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1 Introduction

In the literature, general nonlinear dynamic systems are studied in two separate fields: qualitative anal-
ysis and controller design. The latter involves achieving synchronizing, stabilizing, and tracking the
desired signals. However, due to the presence of uncertainty and external disturbances, practical prob-
lems often require complex control design. To address this, various control methods have been proposed
nonlinear systems, including adaptive control [35], fuzzy control [19], sliding mode control [12], and
feedback linearization [19]. In this paper, we focus on the controlling and stabilizing a class of uncertain
nonlinear affine systems described by the following dynamic system [15]:

ẋ1 = x2,

ẋ2 = x3,
...

ẋn = f(x) + g(x)u+ d(t),

(1)

where x = (x1, x2, . . . , xn)
T ∈ Rn is the state vector, u ∈ R is the input value, f : Rn → R and

g : Rn → R are smooth functions, and d(t) ∈ R represents external disturbances. Furthermore, we
assume that, d(t) is bounded, |d(t)| ≤ γ , where γ is a positive real number. System (1) has many
important applications in engineering and diseases [11, 39].

Real-world processes often involve uncertainty and external disturbances, which require controllers
that can eliminate disturbances and be robust to uncertainty. One such method is sliding mode con-
trol (SMC), which has gained popularity due to its robustness to disturbances, parameter changes, and
noise. SMC has been successfully applied in various nonlinear systems, including spacecraft [1], power
converters [4], robotics [37], and diseases [18]. Previous works have proposed different types of SMC
techniques, such as SMC with an integral sliding surface was proposed for classes of uncertain nonlin-
ear systems byMirhosseini-Alizamini et al [7, 8, 9, 13]. Mahmoodabadi and Soleymani [19] divided the
fourth-order nonlinear system into two separate subsystems with one input and applied the decoupled
sliding surface technique. Liu andWang [17] used linear matrix inequalities to define the sliding surface
for the inverted pendulum system.

In spite of robust control methods, optimal control methods are often preferred for designing con-
trollers with minimum cost. Optimal control techniques have been applied in diverse fields, including
medicine [31] and engineering [24]. For linear systems, the linear quadratic regulator (LQR) technique is
widely used due to its simplicity and systematic design structure [16]. However, designing an optimal
controller for a nonlinear system is more complex than for linear system. Various methods have been
proposed in the literature. for controlling nonlinear systems optimally, Such as Pontryagin minimum
principle [22, 23], Hamilton–Jacobi–Belman [10] and the optimal control based on state-dependent
Riccati equation [27].

The integration of the optimal control and SMC techniques can yield an optimal version of SMC,
referred to as OSMC, for uncertain systems. This combination has been explored in various studies. For
instance, in [21], the combination of LQR and integral SMC proved to be more efficient effective than
conventional methods. A hybrid controller was developed for the rotary inverse pendulum, leveraging
the optimality of the LQR controller and robustness of SMC while eliminating the no robust arrival
phase in SMC [3]. Soon et al. integrated and optimized a sliding controller with a proportional-integral-
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derivative (PID) controlle [34]. Kumar and Mija [14] proposed LQR and SMC methods for a class of
nonlinear systems represented in a cascade form. Sanjeewa and Parnichkun [32] attempted to design
LQR based on SMC for nonlinear systems with time-varying delays and uncertainties.

Although OSMC has advantages, it is susceptible to chattering, which can result in thermal losses,
mechanical depreciation, and the excitation of high-frequency dynamics that are not accounted for in the
model. Numerous methods have been proposed to address this issue, including high-order SMC [25, 29]
and the use of continuous approximations such as the saturation function in the control design.

Adaptive controllers are also utilized when system parameters are unknown or change over time.
Plestan and Shtessel [28] developed two adaptive SMC (ASMC) methods for controlling nonlinear sys-
tems with bounded uncertainties of unknown boundaries. An adaptive OSMC (OASMC) based on a
disturbance observer (DOB) has been the employed to optimize and stabilize a time-varying manipula-
tor robot systemwith uncertainty [5],where an online DOB estimates unknown disturbances to adjust the
control gains. Similar approaches have been used to control chaotic oscillations in a seven-dimensional
power system [36]. Mahmoodabadi et al. presented an adaptive robust PID SMC for a liquid-level
system [20]. Bkekri et al. [2] proposed ASMC for the knee joint orthopedic protection system. Ran-
jbar et al. [30] have suggested a robust ASMC for a micro electromechanical system capacitor that the
regulated output is accurate and stable in the face of disturbance and uncertainty. An optimal fuzzy
combination of discrete SMC (DSMC) and adaptive feedback linearization has been proposed and com-
pared for nonlinear systems with uncertainty [19]. Additionally, Vaseei and Zarrabi [35] proposed a new
Lyapunov-based adaptive controller for the AIDS virus.

