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1 Introduction

In this paper, we consider the following multi-objective semi-infinite programming problem (MSIP for
short):

(P) f(x) := inf
(
f1(x), f2(x), . . . , fp(x)

)
s.t. gt(x) ≤ 0 t ∈ T,

x ∈ Rn,

where fi as i ∈ I := {1, 2, . . . , p} and gt as for t ∈ T are locally Lipschitz functions from Rn to R,
The index set T is arbitrary and not necessarily finite, but non-empty. Such kinds of problems arise
in various fields of engineering such as control systems design, resource allocation in decentralized
systems, decision making under competition, multi-objective optimization, and filter design in signal
processing ([7, 24]). There are many papers that have shown the necessary and sufficient optimality
conditions of the Karush-Kuhn-Tucker (KKT) type MSIPs; see e.g., [7, 9, 21] for the linear case, [5, 11,
24] in differentiable case, [6, 8, 22] for the convex case, and [1, 2, 10, 13, 14, 15, 16, 17, 18, 19, 20, 25]
for the non-smooth case. The so-called Slater constraint qualification plays an important role in the study
of convex MSIPs. We recall from [6, 22] that the Slater constraint qualification is satisfied for (P ) if

(⋆) :



(I): the gt functions are convex as t ∈ T ,

(II): T is a compact subset of a metric space and the function

(x, t) → gt(x) is continuous on Rn × T ,

(III): there exists a x∗ ∈ Rn such that gt(x∗) < 0 for all t ∈ T .

The Slater constraint qualification would not be useful without limiting assumptions (I) and (II),
see e.g., [6, 10]). The goal of this paper is to modify and weaken conditions (I) and (II), and generalize
the Slater constraint qualification for non-convex MSIPs. Since we do not assume that the data of (P )
are differentiable, we replace the derivative appearing in the classical results with a known generalized
derivative, named Clarke subdifferential.

In the next section, we provide preliminary results to be used throughout the remainder of the paper.
We examine the Slater constraint qualification for problem (P ), as well as investigate the weak and
strong KKT type and FJ type optimality conditions in Section 3. Section 4 encompasses the weak and
strong duality results for the two dual problems in the Mond-Weir type.

2 Preliminaries

This section provides a brief overview of the key concepts and preliminary information related to con-
vex analysis and non-smooth analysis, which are extensively utilized in formulating and proving the
main results presented in this paper. For a more comprehensive understanding, further discussion, and
applications, readers are referred to references [3, 12].

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two given points in Rn. We write
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• x ≦ y when xi ≤ yi for all i = 1, . . . , n.

• x ≤ y when xi ≤ yi for all i = 1, . . . , n and xj < yj for some j = 1, . . . , n.

• x < y when xi < yi for all i = 1, . . . , n.

Given a nonempty set A ⊆ Rn, we denote the closure and the convex hull generated by A as A and
conv(A), respectively. It is worth noting, as observed in [12] that if {Aβ}β∈Λ is any class of convex
subsets of Rn, then

conc
( ⋃

β∈Λ

Aβ

)
=

{ k∑
i=1

λβiaβi | k ∈ N, aβi ∈ Aβi , λβi ≥ 0,

k∑
i=1

λβi = 1
}
. (1)

Let ψ : Rn → R be a locally Lipschitz function. The Clarke directional derivative of ψ at x0 ∈ Rn

in the direction d ∈ Rn, and the Clarke subdifferential of ψ at x0 are respectively defined as follows:

ψ0(x0; d) := lim sup
x→x0, ν↓0

ψ(x+ νd)− ψ(x)

ν
,

and
∂cψ(x0) :=

{
ξ ∈ Rn | ∂a⟨ξ, d⟩ ≤ ψ0(x0; d) for all d ∈ Rn

}
,

where ⟨ξ, d⟩ denotes the standard inner product of ξ and d in Rn. The zero vector of Rn is denoted by
0n.

In the following theorem,we provide a concise summary of the key properties of the Clarke subdif-
ferential from [3] that which are extensively utilized in what follows.

