = −A+ λScS − λEcS + λI(g + a+ d) + λNa,

λ
′

N = −λSb+ λN (d− b).

(6)

According to the second part of (2), the equation system (1) is obtained. Furthermore, the conclusion
can be drawn from the third part of (2) as:

u(t) =
S(t).λS(t)

2
. (7)

Considering the initial conditions in the equations of state and adjoint, the trial solutions can be
constructed as follow:

ST = S0 + t

( n∑
i=1

viS × tanh(wi
St+ biS)

)
,

ET = E0 + t

( n∑
i=1

viE × tanh(wi
Et+ biE)

)
,

IT = I0 + t

( n∑
i=1

viI × tanh(wi
It+ biI)

)
,

NT = N0 + t

( n∑
i=1

viN × tanh(wi
N t+ biN )

)
.

Additionally,

λST
= (t− T )

( n∑
i=1

viλS
× tanh(wi

λS
t+ biλS

)

)
,

λET
= (t− T )

( n∑
i=1

viλE
× tanh(wi

λE
t+ biλE

)

)
,

λIT = (t− T )

( n∑
i=1

viλI
× tanh(wi

λI
t+ biλI

)

)
,

λNT
= (t− T )

( n∑
i=1

viλN
× tanh(wi

λN
t+ biλN

)

)
,
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such that λS(T ) = λE(T ) = λI(T ) = λN (T ) = 0. By placing the trial solutions in the (6) and (1), the
first and second parts of (4) are formed.

To solve the optimal control problem, a variant of the forward-backward sweep method [26] is
utilized. Using this approach, we first consider the initial guess for the control variable, which our
proposal in this work is u(t) = 0, for 0 ≤ t ≤ T . Using the equation system (1) and the initial value
of the control variable, the new state variables are obtained. Then, we put the obtained values in (6) to
get the new value of co-state variables. By obtaining the value of S(t), and λS(T ), the new value of
control can be obtained using (7). It should be noted that according to the assumption of the problem, if
the control value exceeds 0.9, we set its value to 0.9. If the algorithm stop condition is confirmed, the
obtained values for the state, co-state, and control variables are optimal; otherwise, we replace the new
control variable with the initial value of the control variable and repeat the process. We continue this
process until the algorithm stop condition is reached. In the MATLAB program related to this article,
the algorithm stops when the distance between the variables in each step is less than 0.00001 compared
to the previous step. At the same time, we also update the control value.

Remark 1. In [20], using the PMP, the optimal control of the SEIR model has been converted to some
sets of differential equations, and then, the R-K method of order four is used to solve these sets of
differential equations. Also, in the present work, the PMP is used to convert the optimal control of the
SEIRmodel to two sets of differential equations where the neural networks are utilized to solve these sets
of differential equations. In this work, we compared the graphs and the values of the objective function
obtained from these methods.

4 Numerical Result

In this section, we apply ANN discussed in Section 3 for solving the SEIR model. The dynamics in
the absence of vaccination are shown as the dashed curve in the infectious class. In this work, we
approximate the objective functional using the left-point Reimann sum included in the program. Each
neural network is a multilayer perceptron with five neurons in the hidden layer where the hyperbolic
tangent is the activation function of them. Therefore, there are five parameters between the inputs and
hidden neurons, five parameters between the hidden neurons and outputs, and five parameters for the
biases. By replacing the trial solutions obtained from the neural networks in (1) and (6), the set of
differential equations is made. Then, using the nonlinear optimization methods, the best values for the
weights and biases have been computed. We test the performance of the proposed scheme on two test
problems. Our criterion for the effectiveness of the discussed method compared to the R-K method is
the obtained value of the objective functional. To clear up the ambiguity of this issue, we prepared two
tables related to the examples. All numerical computations have been coded in Matlab R2017b with
4GB RAM.

Example 1. We consider the optimal control problem that is described in Section 3. By considering
the parameters as in Table 1, Figure 1 shows the optimal vaccination schedule and the corresponding
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population dynamics. The red, blue, and dashed lines in the infectious class show the R-K method, the
presented method, and the dynamics in the absence of vaccination, respectively.

In Figure 1, the diagram of state and control functions that are found by R-K method of the fourth
order in [37] are compared with the results that are found by the presented method. Furthermore, in
Table 2, we compare the value of objective functional, which is given as follows, from both methods.

min
u

∫ T

0

(
AI(t) + u2(t)

)
dt.

Table 1: Parameter values for Example 1

Value Description
S0 = 1000 initial susceptible population
E0 = 100 initial exposed population
I0 = 50 initial infected population
R0 = 15 initial recovered population
b = 0.525 birth rate
d = 0.5 death rate
c = 0.001 incidence coefficient
e = 0.5 exposed to infectious rate
g = 0.1 recovery rate
a = 0.2 disease induced death rate
A = 0.1 weight parameter
T = 20 number of years

Table 2: Results for Example 1

Method
Description

Number of points Objective function value
ANN 1000 24.1567

R-K 1000 24.2463

Table 3 compares the values obtained from both methods at several points.

Example 2. [20] Let us consider the same optimal control problem butwith different objective functional
as:

max
u

∫ T

0

(
AN(t)− u2(t)dt

)
.

In this example, we consider a case where the infection has been spreading unchecked for some time
before intervention occurs. Figure 2 shows the optimal vaccination program and the dynamics of relevant
population based on the data presented in Table 4. The red, blue, and dashed lines in the infectious
class show the R-K method, the presented method, and the dynamics in the absence of vaccination,
respectively. In Table 5, we compare the value of objective functional and the number of vaccinated
individuals. We compare the values obtained from both methods at some points in Table 6.
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Figure 1: Optimal control schedule for Example 1.

Table 3: Values of functions related to Example 1

Time 0.1 2.4 5 10.3 13 15.5 17.9 19.8

Susceptible
ANN 937 510 636 951 1129 1334 1579 1762

R-K 960 513 633 955 1114 1265 1473 1707

Exposed
ANN 96.07 29.85 11.79 3.35 2.24 1.78 1.69 1.82

R-K 97.18 30.80 11.94 3.42 2.26 1.72 1.5 1.57

Infectious
ANN 50.67 32.63 12.95 2.89 1.74 1.26 1.09 1.1

R-K 50.51 33.25 13.16 2.94 1.77 1.24 1.01 0.97

Recovered
ANN 82 641 623 502 426 326 188 87

R-K 61 660 629 500 424 342 225 105

Population
ANN 1166 1214 1284 1460 1560 1664 1771 1852

R-K 1166 1214 1283 1458 1558 1662 1768 1849

Vaccination
ANN 0.89 0.66 0.46 0.24 0.16 0.09 0.02 0

R-K 0.84 0.67 0.46 0.23 0.16 0.11 0.03 0

Remark 2. In the comparison of the proposed method with the result obtained from the R-K method
in [20], as described in the simulation results, we conclude that the precision of the proposed method is
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Table 4: Parameter values for Example 2

Value Description
S0 = 1000 initial susceptible population
E0 = 1000 initial exposed population
I0 = 2000 initial infected population
R0 = 500 initial recovered population
b = 0.525 birth rate
d = 0.5 death rate
c = 0.001 incidence coefficient
e = 0.5 exposed to infectious rate
g = 0.1 recovery rate
a = 0.2 disease induced death rate
A = 0.1 weight parameter
T = 20 number of years

Figure 2: Optimal control schedule for Example 2.
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Table 5: Results for Example 2

Method
Description

Number of points Objective function value
ANN 1000 8692

R-K 1000 8687

Table 6: Values of functions related to Example 2

Time 0.4 3.1 5 7.52 13 15.6 18.1 19.9

Susceptible
ANN 815 975 1088 1205 1407 1492 1823 2949

R-K 817 983 1099 1216 1418 1502 1765 2892

Exposed
ANN 1180 857 647 474 316 289 292 486

R-K 1185 869 658 490 330 303 304 489

Infectious
ANN 1662 740 513 352 214 189 179 228

R-K 1666 746 519 362 222 198 188 233

Recovered
ANN 747 1531 1815 2073 2451 2606 2482 1262

R-K 741 1522 1808 2059 2437 2588 2490 1266

Population
ANN 4404 4103 4063 4108 4390 4577 4778 4926

R-K 4406 4102 4059 4098 4370 4552 4745 4889

Vaccination
ANN 0.9 0.9 0.9 0.9 0.9 0.9 0.41 0

R-K 0.89 0.89 0.89 0.89 0.89 0.89 0.43 0

better. However, it should be noted that, in the proposed method, a nonlinear optimization algorithm is
used to adjust the parameters of the neural networks. As a result, the execution time of this process is
relatively longer compared to the R-K method. But, it must be mentioned that in the optimal control of
disease models, between precision and acceleration, the priority is precision. Because, we solve these
problems one time, and often, repetition is not needed.

5 Conclusion

This paper proposes an approach that combines artificial neural networks (ANNs) and optimization
techniques to determine an approximate solution for the SEIR epidemic model. Notably, in the method
outlined in this study, the obtained weights from solving the unconstrained optimization problem are
directly used in the trial solutions, eliminating the need for interpolation or fitting methods to plot the
response curve continuously. ANNs possess excellent properties, such as their ability to adapt to nonlin-
ear systems through training, making them useful for optimal control of the SEIR epidemic model and
other related problems. In future studies, this approach could be applied to solve fuzzy and fractional
SEIR models and other epidemic models.
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