Control Theory & Systems
Afrah Kadhim Saud Al-tameemi; Mahmoud Mahmoudi; Majid Darehmiraki
Abstract
This study introduces an innovative approach for addressing optimal control problems related to parabolic partial differential equations (PDEs) through the application of rational radial basis functions (RBFs). Parabolic PDEs, which are instrumental in modeling time-dependent processes such as heat transfer ...
Read More
This study introduces an innovative approach for addressing optimal control problems related to parabolic partial differential equations (PDEs) through the application of rational radial basis functions (RBFs). Parabolic PDEs, which are instrumental in modeling time-dependent processes such as heat transfer and diffusion, pose significant computational challenges in optimal control due to the requirement for precise approximations of both state and adjoint equations. The proposed approach exploits the adaptability and spectral accuracy of rational RBFs within a meshless framework, effectively addressing the limitations of traditional discretization methods. By enhancing the accuracy and efficiency of control strategies, this method significantly contributes to advancing the theory and application of optimal control in dynamic systems. The tunable shape parameters of rational RBFs allow for accurate representation of solution characteristics, including steep gradients and localized behaviors. Additionally, their meshless framework adeptly accommodates complex geometries and boundary conditions, ensuring computational efficiency through the generation of sparse and well-conditioned system matrices. This paper also introduces a novel hybrid rational RBF, termed the Gaussian rational hybrid RBF. The efficacy of the proposed approach is validated through a series of benchmark tests and practical applications, highlighting its ability to achieve high accuracy with reduced computational effort. The findings illustrate the potential of rational RBFs as a robust and versatile tool for solving optimal control problems governed by parabolic PDEs, paving the way for further exploration of advanced rational RBF-based techniques in the field of computational optimal control.
Optimization & Operations Research
Farid Pourofoghi; Davood Darvishi Salokolaei
Abstract
Fractional programming is a significant nonlinear planning tool within operation research. It finds applications in diverse domains such as resource allocation, transportation, production programming, performance evaluation, and finance. In ...
Read More
Fractional programming is a significant nonlinear planning tool within operation research. It finds applications in diverse domains such as resource allocation, transportation, production programming, performance evaluation, and finance. In practical scenarios, uncertainties often make it challenging to determine precise coefficients for mathematical models. Consequently, utilizing indefinite coefficients instead of definite ones is recommended in such cases. Grey systems theory, along with probability theory, randomness, fuzzy logic, and rough sets, is an approach that addresses uncertainty. In this study, we address the problem of linear fractional programming with grey coefficients in the objective function. To tackle this problem, a novel approach based on the variable change technique proposed by Charnes and Cooper, along with the convex combination of intervals, is employed. The article presents an algorithm that determines the solution to the grey fractional programming problem using grey numbers, thus capturing the uncertainty inherent in the objective function. To demonstrate the effectiveness of the proposed method, an example is solved using the suggested approach. The result is compared with solutions obtained using the whitening method, employing Hu and Wong's technique and the Center and Greyness Degree Ranking method. The comparison confirms the superiority of the proposed method over the whitening method, thus suggesting adopting the grey system approach in such situations.
Razieh Farokhzad Rostami
Abstract
Fixed point theorems can be used to prove the solvability of optimization problems, differential equations and equilibrium problems, and the intrinsic flexibility of probabilistic metric spaces makes it possible to extend the idea of contraction mapping in several inequivalent ways. ...
Read More
Fixed point theorems can be used to prove the solvability of optimization problems, differential equations and equilibrium problems, and the intrinsic flexibility of probabilistic metric spaces makes it possible to extend the idea of contraction mapping in several inequivalent ways. In this paper, we extend very recent fixed point theorems in the setting of Menger probabilistic metric spaces. We present some fixed point theorems for self-mappings satisfying a generalized (ϕ , ψ ) - contractive condition in Menger probabilistic metric spaces which are contractions used extensively in global optimization problems. On the other hand, we consider a more general class of auxiliary functions in the contractivity condition and prove the existence of fixed points of non-expansive mappings on Menger probabilistic metric spaces.