Theorem 1. Suppose that ψ1 and ψ2 are locally Lipschitz functions from Rn to R, and x0 ∈ Rn is
given. Then,

(i) ∂c(ψ1 + ψ2)(x0) ⊆ ∂cψ1(x0) + ∂cψ2(x0).

(ii) ∂c
(
λψ1

)
(x0) = λ∂cψ1(x0), ∀λ ∈ R.

(iii) ∂c
(
max{ψ1, ψ2}

)
(x0) ⊆ conv

(
∂cψ1(x0) ∪ ∂cψ2(x0)

)
.

(iv) ∂cψ1(x0) is a nonempty, convex, and compact subset of Rn.

(v) 0n ∈ ∂cψ1(x0) if ψ1 attains its minimum at x0.

3 Optimality Conditions

The feasible set of (P ) is denoted by S, such that

S := {x ∈ Rn | gt(x) ≤ 0, ∀t ∈ T}.

Weak efficiency, efficiency, and proper efficiency are essential concepts in studying multi-objective
optimization problems. There are various definitions for these efficiencies in the literature; refer to [4]
for a comparison among these notions.
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Definition 1. A feasible point x̂ ∈ S is called a

• weakly efficient solution of (P ) when there is no x ∈ S such that f(x) < f(x̂).

• efficient solution of (P ) when there is no x ∈ S such that f(x) ≤ f(x̂).

• properly efficient solution of (P ) when there exists a η > 0p such that

⟨η, f(x̂)⟩ ≤ ⟨η, f(x)⟩, ∀x ∈ S.

The following first-order optimality conditions are standard in study of non-smooth multi-objective
(semi-infinite) optimization; see, e.g., [4, 6, 16, 20, 19].

Definition 2. Let x̂ ∈ S be a feasible point for (P ).

• We say that x̂ is a Fritz-John (FJ) point for (P ) if there exist some finite index set T1 ⊆ T (x̂),
some (α1, . . . , αp) ≧ 0p and βt ≥ 0, for t ∈ T1, such that not all of αis and βts equal to zero and

0n ∈
p∑

i=1

αi∂cfi(x̂) +
∑
t∈T1

βt∂cgt(x̂). (2)

• We say that x̂ is a weak Karush-Kuhn-Tuker (WKKT) point for (P ) if there exist some finite
index set T1 ⊆ T (x̂), some (α1, . . . , αp) ≥ 0p and βt ≥ 0, for t ∈ T1, satisfying (2).

• We say that x̂ is a strong Karush-Kuhn-Tuker (SKKT) point for (P ) if there exist some finite
index set T1 ⊆ T (x̂), some (α1, . . . , αp) > 0p and βt ≥ 0, for t ∈ T1, satisfying (2).

Recall from [20, 19] that, if x̂ ∈ S is a weakly efficient solution of (P ) and condition (II) in (⋆)

holds at x̂, then
(⋃

i∈I ∂cfi(x̂)
)
∪
(⋃

t∈T (x̂) ∂cgt(x̂)
)
is compact and

0n ∈ conv
((⋃

i∈I

∂cfi(x̂)
)
∪
( ⋃

t∈T (x̂)

∂cgt(x̂)
))

,

and hence, x̂ is a FJ point for (P ) by (1). For extension of this result to problem (P )without assumption
(II) in (⋆), we recall the following definition from [13, 14].

Definition 3. We say that (P ) has the Pshenichnyi-Levin-Valadier (PLV) property at x̂ ∈ S, if ϑ(·) is
finite-valued Lipschitz around x̂, and

∂cϑ(x̂) ⊆ conv
( ⋃

t∈T (x̂)

∂cgt(x̂)
)
,

where, ϑ(·) is defined as
ϑ(x) := sup

t∈T
gt(x), ∀x ∈ Rn.

Remark 1. It should be observed from [6, 13] that the PLV property is strictly weaker than condition
(II) in (⋆).

Now, we can extend the FJ necessary condition at weakly efficient solutions of (P ) as follows.
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Theorem 2. (FJ necessary condition) Let x̂ be a weakly efficient solution of (P ) and the PLV property
holds at x̂. Then, x̂ is a FJ point for (P ).

Proof. As the first, we define the function f : Rn → R as

φ(x) := max
{
f1(x)− f1(x̂), f2(x)− f2(x̂), . . . , fp(x)− fp(x̂)

}
, ∀x ∈ Rn.

