In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

1 ‎Department of Computer Science‎, ‎Hakim Sabzevari University‎, ‎Sabzevar‎, ‎Iran.

2 ‎Department of Biology‎, ‎Hakim Sabzevari University‎, ‎Sabzevar‎, ‎Iran‎.

Abstract

Every year‎, ‎extensive experimental analysis is conducted to evaluate the anti-cancer properties of plants‎. ‎Developing a well-ranked list of potential anti-cancer plants based on verified anti-cancer metabolites can significantly reduce the time and cost required for plant evaluation‎. This paper proposes a method for generating such a ranked list by analyzing biological graphs of plant-metabolite interactions‎. ‎In this approach‎, ‎graph nodes are ranked based on specific graph features‎. ‎However‎, ‎a challenge arises in selecting the most informative graph features that ensure the resulting ranked plant list is more relevant‎, ‎prioritizing plants with greater anti-cancer properties at the top‎. ‎To address this challenge‎, ‎we propose the use of the Average Precision metric commonly used in information retrieval and recommender systems‎, ‎to compare different ranked lists‎. By constructing a network that captures the similarities between plants based on their shared metabolites‎, ‎and ranking plants using different combinations of graph features‎, ‎we can identify the subset of features that yields a ranked list with a higher Average Precision score‎. ‎This subset of features can then be considered the most suitable for recommending anti-cancer plants‎. ‎ The proposed method can be used to select the best graph features for screening unverified plant lists for anti-cancer properties‎, ‎increasing the likelihood of identifying plants with higher scores in the list that possess anti-cancer properties‎.

Keywords

[1] Abeesh, P., Guruvayoorappan, C. (2022). “Preparation and characterization of beta sitosterol encapsulated nanoliposomal formulation for improved delivery to cancer cells and evaluation of its anti-tumor activities against Daltons Lymphoma Ascites tumor models”, Journal of Drug Delivery Science and Technology, 70, 102832.
[2] Ahmed, M.M., Tazyeen, S., Ali, R., Alam, A., Imam, N., Malik, M.Z., Ali, S., Ishrat, R. (2022). “Network centrality approaches used to uncover and classify most influential nodes with their related miRNAs in cardiovascular diseases”, Gene Reports, 27, 101555.
[3] Allenspach, M., Steuer, C. (2021). “α-Pinene: A never-ending story”, Phytochemistry, 190, 112857.
[4] Amadea, I.C., Atrasina, D. (2021). “The effects of simvastatin and soursop (annona muricata) leaf extract on colorectal cancer”, Indonesian Journal of Life Sciences| ISSN, 3(1), 1-172656-0682.
[5] Behl, S., Inbanathan, A., Sundaram, M.K., Hussain, A. (2022). “Plants of the genus Annona: Source of potential anti-cancer therapeutics”, In Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases, 741-753, Elsevier.
[6] Bouyahya, A., El Allam, A., Zeouk, I., Taha, D., Zengin, G., Goh, B.H., Catauro, M., Montesano, D., El Omari, N. (2022). “Pharmacological effects of Grifolin: Focusing on anticancer mechanisms”, Molecules, 27(1), 284.
[7] Craswell, N., Robertson, S. (2009). “Average Precision at n”, In Liu, L. and ÖZsu, M.T., editors, Encyclopedia of Database Systems, Springer US, Boston, MA, 193-194.
[8] El-Beltagy, A. E.-F.B., Elsyyad, H.I., Abdelaziz, K.K., Madany, A.S., Elghazaly, M.M. (2021). “Therapeutic role of Annona muricata fruit and bee Venom against MNU-induced breast cancer in pregnant rats and its complications on the ovaries”, Breast Cancer: Targets and Therapy, 13, 431.
[9] Gopalakrishnan, S., Sridharan, S., Nayak, S.R., Nayak, J., Venkataraman, S. (2022). “Central hubs predictionforbionetworksbydirectedhypergraph-GAwithvalidationtoCOVID-19PPI”,Pattern Recognition Letters, 153, 246-253.
[10] Hasanzadeh, M., Movahedi, M., Rejali, M., Maleki, F., Moetamani-Ahmadi, M., Seifi, S., Hosseini, Z., Khazaei, M., Amerizadeh, F., Ferns, G.A., Rezayi, M., Avan, A. (2019). “The potential
prognostic and therapeutic application of tissue and circulating microRNAs in cervical cancer”, J. Cell Physiol, 234(2), 1289-1294.
[11] Kaur, J., Mahey, S., Ahluwalia, P., Joshi, R., Kumar, R. (2022). “Role of plant secondary metabolites as anticancer and chemopreventive agents”, In Plant Secondary Metabolites, 97-119, Springer.
[12] Khan, M.I., Bouyahya, A., Hachlafi, N.E., Menyiy, N.E., Akram, M., Sultana, S., Zengin, G., Ponomareva, L., Shariati, M.A., Ojo, O.A. (2022). “Anticancer properties of medicinal plants and their bioactive compounds against breast cancer: a review on recent investigations”, Environmental Science and Pollution Research, 1–34.
[13] Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., and Shoemaker,B.A.(2016).“PubChemsubstanceandcompounddatabases”,NucleicAcidsResearch, 44(D1), D1202-D1213.
[14] Ma, X., Yu, X., Min, J., Chen, X., Liu, R., Cui, X., Cheng, J., Xie, M., Diel, P., Hu, X. (2022a). “Genistein interferes with antitumor effects of cisplatin in an ovariectomized breast cancer xenograft tumor model”, Toxicology Letters, 355, 106-115.
[15] Ma, Y., Guo, J., Li, D., Cai, X. (2022b). “Identification of potential key genes and functional role of CENPF in osteosarcoma using bioinformatics and experimental analysis”, Experimental and Therapeutic Medicine, 23(1), 1-12.
[16] Naseri, A., Sharghi, M., Hasheminejad, S.M.H. (2021). “Enhancing gene regulatory networks inference through hub-based data integration”, Computational Biology and Chemistry, 95, 107589.
[17] Naujokat, C., McKee, D.L. (2021). “The “Big Five” phytochemicals targeting cancer stem cells: curcumin, EGCG, sulforaphane, resveratrol and genistein”, Current Medicinal Chemistry, 28(22),
4321-4342.
[18] Pagare, S., Bhatia, M., Tripathi, N., Pagare, S., Bansal, Y.K. (2015). “Secondary metabolites of plants and their role: Overview”, Current Trends in Biotechnology and Pharmacy, 9(3), 293-304.
[19] Pavlopoulos, G.A., Hooper, S.D., Sifrim, A., Schneider, R., Aerts, J. (2011). “Medusa: A tool for exploring and clustering biological networks”, BMC Research Notes, 4(1), 1-6.
 [20] Rajavel, T., Mohankumar, R., Archunan, G., Ruckmani, K., Devi, K.P. (2017). “Beta sitosterol and Daucosterol (phytosterols identified in Grewia tiliaefolia) perturbs cell cycle and induces apoptotic cell death in A549 cells”, Scientific Reports, 7(1), 1-15.
[21] Rawat, B., Dwivedi, S.K. (2019). “Selecting appropriate metrics for evaluation of recommender systems”, International Journal of Information Technology and Computer Science.
[22] Rezayi, M., Farjami, Z., Hosseini, Z.S., Ebrahimi, N., Abouzari-Lotf, E. (2018). “MicroRNA-based biosensors for early detection of cancers”, Curr Pharm Des, 24(39), 4675-4680.
[23] Shinbo, Y., Nakamura, Y., Altaf-Ul-Amin, M., Asahi, H., Kurokawa, K., Arita, M., Saito, K., Ohta, D.,Shibata,D.,Kanaya,S.(2006).“KNApSAcK: A comprehensive species-metabolite relationship database”, In Plant Metabolomics, 165-181, Springer.
[24] Sohel, M., Biswas, P., AlAmin, M., Hossain, M.A., Sultana, H., Dey, D., Aktar, S., Setu, A., Khan, M.S., Paul, P.(2022).“Genistein, a potential phytochemical against breast cancer treatment-insight into the molecular mechanisms”, Processes, 10(2), 415.
[25] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. (2021). “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries”, CA: a cancer journal for clinicians, 71(3), 209-249.
[26] Zhang, E., Zhang, Y. (2009). “Average precision”, In Liu, L. and ÖZsu, M. T., editors, Encyclopedia of Database Systems, Springer US, Boston, MA, 192-193.