Based on above discussion, the advantages of OSMC and ASMC have been widely recognized, but
the combination of SMC, adaptive control and optimal control has not been extensively explored. In
previous studies, adaptive techniques were primarily utilized to estimate the unknown upper bound of
uncertainties. In this study, we propose an OASMC technique for a class of uncertain nonlinear systems.
We leverage the optimality in the LQR controller and robustness of the sliding mode controller. To
reduce chattering, we apply adaptive control to estimate the sliding gain and the thickness of the boundary
layer. Specifically, we design an LQR based adaptive sliding mode controller for pendulum and inverted
pendulum systems with uncertainty. Simulation results demonstrate the stability of this method and its
ability to reduce chattering compared to SMC.

This paper is structured into four sections. Section 2 discusses outlines the OASMC approach.
Section 3 presents simulation results for pendulum and inverted pendulum systems with uncertainty.
Finally, Section 4 provides conclusions based on our findings.

2 The OASMC Approach

In this section, we employ an OASMC approach to ensure the stability of the nonlinear system (1).
First step involves designing a standard SMC to eliminate external disturbance. Subsequently, an LQR
controller is incorporated to minimize the cost function. Finally, an adaptive strategy is utilized to
determine the sliding gain and the thickness of the boundary layer.



126 Optimal Adaptive Sliding Mode Control .../ COAM, 9 (2), Summer-Autumn (2024)

2.1 The SMC method

The SMC is a well-known controller that exhibits high sensibility to reduce errors and produces fast con-
trol responses. This control strategy has been widely used in various industrial, medical, and economic
systems. A range of sliding surfaces is employed to eliminate disturbance and uncertainty. Here, we
utilize the standard sliding surface.
Consider the uncertain nonlinear system (1) with the relative degree of n. The standard sliding surface
s(t) is defined as [18]

s(t) = (
d

dt
+ λ)n−1e1(t), (2)

where λ is the weighting coefficient of the state variable errors and e represents the state variable error
of x as follows:

e(t) =


e1(t)

e2(t)
...

en(t)

 =


x1 − x1d
x2 − x2d

...
xn − xnd

 , (3)

in which xd is the desired state signal. The SMC law has two parts:

uSMC = ueq + usw, (4)

where ueq is a continuous control that results in the system reaching the sliding surface and it is obtained
by solving ṡ = 0. Additionally, usw is an almost continuous control that is added to overcome the
uncertainty terms and maintain motion on the sliding surface. In special case, we set usw = k1sgn(s),
where k1 is a positive constant.

Theorem 1. Consider the system (1) without uncertainty, where the function g(x) is invertible. Let the
sliding surface (2) be defined, and let the control law is described as follows:

uSMC = g−1(x){ẋnd − f(x)−
n−1∑
i=0

cie
(i)
1 (t)} − k1sgn(s),

k1 > 0, ci =
(
n−1
i

)
λn−1−i.

(5)

Then, the tracking error trajectory will converge to the sliding surface (2) within a finite time.

Proof. From (2) and the Newton’s binomial expansion, we can obtain:

s(t) =

n−1∑
i=0

cie
(i)
1 (t), ci =

(
n− 1

i

)
λn−1−i. (6)

where e(i)1 is the i th derivative of e1. Choosing the Lyapunov function as:

V =
1

2
s2. (7)

By differentiating Equation (7), we obtain:

V̇ = sṡ = s(

n−1∑
i=0

cie
(i)
1 (t) + f(x) + g(x)uSMC − ẋnd). (8)
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Substituting (5) into (8), we obtain:

V̇ = (−k1sgn(s))s = −k1|s| ≤ 0. (9)

Therefore, based on the Lyapunov stability theorem, the state variables will converge to the equilibrium
point. From equations (7) and (9), we can derive

V̇ = ṡ =
ds

dt
= −k1sgn(s), (10)

which leads to

dt = −d|s|
k1

. (11)

Now, it can be proven that s(t) reaches to zero in a finite time such as T ∗. In this case s(T ∗) = 0.
FTo do that, assuming s(0) 6= 0, we integrate both sides of (11) from 0 to T ∗

∫ T∗

0

dt = − 1

k1

∫ |s(T∗)|

|s(0)|
dt, (12)

which is equivalent to (13):

T ∗ =
|s(0)|
k1

. (13)

Therefore, the tracking error trajectory of system (1) will converge to the sliding surface s within
the finite time T ∗, and the proof is complete.

Theorem 2. Consider system (1) with uncertainty. The control law (5) with the conditions presented
in Theorem 1, and furthermore, k1 ≥ γ, guarantees convergence of the tracking error trajectory to the
sliding surface (2) in a finite time.

Proof. By differentiating Equation (6), we obtain:

ṡ =

n−1∑
i=1

cie
(i)
1 (t) + f(x) + g(x)u+ d(t)− ẋnd. (14)

By substituting (5) into (14), we have:

ṡ = d(t)− k1sgn(s). (15)

Now, let the Lyapanov function as follows:

V =
1

2
s2. (16)

Using (15) and |d(t)| ≤ γ, we have:

V̇ = sṡ ≤ s(k1(1− sgn(s))). (17)

Here, k1 ≥ γ is a constant parameter. According to the sign of s we have V̇ ≤ 0. The rest of the proof
is similar to that of Theorem 1.
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Remark 1. The Lyapunov function V, used in Theorem 2, guarantees that system (1) is asymptotically
stable, ensuring that all trajectories starting from outside the sliding surface reach the sliding surface
s = 0 in a finite time T ∗. Once on the sliding surface, s(t) remains zero for all t > T ∗.

An optimal control scheme can be used to reduce the cost of control design. To do that, firstly, the
system (1) is linearized, and then a nominal LQR controller is designed.

Remark 2. The LQR technique is an optimal control method for linear systems with a quadratic ob-
jective function. Assuming a state space representation of the nominal linearized system (1) without
disturbance, is given as follows:

ẋ = Ax(t) +Bu(t), (18)

where x(·) ∈ Rn is the state vector,u(·) ∈ R is the control value, A ∈ Rn×n is the state matrix, and
B ∈ Rn×1 is the control matrix. The objective is to find the optimal control such that the square cost
function [6],

J =

∫ t1

t0

(xT (t)Qx(t) + uT (t)Ru(t))dt, (19)

is minimized, wherein Q is an n× n semi-positive definite matrix and R is anm×m positive definite
matrix. The optimal control uLQR is then calculated as follows:

uLQR = −R−1BTPx(t) = −kx(t), (20)

where k = R−1BTP and P is a symmetric and positive definite matrix that is the solution of the
following Riccati algebraic equation:

PA+ATP − PBR−1BTP +Q = 0. (21)

To deal with uncertainties and minimize control input, the sliding mode controller (4) is integrated
with LQR controller.

u(t) = uLQR(t) + uSMC(t), (22)

where uLQR(t) is the optimal control applied to the nominal system and uSMC(t) is the input control
of the SMC method to deal with uncertainties.

2.2 Gradient descent method

The primary concept behind adaptive control is to adjust control parameters using a suitable mecha-
nism. When the parameters of a system are either unknown or vary with time, adaptive controllers are
employed. The gradient descent method [33], as is a suitable adaptation law used to update the parame-
ters of the OSMC. The key idea is to update the parameter in the opposite direction of the cost function.
Mathematically speaking, let J : Rn → R represent the desired cost function and θ∗denote its minimum
vector. The gradient descent method involves iteratively updating the initial approximation θ0 for the
minimum θ∗ to the subsequent points θ1, θ2, . . . in Rn in the iterative method, θk+1 = θk − h∇J(θk),
until the stopping condition is met. Where h is represents the step length. Assuming an infinitesimal
step length, the previous equation can be expressed as θ̇ = −h∇J(θ).
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As a result, the control gains are adjusted using the sliding surface to mitigate chattering. Hence,
to reduce chattering, the boundary layer method and the saturation function (sat(·)),are employed, with
the sign function in the control design. Consequently, Equation (5) is modified as shown in [19],

uSMC = ueq − k1sat(
s

ϕ
), (23)

where s is the sliding surface, k1 is the sliding gain, and ϕ is the thickness of the boundary layer. Fur-
thermore, the saturation function is defined as

sat(
s

ϕ
) =


−1, s

ϕ ≤ −1,
s
ϕ , −1 < s

ϕ < 1,

1, s
ϕ ≥ 1.

(24)

Considering Equation (23), the chain derivative rule is applied to update k1 and ϕ as follows [18]:

ϕ̇ = −ψ1
∂sṡ

∂ϕ
, (25)

and
k̇1 = −ψ2

∂sṡ

∂k1
, (26)

where ψ1 and ψ2 are the learning rates, and they are positive constant parameters.

3 Simulation Results

This section presents the simulation results obtained by employing the OASMC technique to simulate
the pendulum and inverted pendulum systems. Furthermore, to demonstrate the effectiveness of this
approach, a comparison is made with the SMC and the LQR.

3.1 The OASMC of pendulum

The uncertain nonlinear system of the pendulum can be described as [15]:[
ẋ1

ẋ2

]
=

[
x2

− g
l sinx1 −

b
lm2x2

]
+

[
0

1

]
u+

[
0

1

]
d(t), (27)

where m is the mass of the pendulum, l is the length of the pendulum, b is the coefficient of friction, g
is the acceleration due to gravity, and d(t) represents disturbances.

By employing the Jacobian linearization method around the equilibrium point [0, 0]T , the state equa-
tions of the linearized system with disturbances are obtained as[

ẋ1

ẋ2

]
=

[
0 1

− g
l − b

lm2

]
x+

[
0

1

]
u+

[
0

1

]
d(t). (28)

The tracking error is
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e = x− xd,

or [
e1

e2

]
=

[
x1

x2

]
−

[
x1d

x2d

]
, (29)

where xd represents the desired state to be tracked. The sliding surface is defined as follows:

s = e2 + λe1. (30)

Taking the derivative of Equation (30), we obtain

ṡ = ė2 + λė1 = 0. (31)

Substituting (28) and (29) into (31), we get

ṡ = −g
l
sinx1 −

b

ml2
x2 + d(t) + ueq − ẋ2d + λ(x2 − x2d) = 0. (32)

Therefore, the equivalent control input ueq is given by

ueq =
g

l
sinx1 +

b

ml2
x2 + ẋ2d − λ(x2 − x2d). (33)

Based on Equation (23), the sliding mode control input uSMC is expressed as

uSMC =
g

l
sinx1 +

b

ml2
x2 + ẋ2d − λ(x2 − x2d)− k1sat(

s

ϕ
). (34)

To estimate the controller gain in (34), k1 and ϕ, using gradient descent method, we have

ϕ̇ = −ψ1
∂sṡ

∂ϕ
. (35)

Using the chain derivative rule, (35) is reformulated as

ϕ̇ = −ψ1(s
∂ṡ

∂uSMC
+ ṡ

∂s

∂uSMC
)
∂uSMC

∂ϕ
. (36)

Accordingly, from the above equations, we have

∂s

∂uSMC
= 0,

∂ṡ

∂uSMC
= 1,

∂uSMC

∂ϕ
=

k1 s
ϕ2 , | sϕ | < 1,

0 otherwise.
(37)

Therefore, from (36) and (37), ϕ̇ is obtained as

ϕ̇ =

−ψ1k1
s2

ϕ2 , | sϕ | < 1,

0 otherwise.
(38)

Additionally, we have

k̇1 = −ψ2
∂sṡ

∂k1
. (39)

According to the aforementioned process, we can calculate k̇1 as:
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k̇1 = −ψ2(s
∂ṡ

∂uSMC
+ ṡ

∂s

∂uSMC
)
∂uSMC

∂k1
. (40)

Hence,
k̇1 = ψ2sat(

s

ϕ
). (41)

The system parameters are assigned the following values: g = 10, l = 1, m = 1, b = 2 [15]. To
perform numerical simulation, we consider the disturbance d(t) = 2 sin t. Additionally, the initial condi-
tions of the system and the desired state for tracking the system are set as x(0) = [−1, 1]T , xd = [0, 0]T ,
respectively. We assume k1 = 2. Furthermore, we set Q = 3I2 and R = [1]. By utilizing Equation
(20), we obtain k = [0.1489 0.7014]. Figure 1 illustrates the sliding surface of pendulum, both in the
absence and presence of the disturbance. The finite-time reaching law holds for the specified sliding
surface. Figures 2, 3, and 4 depict the simulation results of control input and position tracking of LQR,
SMC, and OASMC, respectively. As observed, LQR is unstable in the presence of the sinusoidal signal,
whereas SMC and OASMC remain stable. Moreover, OASMC achieves a faster reaching time than
SMC. In Figure 3(a), it can be seen that SMC exhibits significant control chattering [33]. Consequently,
the OASMC approach outperforms LQR and SMC in terms of performance.

Figure 1: Sliding surface of the pendulum system (a): without a disturbance, (b) with a disturbance.
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Figure 2: Simulation results for control input and state variables of LQR in the pendulum system.
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Figure 3: Simulation results for the control input and state variables of SMC in the pendulum system.
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Figure 4: Simulation results for the control input and state variables of OASMC in the pendulum system.

3.2 The OASMC of inverted pendulum

The inverted pendulum system can be described by the following state space equations [38]:


ẋ1

ẋ2

ẋ3

ẋ4

 =


x2

−mg cos x3 sin x3+ml sin x3x
2
4

M+m sin2 x3

x4
−ml cos x3 sin x3x

2
4+(M+m)g sin x3

Ml+ml sin2 x3

+


0
1

M+m sin2 x3

0
1

Ml+ml sin2 x3

u+


0

0

0

1

 d(t), (42)

where g = 9.8, M is the mass of the vehicle, m is the mass of the pendulum, L is the length of the
pendulum, l = 1

2L, and u is the control input. By applying the Jacobian linearization method around
the equilibrium point [0, 0, 0, 0]T , the state equations of the linearized system with disturbance can be
expressed as:
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ẋ =


0 1 0 0

0 0 a2 0

0 0 0 1

0 0 a1 0

x+


0

a4

0

a3

u+


0

0

0

1

 d(t), (43)

where,

a1 =
m(m+M)gl

(m+M)I +mMl2
, a2 = − m2gl2

(m+M)I +mMl2
,

a3 = − ml

(m+M)I +mMl2
, a4 =

I +ml2

(m+M)I +mMl2
,

I =
1

12
mL2 and |d(t)| ≤ γ.

According to [26], the system represented in Equation (43) can be transformed into the following
cascaded form using a coordinate transformation.

ẋ1 = x2,

ẋ2 = f1(x1, x2, x3, x4),

ẋ3 = x4,

ẋ4 = f2(x1, x2, x3, x4) + g(x1, x2, x3, x4)u+ d(t).

(44)

Assuming that f1(x1, x2, x3, x4) = 0 at the equilibrium point and ∂f1
∂x3

is invertible, the error dy-
namics of the system are defined as 

e1 = x1,

e2 = x2,

e3 = (a2 − a1a4

a3
)x3,

e4 = (a2 − a1a4

a3
)x4.

(45)

The sliding surface is defined as:

s = λ1e1 + λ2e2 + λ3e3 + e4, (46)

where λi (i = 1, 2, 3) are positive constants. The SMC law is obtained as:

uSMC = −
[ 1

a2 − a1a4

a3

]−1

{λ1x2 + λ2(a2 −
a1a4
a3

)x3 + λ3
(
a2 −

a1a4
a3

x4
)

(47)

+ (a2 −
a1a4
a3

)d(t) + k1sat(
s

ϕ
)}. (48)

Additionally, ϕ and k are updated according to the following formulas:

ϕ̇ =

−ψ1k1(a2 − a1a4

a3
) s

2

ϕ2 , | sϕ | < 1,

0, otherwise,
(49)

and
k̇ = ψ2s(a2 −

a1a4
a3

)sat(
s

ϕ
). (50)



134 Optimal Adaptive Sliding Mode Control .../ COAM, 9 (2), Summer-Autumn (2024)

Figure 5: Sliding surface of the inverted pendulum (a): without disturbance, (b): with disturbance.

Figure 6: Simulation of control input and state variables of LQR for the inverted pendulum system.

Figure 7: Simulation of control input and state variables of SMC for the inverted pendulum system.

To simulate the system, we consider the following parameter values: g = 9.8, M = 1, m = 0.1,
L = 0.5, x(0) =

[
−π

3 , 0, 5, 0
]T [14], xd = [0, 0, 0, 0]T , d(t) = 0.2 sin t, k1 = 0.2, Q = I2, R = [1].

From Equation (20), we obtain k =
[
−28.6767 −5.2444 −1.0000 −2.1569

]
. Figure 5 shows the

sliding surface of the inverted pendulum, both without disturbance and with disturbance. The simulation
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Figure 8: Simulation of control input and state variables of OASMC for the inverted pendulum system.

results of the control input and position tracking of the inverted pendulum are shown in Figures 6–8. As
shown in Figure 6, the LQR is unstable. On the other hand, as seen in Figures 7 and 8, the SMC and
the OASMC are stable, and the convergence of the state variables is desirable. Furthermore, OASMC
outperforms SMC in terms of performance.

4 Conclusion

This study introduced an approach that combines the Linear Quadratic Regulator (LQR) with a sliding
mode controller and an adaptive controller for a class of uncertain nonlinear systems. The nonlinear
system was first linearized, followed by the integration of the LQR technique with the SMC method.
Additionally, the gradient descent method was utilized to mitigate chattering. Simulation results demon-
strate that the proposed method exhibits superior robust performance compared to the LQR and the SMC
methods. Furthermore, the control input of this method effectively addresses the chattering issue com-
pared to the SMC. By considering the system without linearization and incorporating optimal nonlinear
control, further advancements can be made based on the results.
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