Since x̂ is a weakly efficient solution for (P ), we have

φ(x) ≥ 0, ∀x ∈ S. (3)

Put
Ψ(x) := max{ϑ(x), φ(x)}, ∀x ∈ Rn,

where ϑ(x) is defined as Definition 3. If x ∈ S, we have ϑ(x) ≤ 0 and hence,Ψ(x) ≥ 0 by (3). If x /∈ S,
then there exists a t0 ∈ T such that gt0(x) > 0, and so Ψ(x) ≥ ϑ(x) ≥ gt0(x) > 0. Consequently,

Ψ(x) ≥ 0 = Ψ(x̂), ∀x ∈ Rn.

This means x̂ is a global minimizer for Ψ(·), and so 0n ∈ ∂cΨ(x̂) by Theorem 1. From this, Theorem
1, and PLV property we get

0n ∈ conv
(
∂cϑ(x̂) ∪ ∂cφ(x̂)

)
⊆ conv

((⋃
i∈I

∂cfi(x̂)
)
∪
( ⋃

t∈T (x̂)

∂cgt(x̂)
))

.

This inclusion and (1) imply that x̂ is a FJ point for (P ), and the proof is complete.

Like classical multi-objective problems, additional conditions, called constraint qualifications, are
necessary to obtain KKT type necessary conditions. weaken conditions (I) and (III) in (⋆) and achieve
a weak Slater constraint qualification, it is necessary to introduce the following definitions, which are
inspired by [2, 6, 10, 11, 25, 26].

Definition 4. The problem (P ) is said satisfies in weak Slater condition at x0 ∈ S if for each finite
index set T1 ⊆ T (x0), there exists a point x1 ∈ S such that gt(x1) < 0 for all t ∈ T1.

Example 1. Let T = N ∪ {0}, gt(x1, x2) = (x1 − 1
t )x

2
2, for t ∈ N, and g0(x1, x2) = −x1. Since

there is not any x∗ ∈ S = {0} × R with gt(x∗) < 0, for all t ∈ T , the condition (iii) in (∗) is not valid.
Taking x0 = (0, 0) ∈ S, we conclude that T (x0) = T and for each finite set T1 ⊆ T (x0), we have

gt(x̂) < 0, t ∈ T , with x̂ = (
1

1 +max(T1)
, 1). Thus the weak Slater condition holds at x0.

Definition 5. Suppose that the function η : Rn × Rn → Rn is given. A locally Lipschitz function
h̄ : Rn → R is said to be generalized η-invex respect to A ⊆ Rn at x0 ∈ A if there exists a function
ρ : Rn × Rn → (0,+∞) such that for each x ∈ A one has:

ρ(x, x0)
(
h̄(x)− h̄(x0)

)
≥ ⟨ξ, η(x.x0)⟩, ∀ξ ∈ ∂ch̄(x0).

Example 2. Suppose that the function η : R× R → R is given as η(x, y) = sin(x− y). The function
h̄(x) = sinx is generalized η−respect to A = R at x0 = 0. In fact, if we take ρ(x, y) = 1 for all
x, y ∈ R, owing to ∇h̄(x) = cosx, we have

1(sinx− sin 0) = cos 0(sin(x− 0)), ∀x ∈ R.



54 A New Weak Slater Constraint Qualification .../ COAM, 8 (2), Summer-Autumn (2023)

Remark 2. It is noteworthy that if ρ(x, y) = 1 and η(x, y) = x − y for all x, y ∈ Rn, generalized
η-invexity of h̄(·) reduces to convexity of h̄(·). So, Definition 5 is strictly weaker than condition (I) in
(⋆). Also, it is clear that Definition 4 is strictly weaker than condition (III) in (⋆).

Now, we can introduce a new constraint qualification for (P ) as follows.

Definition 6. Suppose that η : Rn × Rn → Rn is given. We say that (P ) satisfies the η-weak Slater
constraint qualification (η-WSCQ) at x̂ ∈ S if the PLV property holds at x̂, the weak Slater condition is
satisfied at x̂, and for each t ∈ T (x̂), the gt function is generalized η-invex respect to S at x̂.

According to Remarks 1 and 2, we understand that the above definition is strictly weaker that Slater
constraint qualification, defined in (⋆). The following theorem guaranties that η-WSCQ is actually a
constraint qualification.

Theorem 3. (WKKT necessary condition) Assume that x̂ ∈ S is a weakly efficient solution of (P ) and
η-WSCQ is satisfied at x̂. Then, x̂ is a WKKT point for (P ).

Proof. Employing Theorem 2, we can find some α = (α1, . . . , αp) ≧ 0p and βt ≥ 0 for t ∈ T1 ⊆ T (x̂)

with |T1| <∞, not all of them equal to zero, as well as some (ξ1, . . . , ξp) ∈
p∏

i=1

∂cfi(x̂) and ζt ∈ ∂cgt(x̂)

for t ∈ T1, such that
p∑

i=1

αiξi +
∑
t∈T1

βtζt = 0n.

If α = 0p, then
∑
t∈T1

βtζt = 0n. So, according to generalized η-invexity of gt functions respect to S at

x̂, for each x ∈ S we obtain

0 = ⟨
∑
t∈T1

βtζt, η(x, x̂)⟩ =
∑
t∈T1

βt⟨ζt, η(x, x̂)⟩ ≤
∑
t∈T1

βtρt(x, x̂)
(
gt(x)− gt(x̂)︸ ︷︷ ︸

=0

)
.

On the other hand, since T1 is a finite subset of T (x̂), there exists a x1 ∈ S such that gt(x1) < 0 for all
t ∈ T1. Consequently, the above inequality implies the following contradiction:

0 ≤
∑
t∈T1

βtρt(x1, x̂)gt(x1) < 0,

where the last inequality holds by βt ̸= 0 for some t ∈ T1 and by ρt(x1, x̂) ≥ 0 for all t ∈ T1. This
contradiction shows that α ̸= 0p, and the proof is complete.

Corollary 1. If in Theorems 2 and 3 the “weakly efficient” is replaced by “efficient”, the results are also
true.

Proof. Since each efficient solution is a weakly efficient solution, the corollary is clearly true.

The following theorem shows the role of generalized η-invexity in WKKT sufficient condition. It is
noteworthy that the following theorem is a generalization of sufficient KKT conditions that are presented
in [6, 17, 13, 18].
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Theorem 4. (WKKT sufficient condition) Suppose that x̂ ∈ S is a WKKT point for (P ). If fi and gt
functions, for all i ∈ I and t ∈ T (x̂), are generalized η-invex at x̂, then x̂ is a weakly efficient solution
for (P ).

Proof. Since x̂ is a WKKT point for (P ), there exist some (α1, . . . , αp) ≥ 0p and βt ≥ 0 for t ∈ T1 ⊆
T (x̂) with |T1| < ∞, as well as some (ξ1, . . . , ξp) ∈

∏p
i=1 ∂cfi(x̂) and ζt ∈ ∂cgt(x̂) for t ∈ T1, such

that
p∑

i=1

αiξi +
∑
t∈T1

βtζt = 0n. (4)

Suppose on the contrary that x̂ is not a weakly efficient solution for (P ), then there is some x∗ ∈ S such
that fi(x∗) < fi(x̂) for i ∈ I . From this inequality and strictly positivity of some αis and all ρi(x∗, x̂)s,
we have

0 >

p∑
i=1

ρi(x∗, x̂)
(
αifi(x∗)− αifi(x̂)

)
≥

p∑
i=1

αi⟨ξi, η(x∗, x̂)⟩. (5)

On the other hand, for all t ∈ T1 we obtain that∑
t∈T1

βt⟨ζt, η(x∗, x̂)⟩ ≤
∑
t∈T1

ρt(x∗, x̂)
(
βt gt(x∗)︸ ︷︷ ︸

≤0

−βt gt(x̂)︸ ︷︷ ︸
=0

)
≤ 0.

Adding this inequality with (5), we get

0 >

p∑
i=1

αi⟨ξi, η(x∗, x̂)⟩+
∑
t∈T1

βt⟨ζt, η(x∗, x̂)⟩

=
〈 p∑

i=1

αiξi +
∑
t∈T1

βtζt , η(x∗, x̂)
〉
= 0,

where the last equality holds by (4). This contradiction shows that x̂ is a weakly efficient solution for
(P ).

Example 3. Taking f1(x1, x2) = x1, f2(x1, x2) = x2, T = [π, 3π2 ], x̂ = (0. − 1) and gt(x1, x2) =

(cos t)x1 + (sin t)x2 − 1, for all t ∈ T . we have

T (x̂) =
{
t ∈ [π,

3π

2
] | − sin t− 1 = 0

}
= {3π

2
},

∂f1(x̂) = (1, 0), ∂f2(x̂) = (0, 1),

∂gt(x̂) = (cos
3π

2
, sin

3π

2
) = (0,−1).

Thus, the following KKT equality holds:

α1{(1, 0)}+ α2{(0, 1)}+ β1{(0,−1)} = {(0, 0)},

by α1 = 0 and α2 = β1 = 1
2 . Therefore, x̂ is a weak KKT point for the considered problem and it is a

weakly effieicent point by Theorem 4.

Theorem 5. (SKKT necessary condition) Assume that x̂ ∈ S is a properly efficient solution of (P ) and
η-WSCQ is satisfied at x̂. Then, x̂ is a SKKT point for (P ).
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Proof. Since x̂ is a properly efficient solution for (P ), there exist some scalars µi > 0 (for i ∈ I) such
that

p∑
i=1

µifi(x̂) ≤
p∑

i=1

µifi(x), ∀x ∈ S.

This means that x̂ is a minimizer (i.e., weakly efficient solution) for the following semi-infinite opti-
mization problem:

min
p∑

i=1

µifi(x) subject to gt(x) ≤ 0, t ∈ T.

Employing Theorem 3, we find some T1 ⊆ T (x̂) with |T1| < ∞, and βt ≥ 0 as t ∈ T1, and τ > 0

such that

0n ∈ τ∂c

( p∑
i=1

µifi(·)
)
(x̂) +

∑
t∈T1

βt∂cgt(x̂).

This inclusion and the fact that ∂c
(∑p

i=1 µifi(·)
)
(x̂) ⊆

∑p
i=1 µi∂cfi(x̂) by Theorem 1, imply that

0n ∈
p∑

i=1

τµi∂cfi(x̂) +
∑
t∈T1

βt∂cgt(x̂).

Taking αi := τµi > 0 for i ∈ I in above inclusion, we get (2), and the proof is complete.

Example 4. Let us consider the following problem: min(f1(x), f2(x)) subject to

gt(x) = x21 + x22 − 2x1 + 2(t− 3)x2 + (
5

9
t2 − 2t+ 1) ≤ 0, t ∈ [0, 3],

with

f1(x) = f2(x) =


x22 + 2x2, x2 ≥ 0,

2x2, x2 < 0.

The point x̂ = (1, 0) is a weakly efficient for the problem and T (x̂) = {0}. Thus, gt(1, 12 ) < 0, for all
t ∈ T (x̂), and the η−WSCQ is satisfled at x̂, and x̂ is a KKT point for the problem by theorem 5.

Now, we can state the sufficient condition for properly efficiency of (P ) as follows.

Theorem 6. (SKKT sufficient condition) Suppose that x̂ ∈ S is a SKKT point for (P ). If fi and gt
functions as i ∈ I and t ∈ T (x̂) are generalized η-invex at x̂, then x̂ is a properly efficient solution for
(P ).

Proof. Since x̂ is a SKKT point for (P ), there exist some (α1, . . . , αp) > 0p and βt ≥ 0 for t ∈ T1 ⊆
T (x̂) with |T1| < ∞, as well as some (ξ1, . . . , ξp) ∈

∏p
i=1 ∂cfi(x̂) and ζt ∈ ∂cgt(x̂) for t ∈ T1, such

that (4) holds. So, for all x ∈ S we have

p∑
i=1

αi⟨ξi, η(x, x̂)⟩+
∑
t∈T1

βt⟨ζt, η(x, x̂)⟩ =
〈 p∑

i=1

αiξi +
∑
t∈T1

βtζt , η(x, x̂)
〉
= 0n (6)

