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Abstract. Integrating sustainability and reliability represents a synergistic
approach that can be explored through the problem of a closed-loop supply
chain network design (SCND). This study is conducted in three stages:
mathematical modeling, model solution using exact methods, and evaluation
of the solution methods. In the first stage, a mixed-integer linear programming
(MILP) model is developed in a multi-objective, multi-product, and multi-
period framework. The objectives of the proposed model aim to maximize
profitability, social responsibility, and reliability. In the second stage, two
methods, namely Augmented ε-Constraint (AEC) and Normalized Normal
Constraint (NNC), are implemented in the GAMS software to solve the model
and identify the optimal Pareto solutions. In the third stage, the Shannon
Entropy technique is employed to determine the criteria weights, and the
VIKOR technique is utilized to select the superior solution method. The
overall performance accuracy of the proposed model is measured using four
samples from a numerical example with randomly generated data based on the
objective function coefficients. The results indicate the presence of a conflict
among the three objective functions. Consequently, decision-makers should
consider sacrificing some profitability to enhance environmental protection and
improve reliability. In terms of three criteria, run time, diversification metric,
and general distance, the NNC method is given priority over the AEC method.
Even when the criteria are given equal weight, the superiority of the NNC
method remains unchanged. The application of the proposed model across
different industries represents a significant research direction for future research.
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1 Introduction

The decision-making process of the SCND problem to meet stakeholders’ needs, and increase profitabil-
ity, flexibility, and competitive advantage requires a balanced program that considers all three dimen-
sions of sustainability [2]. One of the most essential quality goals for businesses is to avoid production
interruptions and service disruptions such as incomplete and delayed delivery of goods/services. Due to
the diversity in nature and equipment, the supply chain may experience various failures. The failure of
one component of the supply chain network may disrupt the performance of the entire supply chain or,
at best, reduce the chain’s efficiency. The complete and healthy delivery of products to customers in the
supply chain requires the failure-free operation of facilities, communication routes, and vehicles as com-
ponents of the supply chain network. However, reliability in SCND is evaluated at the level of network
facilities. Facility reliability and resilience against disruption conditions are among the recent develop-
ments that researchers have added to sustainable supply chains [26]. Therefore, it seems necessary to
consider the reliability factor in the supply chain design, especially in sustainable supply chains.

In many supply chains, sustainable and reliable designs are done to achieve a cleaner environment,
fair distribution of resources and benefits in society, and strengthen supply security by providing afford-
able products and services to customers. However, resource limitations do not allow these goals to be
achieved simultaneously, as achieving each of them requires a trade-off with the other [5]. Therefore,
a challenge arises in integrating sustainability and reliability in SCND. The traditional approach to this
challenge has been to accept trade-offs between these goals. However, integrating sustainability and
reliability as a new paradigm can implement sustainability policies and reliability strategies. Torjai et
al. [48] discuss the cooperation between these two paradigms and claim that reliability as an enabler
can enhance sustainability by influencing cost-effectiveness. Similarly, Ghobakhloo et al. [20] found
that only when both paradigms were implemented simultaneously could sustainability and reliability
reveal their full potential and generate more benefits than when they are implemented separately, cre-
ating a synergy. Therefore, with the motivation of addressing the concerns above, and given that the
combination of sustainability and reliability has become a popular paradigm in recent years, the present
study aims to consider both of these critical features in the closed-loop SCND. To achieve this goal, a
multi-objective, multi-product, and multi-period mathematical model is developed. The proposed model
seeks to maximize total profit, social responsibility, and reliability while complying with environmental
considerations using the cap and trade mechanism. Materials and products are transported using hetero-
geneous fleets with differences in capacity, fuel consumption, and CO2 emissions. To evaluate social
sustainability the study considers essential social responsibility criteria such as job opportunities created
and working days lost from occupational injuries, as well as the area’s unemployment rate to create more
employment in deprived areas. In addition, the reliability category is considered by choosing suppliers,
building potential facilities, reopening connection routes, and using vehicles. According to the reviewed
literature, this is the first time vehicle reliability has been modeled in SCND. Therefore, this type of mod-
eling is innovative compared to the former models and can help accurately evaluate the responsiveness
of the network and the level of satisfaction of supply chain customers. The proposed model is solved
using sensitivity analysis to gain some helpful management insights. By adjusting the assumptions and
parameters of the proposed model, its results can be used in industries that need to consider sustainability
and reliability approaches.

The study seeks to address the shortcomings of past studies as much as possible and provide a
model compatible with the natural conditions of the closed-loop SCND problem, while considering
sustainability and reliability. The innovations of the presented model are summarized as follows:

• Development of a mathematical model for a closed-loop SCND problem by simultaneously con-
sidering outsourcing decisions (supplier selection and order allocation), strategic decisions (deter-
mining the location, number, and capacity level of potential facilities, determining the production
technology, determining the materials used in the recycling process, determining the trucks of
transport) and tactical decisions (the amount of production of products, the flow of materials and
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products within the network, the number of products saves, the amount of shortage of inventory,
the number of products returned from customers, the number of uncollected products returned,
the amount of CO2 emitted)

• Paying particular attention to the social dimension of sustainability by considering the most com-
mon social criteria in past studies, such as job opportunities created and the rates of occupational
injuries in the workplace in fixed (establishment of facilities) and variable (operational activities).

• Focusing on creating equity-oriented employment, considering the possibility of establishing fa-
cilities in areas with higher unemployment rates.

• A more comprehensive assessment of supply chain reliability by considering the reliability of
nodes (including suppliers, manufacturers, distributors, collection centers, recycling centers, and
operational activities) and the reliability of arcs (including routes and trucks of transport).

• And solving the problem with two exact solution methods, including Augmented ε-Constraint
(AEC) and Normalized Normal Constraint (NNC), and comparing their performance using the
VIKOR technique.

The next sections of this paper are structured as follows. Section 2 describes the background, Section 3
deals with materials and methods, Section 4 presents the results, Section 5 discusses sensitivity analysis
of mathematical models and problem-solving techniques, and Section 6 is devoted to the conclusion and
future research.

2 Literature Review

Prior to the emergence of reliable supply chains, the optimization of SCND was raised as an economic
problem solely. Dullaert and Zamparini [11] justified the more expensive logistic structure with higher
reliability through a mathematical planning model. Ghayebloo et al. [19] concluded that returned prod-
ucts from more reliable parts result in reduced recycling costs. Therefore, the cheapness and reliability
of each facility within the supply chain have been given greater attention [43]. Hamidieh et al. [24]
presented a sustainable closed-loop SCND model that minimizes total costs while maintaining network
resilience and controlling delivery speed at appropriate safety levels. Fakhrzad and Goodarzian [13]
sought to minimize the total cost and maximize the reliability of delivery demand in a green closed-loop
SCND problem. Tirkolaee et al. [47] used weighted goal programming (WGP) to solve the three-level
SCND problem, including suppliers, warehouses, and wholesalers, with the tri-objectives of minimizing
the total cost, maximizing the weighted value of products by considering the suppliers’ priorities, and
maximizing the reliability. Nosrati and Khamseh [39] developed a two-stage stochastic programming
model for the SCND problem with the objectives of maximizing reliability and minimizing cost.

Green SCND is one of the models whose purpose is to integrate economic and environmental factors
in designing supply chain networks. Fazli-Khalaf et al. [15] used a scenario-based stochastic planning
approach to control the adverse effects of disruptions in the proposed model in designing a reliable green
closed-loop supply chain with the two objectives of reducing costs and releasing harmful gases. Rah-
mani and Mahoodian [42] considered the issue of designing the supply chain network regarding CO2
emissions and the reliability factor. Li et al. [31] considered the environmental aspect of sustainability
through minimizing the emission or cost of environmental pollution. In addition, carbon emission mech-
anisms in the mathematical model of SCND include carbon cap [38], carbon tax [33], carbon cap and
trade [29], and carbon offset [9]. Kabadurmus and Erdogan [28] showed that multimodal transportation
reduces supply chain costs and carbon emissions. Yılmaz et al. [51] demonstrated that the effect of
waves (i.e., the external side of the chain) increases supply chain costs and carbon emission by 40%.
Foong and Ng [18] used the alliance reliability index to measure reliability in a palm oil SCND with
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economic and environmental objectives. Salehi and Jabarpour [44] used a fuzzy programming approach
to solve a multi-period location-routing problem to minimize cost, lost demand, and vehicles with fuzzy
routes in a forward humanitarian supply chain. The social responsibility was highlighted in Fattahi and
Govindan [14] and Govindan and Gholizadeh [22].

After 2015, sustainable and reliable supply chains emerged as a new cluster in the SCND litera-
ture and other subject areas, such as environmental resilience measures [52], resilience strategies [27],
minimizing resilience-reducing measures [25], which are closely linked to reliability, were identified.
Empirical evidence suggests that production speed leads to more defects and frequent breakdowns of
production machinery [33]. Fazli-Khalaf et al. [16], Wang et al. [50], Abir et al. [1], and Fazli-Khalaf
et al. [17] integrated sustainability and reliability in the SCND problem. Basu and Lee [7] state that
reliability practices act as a catalyst for sustainable outcomes, indicating enormous potential for inte-
gration. Akbari Kasgari et al. [4] used backup suppliers as a resilience strategy to reduce the effects
of earthquakes on mining operations. Eslamipoor and Nobari [12] state that the capacity of the supply
chain to respond to the blood needs of hospitals is a reliable means to achieve the social goal and limit
the cost.

Previous studies have often examined the potential for disruption in supply chain design and logis-
tics networks by considering facilities and transport links separately. For instance, Amirian et al. [6]
presented a model for designing a closed-loop SCND that encompasses multiple objectives, products,
and time periods. However, their proposed model was time-consuming to solve due to its nonlinearity.
Additionally, reliability was only addressed in terms of supplier selection, potential facility implemen-
tation, and travel time in their supply chain design. In contrast to these previous works, this research
simultaneously considers the reliability of facilities, the failure of network arcs, and the failure of trans-
portation trucks within the SCND problem. Thus, the model developed in this study offers a unique and
innovative approach. The primary contribution of this paper lies in the application and comparison of
two solution techniques, AEC and NNC, for modeling a sustainable and reliable SCND problem.

Table 1 highlights the gaps in the literature and provides a more detailed classification of the subject
by discussing additional features addressed in past studies.

3 Problem Description

In this section, we will discuss the materials and methods required to describe the problem at hand.

3.1 Research implementation process

Solving an optimization problem requires two basic steps: mathematical modeling and solving the
model. These steps complement each other, and optimization has not occurred without performing each
step. In addition, using different methods to solve a problem (especially multi-objective problems) of-
ten leads to different solutions. Therefore, achieving convergence in Pareto solutions and providing
diverse solutions are separate and somewhat conflicting goals for multi-objective methods. Choosing
the appropriate solution method for the current research problem involves determining the appropriate
multi-objective approaches, solving the problem model with the determined approaches, identifying the
appropriate criteria for evaluating the approaches, evaluating and comparing the approaches, and choos-
ing the best approach for solving the sustainable and reliable SCND problem. Figure 1 illustrates the
research implementation process.
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Table 1: Summary of research background.

Author (year) N
etw

ork
structure

Configuration Problem conditions

O
bjective

Product

Period

Transportation

M
odeling

C
ertainty

D
im
ensionsof

sustainability

Levelsof
reliability

Ghayebloo et al. (2015) CL M M S S L D DBL N
Fazli-Khalaf et al. (2017) CL M S S S L ND DBL N
Rahmani and Mahoodian (2017) OL S M S M L ND DBL N
Fakhrzad and Goodarzian (2019) CL M M M M L ND DBL N
Li et al. (2019) OL M S S S L D DBL N
Marchi et al. (2019) OL S S S S L D DBL N
Kaur and Singh (2019) OL S M M M NL D DBL N
Abir et al. (2020) CL M S S S L ND DBL N
Mousavi-Ahranjani et al. (2020) OL S M M M L ND DBL N
Kabadurmus and Erdogan (2020) OL S M S M L D DBL N
Nosrati and Arshadi-Khamseh (2020) OL M M S M NL ND DBL C
Wang et al. (2020) OL S S M M L D DBL N
Abdolazimi et al. (2020) CL M M M S L ND DBL N
Yılmaz et al. (2021) OL S M S S L ND DBL A
Foong and Ng (2022) OL M S S S L ND DBL N
Fahimnia and Jabbarzadeh (2016) OL M M S M L ND TBL N
Zahiri et al. (2017) OL M M M M L ND TBL N
Fattahi and Govindan (2018) OL S S M M L ND TBL N
Jabbarzadeh et al. (2018) OL M S S S L ND TBL N
Zare Mehrjerdi and Lotfi (2019) CL M M M S L ND TBL N
Fazli-Khalaf et al. (2020) OL M M M M L ND TBL N
Hosseini-Motlagh et al. (2020) OL M S M S L ND TBL C
Babaee Tirkolaee et al. (2020) OL M M M S L ND TBL N
Tsao and Thanh (2020) OL M S M S L ND TBL A
Fazli-Khalaf et al. (2021) CL M S S S L ND TBL N
Lotfi et al. (2021) CL M M M S L ND TBL N
Zare Mehrjerdi and Shafiee (2021) CL M M S S L ND TBL N
Sadeghi et al. (2021) OL M M S S L ND TBL N
Govindan and Gholizadeh (2021) OL S M M S L ND TBL N
Sazvar et al. (2021) OL M S M M L ND TBL N
Akbari-Kasgari et al. (2022) CL M M S S L D TBL N
Amirian et al. (2022b) CL M M M M NL D TBL C
Salehi et al. (2022) OL S M M S L ND TBL N
Taleizadeh et al. (2022) CL M S S S L D TBL N
Goodarzian et al. (2022) OL M M M M L ND TBL N
Mohammadi and Nikzad (2022) CL M M M S L ND TBL N
This study CL M M M M L D TBL C
Table guide
Network structure (OL: Open-Loop, CL: Closed-Loop); Configuration (S: Single, M: Multiple); Problem Conditions:
Modeling (L: Integer Linear Mixed Programming, NL: Integer nonlinear Mixed Programming); Model certainty (D:
Deterministic, ND: Non-Deterministic); Sustainability level: (1D: SBL, 2D: DBL, 3D: TBL); Reliability Level: (N:
Node, A: Arc, C: Chain)

3.2 Problem definition

The current research mathematically models a reliable, cheap, closed-loop SCND problem while pri-
oritizing social responsibility and consumer satisfaction. Supply chains can make strategic decisions
regarding the location of potential facilities such as production, distribution, collection, and recycling
centers, as well as tactical decisions related to the flow rate of materials and goods in the chain, with
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Figure 1: Field and steps of study implementation.

the aim of achieving profitability, social responsibility, and excellent reliability. To this end, a MILP
model has been developed. The presented model is suitable for most industries that have a social re-
sponsibility for collecting end-of-life products from customers, such as pharmaceuticals, dairy products,
non-rechargeable batteries, car tires, etc. The proposed supply chain network includes suppliers, manu-
facturers, distributors, and direct customers, collection centers, recycling centers, energy recovery cen-
ters, markets for recycled raw materials, and disposal centers in the reverse chain. Customers or final
consumers issue the primary demand in this structure. It assumed that there is no special relationship
between the components of a particular chain level. In other words, each component is independent of
others, and there is no exchange of goods between subsystems. The location of suppliers and customers
is fixed. Additionally, production, distribution, collection, and recycling centers can be set up in three
different capacities (such as small, medium, and large sizes), with varying fixed setup costs associated
with each capacity level. Figure 2 illustrates the investigated supply chain structure.

 

Figure 2: Proposed closed-loop supply chain structure.

In the direct chain, raw materials are procured from suppliers and factories use a specific combina-
tion of these materials to produce goods that are shipped to distribution centers. The distribution centers
are responsible for storing and delivering the products to end customers. In the reverse supply chain,
used products are returned from the demand centers to collection centers, where they are examined and
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separated into three categories based on their quality: high value, low value, and worthless (determined
by the time used). Valuable parts are sent to recycling centers for reuse, low-value parts are sold to en-
ergy recovery centers, and worthless parts are sent to disposal centers for safe burial. According to the
materials used in the recycling, the recycled raw materials are divided into two parts: raw materials suit-
able for production and raw materials suitable for sale in the secondary market. To move raw materials
and products between different levels of the supply chain, heterogeneous vehicles are used. To account
for the natural conditions of the problem, failure modes are defined for facilities, routes, and trucks of
transportation. The impact of these failures on the reliability of the supply chain is discussed in the
model. A reliability index is considered for each supply chain facility, which shows the probability of
correct operation without failure in a certain period. This index depends on investment amount, design
power, and degree of flexibility. Facilities with higher flexibility have higher reliability. In addition, the
reliability of distribution and collection centers depends significantly on their storage systems and sepa-
ration capabilities. The faster they respond, the more reliable they are. Production technology, product
storage technology, and materials used in recycling vary from one facility to another. The reliability
of transportation activities is measured by considering the probability of failure for the communication
routes and the vehicles used based on the distance traveled between the facilities.

Table 2: Definition of sets, parameters, and variables.

Category Symbol Description
Sets

M
ain

S Set of suppliers s ∈ S
P Set of potential production centers p ∈ P
K Set of potential distribution centers k ∈ K
E Set of primary market e ∈ E
C Set of potential collection centers c ∈ C
M Set of potential recycling centersm ∈ M
H Set of the secondary market for recycled raw material h ∈ H
F Set of landfill centers f ∈ F
B Set of energy recovery centers b ∈ B
A Set of raw materials a ∈ A
R Set of products r ∈ R
L Set of materials used in recycling process l ∈ L
G Set of technologies in production centers g ∈ G
V Set of vehiclev ∈ V
U Set of usable capacity u ∈ U
D, T Set of period t, d ∈ T

H
ybrid

N Set of network nodes N ∈ {s, p, k, e, c,m, b, f, h}
Φ Set of network arcs

Φ(x, y) ∈
{

1 : (s, p),Φ2 : (p,m),Φ3 : (m,h),Φ4 : (p, k), )
(Φ5 : (k, e),Φ6 : (e, c),Φ7 : (c,m),Φ8 : (c, b),Φ9 : (c, f)

}
Φ

′
Set of arcs for carrying raw materials Φ

′
⊂ Φ;Φ

′
∈ {Φ1,Φ2,Φ3}

Φ
′′

Set of arcs for carrying products Φ
′′
⊂ Φ;Φ

′′
∈ {Φ4,Φ5,Φ6,Φ7,Φ8,Φ9}

Parameters

prices

PRt
er The selling price of one unit of product r in primary market e in period t

PRt
br The selling price of one unit of returned product r in energy recovery center b in period t

PRt
ha The selling price of one unit of recycled raw material a in the secondary market h in period t

Fixed
costs

F gu
p Fixed cost of establishing one production center p with technology g and capacity level u

Fu
k Fixed cost of establishing one distribution center k with a capacity level u

Fu
c Fixed cost of establishing one collection center c with a capacity level u

F lu
m Fixed cost of establishing one recycling center m using materials l and capacity level u

F t
sa Fixed cost of obtaining a contract with supplier s for the supply of raw material a in period t

F t
v Fixed cost of using vehicle v in period t

Θ Fixed cost of limiting emission of carbon dioxide
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U
nitcosts

BCt
sa Purchasing cost for one unit of new raw material a from supplier s in period t

RCt
a Cost savings from recycling one unit of raw material a in a period of t

PCgt
pr Producing cost one unit of product r in the production center p with technology g in period t

KCt
kr Distributing cost of one unit product r at the distribution center k in period t

HCt
kr Maintaining cost of one unit product r in the distribution center k in period t

ECt
er Penalty for lack of one unit product r in period t

OECt
er Penalty for non-collection of one unit returned product r from customer e in period t

CCt
cr Cost of separating and packing per returned product r in collection center c in period t

OCCt
cr Incentive cost to purchase and collect per returned product r at collection center c in period t

MClt
mr Recycling cost per returned product r in recycling centerm using material l in period t

FCt
fr Destroying cost of one unit of returned product r in destruction center f in period t

V t
v Cost per liter of fuel consumed for vehicle v in period t

F t
d Driver’s wages per hour of driving in period t

C
apacities

Capsa Capacity of supplier s of raw materials a
Capgup The capacity of production center p with technology g and capacity level u
Capuk The capacity of distribution center k with capacity level u
VCapuk Storage capacity of distribution center k with capacity level u
Capuc The capacity of collection center c with capacity level u
Caplum The capacity of recycling centerm using material l and capacity level u
WCapv Weight capacity of vehicle type v
VCapv Volume capacity of vehicle type v

C
arbon

dioxide

COGOV
2 The amount allowable of CO2 emissions by the government for the supply chain network

Egu
p Fixed CO2 emissions from establishing production center pwith technology g and capacity level

u
Eu

k Fixed CO2 emissions from establishing distribution center k with a capacity level of u
Eu

c Fixed CO2 emissions from establishing collection center c with a capacity level of u
Elu

m Fixed CO2 emissions from establishing a recycling centerm using material l and capacity level
u

ϵj Emission rate of CO2 per one unit of energy consumed (g∕kwh)
ϵl Emission rate of CO2 per one liter of fuel consumed (g∕Liter)

Energy
and

fuel
EPgr Energy consumed to produce one unit of product r with technology g (kWh)
EKr Energy consumed to distribute one unit of product r (kWh)
ECr Energy consumed to collect one unit of returned product r (kWh)
EMl

a Energy consumed to recycle one unit of raw material a with material l (kWh)
EBr Energy consumed to recover energy from one unit of returned product r (kWh)
EFr Energy consumed for burying one unit of returned product r (kWh)
FU1v Fuel consumed per kilometer traveled by the vehicle v in no-load mode (Liter)
FU2v Fuel consumed per kilometer traveled by the vehicle v with one unit load (Liter)

Em
ploym

ent

θjob The importance coefficient of job opportunities created
jobgup Job opportunities from establishing production center p with technology g and capacity level u
jobuk Job opportunities from establishing of distribution center k with capacity level u
jobuc Job opportunities from establishing of collection center c with capacity level u
joblum Job opportunities from establishing a recycling centerm using material l and capacity level u
ηp The unemployment rate in the production center p
ηk Unemployment rate in the distribution center k
ηc Unemployment rate in the collection center c
ηm Unemployment rate in recycling centerm
jt Variable rate of job creation per hour of operational activity

O
ccupational
injuries

θltc Importance coefficient of sick leave
ltcgup Occupational injuries from the establishment of production center p, technology g, and capacity

level u (days)
tcuk Occupational injuries from the establishment of distribution center kwith capacity level u (days)
ltcuc Occupational injuries from the establishment of collection center c with capacity level u (days)
ltclum Occupational injuries from the establishment of recycling center m, material l, and capacity

level u (days)
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lt Variable rate of occupational injuries per hour of operational activity

R
eliability

λ1 Importance coefficient of supplier reliability
λ2 Importance coefficient of potential facility establishment reliability
λ3 Importance coefficient of operational activities reliability
λ4 Importance coefficient of shipment reliability
SRsa Reliability of supplier s in supplying raw materials a
RPgun Reliability of production center p with technology g and capacity level u
RKu

n Reliability of distribution center k with capacity level u
RCu

n Reliability of collection center c with capacity level u
RMlu

n Reliability of recycling centerm using material l and capacity level u
λv Breakdown rate of vehicle v per kilometer traveled
λxy Breakdown rate of arc between x and y per kilometer

Failure
rate

λgut
p Breakdown rate of production center p with technology g and capacity level u in period t

λut
k Breakdown rate of distribution center k with capacity level u in period t

λut
c Breakdown rate of collection center c with capacity level u in period t

λlut
m Breakdown rate of recycling centerm using material l and capacity level u in period t

C
oefficientsofdistance,

tim
e,w

eight,and
volum

e

Dxy The distance between each pair of nodes x and y in the supply chain (Kilometer)
Dr Maximum helpful life of product r
TPgr Required time to produce one unit of product r using technology g
TKr Required time for distributing one unit of product r
TCr Required time for collecting one unit of product r
TMl

a Required time for recycling one unit of raw material a using material l
wa The weight per unit of raw material a
wr The weight per unit of product r
va The volume per unit of raw material a
vr The volume per unit of product r

othercoefficients

btsa Minimum supply of raw material a by supplier s in period t
Demt

er The demand of primary market e for product r in period t
qar Ratio using of raw material a in product r;

∑
a∈A qar = 1, ∀r ∈ R

ρar Extraction ratio of raw material a per returned product r;
∑

a∈A ρar = 1, ∀r ∈ R
βr The energy recovery ratio per returned product r
γr Recycle ratio of per returned product r;βr + γr < 1, ∀r
σa The reused ratio of recycled raw material a
ωd
r Returned rate of the end-of-life product r after d years of use;

∑Dr
d=0 ω

d
r ≤ 1

Budget The budget total available for the establishment of potential facilities
BM The big number

Decision variables

B
inary

variable

θtsa One, If concluded a contract of supply of raw material a with supplier s in period t; Otherwise,
zero

θgup One, If established a production center p with technology g and capacity level u; Otherwise,
zero

θuk One, If established a distribution center k with capacity level u; Otherwise, zero
θuc One, If established a collection center c with capacity level u; Otherwise, zero
θlum One, If established a recycling centerm using material l and capacity level u; Otherwise, zero
πvt
xy One, If vehicle v travels arc x to y in period t; Otherwise, zero

Positive
variable

Qt
xya Quantity transferred of raw material a between the facilities (x, y) ∈ Φ

′
in period t

Qt
xyr Quantity transferred of product r between the facilities (x, y) ∈ Φ

′′
in period t

Qgt
pr Quantity produced of product r in production center p with technology g in period t

Itkr Quantity held inventory of product r in distribution center k in period t
QRt

xr Quantity returned product r from customer e in period t
QNt

er Quantity uncollected of returned product r from customer e in period t
St
er Quantity lack of product r for customer e in period t

COCUR
2 Quantity of carbon dioxide emissions in the supply chain (tons)



106 Optimizing Supply Chain Design for Sustainability and Reliability .../ COAM, 9 (1), Winter-Spring (2024)

3.3 Problem modeling

This section presents a mathematical representation of the problem. A prerequisite for mathematical
modeling is the identification of symbols, parameters, and variables that accurately describe the prob-
lem’s characteristics.

3.3.1 Symbolization

This section introduces the symbols, parameters, and variables used in the mathematical model. Table
2 provides a simplified view of the mathematical model by grouping similar symbols, parameters, and
variables together for easier reference.

3.3.2 Assumptions

The assumptions of the problem include:

• The closed-loop SCND model is multi-product, multi-objective, and multi-period.

• There is no flow between facilities at one level of the chain.

• Final products are traded in the primary (forward chain) market, and recycled raw materials are
traded in the secondary (reverse chain) market.

• The useful life of final products is limited regarding time.

• Lost demand for finished products is subject to penalties.

• No collecting returned products will be fined.

• Potential facilities are established with only one level of capacity.

• Heterogeneous vehicles are used to transport raw materials and final products.

3.3.3 Mathematical model

This study modeled sustainable and reliable SCND as a multi-objective problem. Supply chain sus-
tainability is pursued in the model by considering the two objectives of green investment and social
responsibility. Reliability of product delivery, which aims to achieve customer satisfaction, is the third
goal pursued as the third objective function. Therefore, all three objective functions in the mathematical
model are of the maximization type, described below.

Profitability Objective

The first objective function seeks to maximize profitability. Equation (1) shows the first objective func-
tion. Equation (2) calculates the total income. Total income is calculated by adding up the final products
sold to the primary market, returned products sold to energy recovery centers, and recycled rawmaterials
sold to the secondary market. Equation (3) calculates the total costs. The total costs are calculated by
summing up fixed, operating, transportation, and CO2 emissions costs.
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Maximize Z1 = Economic Profit (EP) = Total Revenue (TR)− Total Cost (TC) (1)

TR =
∑
t∈T

[ ∑
(x,y)∈Φ5

∑
r∈R

PRt
er ·Qt

xyr +
∑

(x,y)∈Φ8

∑
r∈R

PRt
br ·Qt

xyr

+
∑

(x,y)∈Φ3

∑
a∈A

PRt
ha ·Qt

xya

]
, (2)

TC = Fixed Cost (FC)+ Operation Cost (OC)+ Shipping Cost (SC)
+ Emission Cost (EC). (3)

Equation (4) calculates fixed costs from the sum of the establishment cost of potential facilities, the
supplier’s contracting cost, and the route’s reopening cost. Facility capacity, production technology, and
materials used to recycle rawmaterials impact potential facility establishment fixed costs [25]. Changing
the cost of raw material supply contracts in different periods is possible based on market conditions. The
fixed cost of using cargo trucks may change in different periods.

C =
∑
u∈U

[ ∑
n∈P

∑
g∈G

F gu
n · θgun +

∑
n∈K

Fu
n · θun +

∑
n∈C

Fu
n · θun +

∑
n∈M

∑
l∈L

F lu
n · θlun

]
+

∑
n∈S

∑
a∈A

∑
t∈T

F t
na · θtna +

∑
(x,y)∈Φ

∑
v∈V

∑
t∈T

F t
v · πvt

xy. (4)

Equation (5) shows the supply chain operational costs, which include variable costs related to per-
forming activities in each of the facilities.

OC =
∑
t∈T

[ ∑
(x,y)∈Φ1

∑
a∈A

BCt
sa ·Qt

xya −
∑

(x,y)∈Φ2

∑
a∈A

RCt
a ·Qt

xya

+
∑
p∈P

∑
r∈R

∑
g∈G

PCgt
pr ·Qgt

pr +
∑

(x,y)∈Φ5

∑
r∈R

∑
v∈V

KCt
kr ·Qt

xyr +
∑
k∈K

∑
r∈R

HCt
kr · Itkr

+
∑
e∈E

∑
r∈R

(ECt
er · St

er +OECt
er ·QN t

er) +
∑

(x,y)∈Φ6

∑
r∈R

(CCt
cr +OCCt

cr) ·Qt
xyr

+
∑

(x,y)∈Φ7

∑
r∈R

∑
l∈L

MClt
mr ·Qt

xyr +
∑

(x,y)∈Φ9

∑
r∈R

FCt
fr ·Qt

xyr

]
. (5)

Equation (6) calculates shipment costs by adding up the fuel cost and vehicle use. Fuel consumption
depends on the vehicle type, the load carried, and the distance traveled [8]. The cost of transportation is
calculated based on travel time. Travel time is a function of the vehicle speed and the distance traveled.

SC =
∑
v∈V

∑
t∈T

[ ∑
(x,y)∈Φ

′

∑
a∈A

Dxyπ
vt
xy · ((V t

v (FU1v + (FU2v ·Wa ·Qt
xya)) + ((F t

d)/(V
v)))

]

+

[ ∑
(x,y)∈Φ

′′

∑
r∈R

Dxyπ
vt
xy · ((V t

v (FU1v + (FU2v ·Wr ·Qt
xyr)) + ((F t

d)/(V
v)))

]
. (6)

Themeasure of transportation CO2 emissions is complicated by various factors such as the shipment
mode, type of fuel used, load weight, and distance traveled [45]. Despite this complexity, calculations
of GHG emissions in literature are not always straightforward due to their simplicity in calculation. For
example, Mirzapour Al-e-hashem and Rekik [37] considered only the distance traveled, while Bektaş
and Laporte [8] and Liu et al. [32] took into account vehicle speed and freight volume.

Equation (7) calculates the CO2 emissions cost of the supply chain, which may exceed the gov-
ernment’s limit if it exceeds the allowed emission cap determined by mechanisms such as carbon taxes
or caps, carbon cap and trade, and carbon offset. This penalty cost is represented by the symbol Θ in
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Equation (7). Equation (8) shows how the fixed and variable costs associated with CO2 emissions are
calculated, respectively. Equation (9) is related to the fixed part (i.e., CO2 emissions from the facility
establishment), while Equation (10) is related to the variable part (i.e., CO2 emissions from the energy
consumed). Equation (11) calculates the energy consumed in operational processes, and Equation (12)
calculates the energy consumed in network shipment.

EC = Θ(COCUR
2 − COGOV

2 ), (7)

COCUR
2 = Fixed Emission CO2(FEC) + Variable Emission CO2(VEC), (8)

FEC =
∑
u∈U

[∑
p∈P

∑
g∈G

Egu
p · θgup +

∑
k∈K

Eu
k · θuk +

∑
c∈C

Eu
c · θuc +

∑
m∈M

∑
l∈L

Elu
m · θlum

]
, (9)

VEC = ϵj · [Consumption Energy Operation (CEO)]

+ ϵl · [Consumption Energy Shipping (CES)], (10)

CEO =
∑
r∈R

∑
t∈T

[∑
p∈P

∑
g∈G

EP g
r ·Qgt

pr +
∑

(x,y)∈Φ5

EKr ·Qt
xyr

+
∑

(x,y)∈Φ6

ECr ·Qt
xyr +

∑
(x,y)∈Φ7

∑
a∈A

∑
l∈L

EM l
a · ρar ·Qt

xyr

+
∑

(x,y)∈Φ8

EBr ·Qt
xyr +

∑
(x,y)∈Φ9

EFr ·Qt
xyr

]
, (11)

ES =
∑
v∈V

∑
t∈T

[ ∑
(x,y)∈Φ

′

∑
a∈A

Dxy · πvt
xy(FU1v + (FU2vWaQ

t
xya)

]

+

[ ∑
(x,y)∈Φ

′′

∑
r∈R

Dxy · πvt
xy(FU1v + (FU2vWrQ

t
xyr)

]
. (12)

Social Responsibility Objective

In terms of sustainability based on the ISO 26000 standard, various criteria cannot be fully addressed by
one single study. However, in this research, the most commonly used criteria are those presented in pre-
vious studies such as Equation (13) which maximizes the social responsibility within the supply chain.
Social responsibility is calculated by subtracting the number of jobs created from the number of sick
leave days taken for each period. The ultimate goal is to establish facilities in areas with higher unem-
ployment rates and provide more job opportunities in deprived regions, as per Equation (14). Equation
(15) calculates employees’ sick leaves. These criteria are adapted from the study conducted by Fazli-
Khalaf et al. [16].

Corporate Social Responsibility (CSR) = θjob × [Jobs Created (JC)]− θltc × [Lost Days (LD)] (13)

JC =
∑
u∈U

(∑
p∈P

∑
g∈G

ηp · jobgup · θgup +
∑
k∈K

ηk · jobuk · θuk +
∑
c∈C

ηc · jobuc · θuc

+
∑
m∈M

∑
l∈L

ηm · joblum · θlum
)
+ jt×

∑
r∈R

∑
u∈U

∑
t∈T

(∑
p∈P

∑
g∈G

TP g
r ·Qgt

pr

capgup

+
∑
p∈P

∑
k∈K

TKr ·Qt
pkr

Capuk
+

∑
e∈E

∑
c∈C

TCr ·Qt
ecr

Capuc
+

∑
c∈C

∑
m∈M

∑
a∈A

∑
l∈L

TM l
a · ρar ·Qt

cmr

caplum

)
, (14)

LD =
∑
u∈U

(∑
p∈P

∑
g∈G

ltcgup · θgup +
∑
k∈K

ltcuk · θuk +
∑
c∈C

ltcuc · θuc
∑
m∈M

∑
l∈L

ltclum · θlum
)
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+ lt×
∑
r∈R

∑
u∈U

∑
t∈T

(∑
p∈P

∑
g∈G

TP g
r ·Qgt

pr

capgup
+

∑
p∈P

∑
k∈K

TKr ·Qt
pkr

Capuk

+
∑
e∈E

∑
c∈C

TCr ·Qt
ecr

Capuc
+

∑
c∈C

∑
m∈M

∑
a∈A

∑
l∈L

TM l
a · ρar ·Qt

cmr

caplum

)
. (15)

Reliability Objective

This paper aims to model and evaluate the reliability of the supply chain in a fixed and variable manner.
Potential suppliers and facilities have their reliability, which if selected and constructed, contributes to
the overall reliability of the fixed part of the supply chain. The variable part of supply chain reliability
comes from operational and transportation processes. The transportation of raw materials and distribu-
tion of products are subject to random failures. According to the studies of Fazli-Khalaf et al. [17], the
reliability of the supply chain’s variable part (operational reliability) is assumed to follow an exponential
distribution with rate λ. Therefore, the component’s reliability is equal to the probability expressed in
Equation (16).

Rn = P (Tn > t) = e−λnt; ∀n = 1, 2, · · · , N. (16)

The product of the high probability multiplied by the number of products shipped from each poten-
tial facility to its next level is the number of products that arrive at their destination on time. Since the
failure rate of transport routes and vehicles (λ(x,y) + λv) is considered per kilometer traveled, the prod-
uct of the high probability (the sum of the failure rate of the route and vehicle) in the relevant distance,
determines the reliability of transportation in the supply chain, which evaluates the responsiveness of
the network, and the level of customer satisfaction. In addition, vehicle reliability measurement has not
been considered in any SCND studies. Equation (17) maximizes supply chain reliability. Equation (18)
calculates the reliability of the procurement process by considering suppliers’ ability to meet manufac-
turers’ needs as a reliable procurement process. Equation (19) calculates the possibility of establishing
reliable potential facilities. Equation (20) calculates the reliability of operational activities. Equation
(21) calculates the shipment reliability.

Maximize Z3 = Reliability = λ1 × [Contract Reliability (CR)]
+ λ2 × [Facility Reliability (FR)] + λ3 × [Operation Reliability (OR)]
+ λ4 × [Shipping Reliability (SR)] (17)

CR =
∑
n∈S

∑
a∈A

∑
t∈T

SRsa · θtsa, (18)

FR =
∑
u∈U

[ ∑
n∈P

∑
g∈G

RP gu
n · θgun +

∑
n∈K

RKu
n · θun +

∑
n∈C

RCu
n · θun

+
∑
n∈M

∑
l∈L

RM lu
n · θlun

]
, (19)

OR =
∑
x∈P

∑
r∈R

∑
g∈G

∑
t∈T

e−λgut
p ·t · TP g

r ·Qgt
pr +

∑
x∈P

∑
y∈K

∑
r∈R

∑
t∈T

e−λut
k ·t · TKr ·Qt

pkr

+
∑
x∈E

∑
y∈C

∑
r∈R

∑
t∈T

e−λut
c ·t · TCr ·Qt

ecr

+
∑
x∈C

∑
y∈M

∑
a∈A

∑
r∈R

∑
l∈L

∑
t∈T

e−λlut
m ·t · TM l

a · ρar ·Qt
cmr, (20)
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SR =
∑

(x,y)∈Φ
′∪Φ

′′

∑
v∈V

∑
t∈T

e−(λv+λxy ·Dxy) · πvt
xy. (21)

The following constraints are categorized and briefly explained. Studying the model becomes more
accessible with this procedure.

CO2 Emissions Constraint

Equation (22) determines the amount of CO2 emissions in the supply chain.

COCUR
2 =

∑
u∈U

[∑
p∈P

∑
g∈G

Egu
p · θgup +

∑
k∈K

Eu
k · θuk +

∑
c∈C

Eu
c · θuc

+
∑
m∈M

∑
l∈L

Elu
m · θlum

]
+ ϵj ·

[∑
r∈R

∑
t∈T

(∑
p∈P

∑
g∈G

EP g
r ·Qgt

pr +
∑

(x,y)∈Φ5

EKr ·Qt
xyr

+
∑

(x,y)∈Φ6

ECr ·Qt
xyr +

∑
(x,y)∈Φ7

∑
a∈A

∑
l∈L

EM l
a · ρar ·Qt

xyr +
∑

(x,y)∈Φ8

EBr ·Qt
xyr

+
∑

(x,y)∈Φ9

EFr ·Qt
xyr

)]
+ ϵl ·

[ ∑
v∈V

∑
t∈T

( ∑
(x,y)∈Φ

′

∑
a∈A

Dxyπ
vt
xy(FU1v

+ (FU2vWaQ
t
xya))

)
+

( ∑
(x,y)∈Φ

′′

∑
r∈R

Dxyπ
vt
xy(FU1v + (FU2vWrQ

t
xyr))

)]
. (22)

Budget Constraint

Equation (23) determines the maximum budget for potential facility establishment.∑
u∈U

[∑
p∈P

∑
g∈G

F gu
p · θgup +

∑
k∈K

Fu
k · θuk +

∑
c∈C

Fu
c · θuc +

∑
m∈M

∑
l ∈ LF lu

m · θlum
]
≤ Budget. (23)

Demand Constraint

Equation (24) indicates that the lack of product in any period is equal to the difference between the actual
demand and the delivery quantity to the market.

St
er = Demt

er −
∑
k∈K

Qt
ker, ∀e, r, t. (24)

Allocation Constraints

Equations (25), (26), (27), and (28) state that each manufacturing center, distribution center, collection
center, and recycling center, respectively if established, can only have one capacity level.
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∑
g∈G

∑
u∈U

θgup ≤ 1, ∀p (25)

∑
u∈U

θuk ≤ 1, ∀k (26)

∑
u∈U

θuc ≤ 1, ∀c (27)

∑
l∈L

∑
u∈U

θlum ≤ 1, ∀m. (28)

Facility Capacity Constraints

Theminimum andmaximum supplier capacities are shown by Equations (29) and (30), respectively. The
maximum capacity of the manufacturing center is depicted by Equation (31). Equations (32) and (33)
illustrate the distribution center’s maximum distribution capacity and warehouse capacity, respectively.
Equation (34) represents the maximum collection centers’ collection capacity. The maximum recycling
capacity of raw materials in the recycling center is described by Equation (35). Equation (36) shows the
energy recovery center’s maximum capacity and the maximum capacity of the landfill center is displayed
by Equations (37).

∑
p∈P

Qt
spa ≥ bsa · θtsa, ∀s, a, t (29)

∑
p∈P

Qt
spa ≤ Capsa · θtsa, ∀s, a, t (30)

∑
r∈R

TPgr ·Qgt
pr ≤

∑
u∈U

Capgup · θgup , ∀p, g, t (31)

∑
e∈E

∑
r∈R

TKr ·Qt
ker ≤

∑
u∈U

Capuk · θuk , ∀k, t (32)

∑
r∈R

vr · Itkr ≤
∑
u∈U

VCapuk · θuk , ∀k, t (33)

∑
e∈E

∑
r∈R

TCr ·Qt
ecr ≤

∑
u∈U

Capuc · θuc , ∀c, t (34)

∑
l∈L

TMl
a · ρar ·Qt

cmr ≤
∑
l

∈ L
∑
u∈U

Caplum · θlum , ∀m, t (35)

∑
c∈C

Qt
cbr ≤ Capbr, ∀b, r, t (36)

∑
c∈C

Qt
cfr ≤ Capfr, ∀f, r, t. (37)

Flow Balance Constraints

Equation (38) does not allow for storage for the final products. Equation (39) shows manufacturing cen-
ters can obtain the raw materials they need by purchasing from suppliers or recycling centers. Equation
(40) displays the maintenance quantity of final products in the distribution center. Equation (41) shows
that the inventory of final products at the beginning of the first planning period is zero. Equation (42)
shows the maximum storage time of final products in the warehouse is one period less than the end of



112 Optimizing Supply Chain Design for Sustainability and Reliability .../ COAM, 9 (1), Winter-Spring (2024)

their life. Equations (43) and (44) show the divided rate of recycled raw materials between the manufac-
turer and the secondary market, respectively. Equation (45) indicates that the return rate of end-of-life
products (uptrend) depends on the time used. Equation (46) shows that final products do not return be-
fore their end of life. Equation (47) shows that the reverse chain may not collect all returned products
from the primary market. Equation (48) displays the uncollected returned products. Equations (49),
(50), and (51) show divide collected end-of-life products into three centers: energy recovery, recycling,
and landfill, respectively.

∑
g∈G

Qgt
pr =

∑
k∈K

Qt
pkr, ∀p, r, t, (38)

∑
s∈S

Qt
spa +

∑
m∈M

Qt
mpa =

∑
r∈R

∑
g∈G

qar ·Qgt
pr, ∀p, a, t, (39)

Itkr = It−1
kr +

∑
p∈P

Qt
pkr −

∑
e∈E

Qt
ker, ∀k, r, t, (40)

Itkr = 0, ∀k, r, t = 1, (41)∑
e∈E

min(t+Dr−1,T )∑
d=t

Qd
ker −

∑
p∈P

∑
t∈T

Qt
pkr ≥ 0, ∀k, r, t, t ̸= T, (42)

∑
p∈P

Qt
mpa =

∑
c∈C

∑
r∈R

σa · ρar ·Qt
cmr, ∀m, a, t, (43)

∑
h∈H

Qt
mha =

∑
c∈C

∑
r∈R

(1− σa) · ρar ·Qt
cmr, ∀m, a, t, (44)

QRt
er =

Dr∑
d=0

ωd
r · (Demt−d

er − St−d
er ), ∀e, r, t, t ≥ Dr, (45)

QRt
er = 0, ∀e, r, t, t < Dr, (46)∑

c∈C

Qt
ecr ≤ QRt

er, ∀e, r, t, (47)

QNt
er = QRt

er −
∑
c∈C

Qt
ecr, ∀e, r, t, (48)

∑
e∈E

βr ·Qt
ecr =

∑
b∈B

Qt
cbr, ∀c, r, t, (49)

∑
e∈E

γr ·Qt
ecr =

∑
m∈M

Qt
cmr, ∀c, r, t, (50)

∑
e∈E

Qt
ecr =

∑
m∈M

Qt
cmr +

∑
b∈B

Qt
cbr +

∑
f∈F

Qt
cfr, ∀c, r, t. (51)

Capacity Constraints for Shipments

Equations (52) and (53) represent the volume capacity of vehicles, while Equations (54) and (55) repre-
sent the weight capacity of vehicles.∑

a∈A

va ·Qt
xya ≤ vcapv · πvt

xy, ∀(x, y) ∈ Φ
′
, v, t, (52)

∑
r∈R

vr ·Qt
xyr ≤ vcapv · πvt

xy, ∀(x, y) ∈ Φ
′′
, v, t, (53)

∑
a∈A

wa ·Qt
xya ≤ wcapv · πvt

xy, ∀(x, y) ∈ Φ
′
, v, t, (54)
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∑
r∈R

wr ·Qt
xyr ≤ wcapv · πvt

xy, ∀(x, y) ∈ Φ
′′
, v, t. (55)

Logical Constraints

Equations (56) and (57) provide logical constraints for both discrete and continuous decision variables.

θtsa, θ
gu
p , θuk , θ

u
c , θ

lu
m , π

vt
xy ∈ {0, 1}, (56)

Qvt
xya, Q

vt
xyr, Q

gt
pr, I

t
kr, QR

t
xr, QN

t
er, S

t
er,CO

CUR
2 ≥ 0. (57)

3.3.4 Linearization of the model

The model becomes non-linear due to multiplication relations between binary and positive variables in
Equations (6) and (12) related to the first objective function, as well as Equation (22) related to the CO2
emissions constraint. Solving non-linear models is more complex than linear models [8]. Therefore,
two new decision variables were defined to linearize the model, which replaces the nonlinear terms (see
Table 3). The linearized equations are added to the model as Equations (58) to (65) are added to the
model.

Table 3: Decision variables for linearization of the model.

Symbol Description
SSvt

xya The amount of raw materials a transported by vehicle v between
facilities (x, y) ∈ Φ

′ in period t
SSvt

xyr The amount of product r transported by vehicle v between facili-
ties (x, y) ∈ Φ

′′ in period t

Table 3 defines the symbols used for the decision variables. After linearization, Equation (6) be-
comes Equation (58), and Equations (12) and (22) become Equation (59). The new decision variables
are subject to constraint Equation (66).

SC =
∑
v∈V

∑
t∈T

[ ∑
(x,y)∈Φ

′

∑
a∈A

FU1v · V t
v ·Dxy · πvt

xy + FU2v · V t
v ·Wa ·Dxy · SSvt

xya +
F t
d ·Dxy · πvt

xy

V v

]

+

[ ∑
(x,y)∈Φ

′′

∑
r∈R

FU1v · V t
v ·Dxy · πvt

xy + FU2v · V t
v ·Wr ·Dxy · SSvt

xyr +
F t
d ·Dxy · πvt

xy

V v

]
, (58)

CES =
∑
v∈V

∑
t∈T

[ ∑
(x,y)∈Φ

′

∑
a∈A

FU1v ·Dxy · πvt
xy + FU2v ·Wa ·Dxy · SSvt

xya

]

+

[ ∑
(x,y)∈Φ

′′

∑
r∈R

FU1v ·Dxy · πvt
xy + FU2v ·Wr ·Dxy · SSvt

xyr

]
, (59)

SSvt
xya ≤ Qt

xya, ∀(x, y) ