Control Theory & Systems
Mohammad Zangouei; Naser Pariz; Reihaneh Kardehi Moghaddam
Abstract
In this paper, we present an event-triggered fault-tolerant control framework for nonlinear affine multi-agent systems, together with a state-observer–based fault detection scheme. The proposed approach integrates an event-triggered controller that reduces communication and computation while guaranteeing ...
Read More
In this paper, we present an event-triggered fault-tolerant control framework for nonlinear affine multi-agent systems, together with a state-observer–based fault detection scheme. The proposed approach integrates an event-triggered controller that reduces communication and computation while guaranteeing closed-loop stability, with a robust fault-detection mechanism capable of identifying sensor faults, including current-sensor faults, under bus and load disturbances, and leveraging sensor redundancy to enable rapid recovery. A rigorous stability and robustness assessment based on eigenvalue analysis of the observer matrix is complemented by extensive MATLAB simulations that demonstrate resilience to parameter variations and external disturbances. Open-loop analyses under unconventional inputs reveal high sensitivity to fault types while exhibiting insensitivity to load disturbances, underscoring the detector’s discriminative capability. To mitigate startup and transient effects, a low-pass filter is implemented at the detector output, reducing transients and improving fault-detection accuracy for real-time identification of current sensor faults. The overall results show reliable fault detection, rapid recovery, and maintained performance in the presence of sensor faults and load disturbances, thereby enhancing the robustness of nonlinear affine multi-agent systems.