On the other hand, owing to the generalized η-invexity of fi and gt functions at x̂ respect to S for all
i ∈ I and t ∈ T1, we have
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∑p
i=1 αi

(
fi(x)− fi(x̂)

)
≥

p∑
i=1

αi⟨ξi, η(x, x̂)⟩,

∑
t∈T1

βt

(
gt(x)︸ ︷︷ ︸
≤0

− gt(x̂)︸ ︷︷ ︸
=0

)
≥

∑
t∈T1

βt⟨ζt, η(x, x̂)⟩,

for all x ∈ S.

This deduces that
p∑

i=1

αi

(
fi(x)− fi(x̂)

)
+

∑
t∈T1

βt

(
gt(x)− gt(x̂)

)
︸ ︷︷ ︸

≤0

= 0, for all x ∈ S

and hence,
p∑

i=1

αi

(
fi(x)− fi(x̂)

)
≥ 0, for all x ∈ S.

Consequently,
p∑

i=1

αifi(x̂) ≤
p∑

i=1

αifi(x), for all x ∈ S,

and the result is proved.

4 Duality Results

As applications of the optimality conditions presented in the previous section, we introduce two dual
problems in the Mond-Weir [23] type for (P ) that are connected to weakly and properly efficient solu-
tions.
For y ∈ Rn, T1 ⊆ T with |T1| <∞, and β := (βt)t∈T1

≧ 0|T1|, put

Υ(y, β, T1) :=
(
f1(y) +

∑
t∈T1

βtgt(y), . . . , fp(y) +
∑
t∈T1

βtgt(y)
)
.

Consider the following two dual problems:

(MW1) : max
{
Υ(y, β, T1) | ∃α := (α1, . . . , αp),

p∑
i=1

αi = 1, (α, y, β, T1) ∈ S1

}
,

and

(MW2) : max
{
Υ(y, β, T1) | ∃α := (α1, . . . , αp),

p∑
i=1

αi = 1, (α, y, β, T1) ∈ S2

}
,

where the feasible sets S1 and S2 are defined by

S1 :=
{
(α, y, β, T1) | y ∈ Rn, T1 ⊆ T, |T1| <∞, (βt)t∈T1

≧ 0|T1|,

α ≥ 0p, 0n ∈
p∑

i=1

αi∂cfi(y) +
∑
t∈T1

βt∂cgt(y)
}
,
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and

S2 :=
{
(α, y, β, T1) | y ∈ Rn, T1 ⊆ T, |T1| <∞, (βt)t∈T1

≧ 0|T1|,

α > 0p, 0n ∈
p∑

i=1

αi∂cfi(y) +
∑
t∈T1

βt∂cgt(y)
}
.

It is important to note that the difference between problems (MW1) and (MW2) lies in the freedom
of α in S1 compared to S2. The following two theorems describe the (weak and strong) duality relations
between the primal problem (P ) and the dual problem (MW1).

Theorem 7. (weak duality forMW1) Suppose that x ∈ S and (α, y, β, T1) ∈ S1 are given, and that the
fi and gt functions are η-invex at y for i ∈ I and t ∈ T1. Then, f(x) ≮ Υ(y, β, T1).

Proof. The proof is by contradiction. If f(x) < Υ(y, β, T1), then

fi(x) < fi(y) +
∑
t∈T1

βtgt(y) =⇒ fi(x)− fi(y) <
∑
t∈T1

βtgt(y), ∀i ∈ I. (7)

Owing to (α, y, β, T1) ∈ S1, we can find some ξfi ∈ ∂cfi(y) and ξgt ∈ ∂cgt(y) as i ∈ I and t ∈ T1

such that
p∑

i=1

αiξ
f
i +

∑
t∈T1

βtξ
g
t = 0n,

and hence,

0 =
〈 p∑

i=1

αiξ
f
i +

∑
t∈T1

βtξ
g
t , η(x, y)

〉
=

p∑
i=1

αi

〈
ξfi , η(x, y)

〉
+

∑
t∈T1

βt
〈
ξgt , η(x, y)

〉
≤

p∑
i=1

αiρ(x, y)
(
fi(x)− fi(y)

)
+

∑
t∈T1

βtρ(x, y)
(
gt(x)︸ ︷︷ ︸
≤0

−gt(y)
)

≤
p∑

i=1

αiρ(x, y)
(
fi(x)− fi(y)

)
−

∑
t∈T1

βtρ(x, y)gt(y)

<

p∑
i=1

αiρ(x, y)
∑
t∈T1

βtgt(y)−
∑
t∈T1

βtρ(x, y)gt(y) = 0, (8)

where the final line holds by (7), α ≥ 0p and
∑p

i=1 αi = 1. This contradiction shows that f(x) ≮
Υ(y, β, T1), as required.

Theorem 8. (strong duality for (MW1)) Suppose that x̂ is a weakly efficient solution for (P ) and that
η-WSCQ is satisfied at x̂. If the fi functions as i ∈ I are η-invex at x̂, then there exist α ≥ 0p and
T1 ⊆ T (x̂) with |T1| < ∞ and β ≥ 0|T1| such that (α, x̂, β, T1) ∈ S1 and f(x̂) = Υ(x̂, β, T1).
Furthermore, (α, x̂, β, T1) is a weakly efficient solution for dual problem (MW1).
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Proof. Employing Theorem 3, we can find some α := (α1, . . . , αp) ≥ 0p and T1 ⊆ T (x̂) with |T1| <
∞, as well as βt ≥ 0 for t ∈ T1 satisfying (2). So, (α, x̂, β, T1) ∈ S1, and by T1 ⊆ T (x̂) we have

Υ(x̂, β, T1) =
(
f1(x̂) +

∑
t∈T1

βtgt(x̂), . . . , fp(x̂) +
∑
t∈T1

βtgt(x̂)
)
= f(x̂).

Owing to the above equality and Theorem 7, we getΥ(x̂, β, T1) ≮ Υ(y, γ, T2) for any (α, y, γ, T2) ∈
S1, and hence (x̂, β, T1) is a weakly efficient solution for the dual problem (MW1).

The next two theorems describe (weak and strong) duality relations between the primal problem (P )

and the dual problem (MW2).

Theorem 9. (weak duality for (MW2)) Suppose that x ∈ S and (α, y, β, T1) ∈ S1 are given, and that
the fi and gt functions are η-invex at y for i ∈ I and t ∈ T1. Then, f(x) ≰ Υ(y, β, T1).

Proof. Assume on the contrary that f(x) ≤ Υ(y, β, T1). Thus, there exists an index k ∈ I such thatfi(x) ≤ fi(y) +
∑

t∈T1
βtgt(y), ∀i ∈ I \ {k},

fk(x) < fk(y) +
∑

t∈T1
βtgt(y).

Similar proof of Theorem 7, the above relation and α > 0p concludes (8), and this contradition finishes
the proof.

Theorem 10. (strong duality for (MW2)) Suppose that x̂ is a properly efficient solution for (P ) and
that η-WSCQ is satisfied at x̂. If the fi functions as i ∈ I are η-invex at x̂, then there exist α > 0p

and T1 ⊆ T (x̂) with |T1| < ∞ and β ≥ 0|T1| such that (α, x̂, β, T1) ∈ S2 and f(x̂) = Υ(x̂, β, T1).
Furthermore, (α, x̂, β, T1) is an efficient solution for dual problem (MW2).

Proof. Based on Theorem 9, the result is proved similar Theorem 8.

Remark 3. It should be noted that our strong duality result, as presented in Theorem 10 is not typical in
the sense that the solution of the dual problem is not guaranteedto be properly efficient, only efficient,
while the solution to the primal problem is properly efficient.

5 Conclusion

This paper addressed the issue of non-smooth multi-objective semi-infinite programming problems
which are characterized by a feasible set defined by inequality constraints. To tackle this problem, we
proposed a new weak Slater constraint qualification based on the concept of a generalized η-inven func-
tion. By utilizing this new CQ, we can present both weak and strong KKT-type optimality conditions for
the weakly and properly efficient solutions of the problem. Furthermore, we derived two dual problems
and establish weak and strong duality results for them.
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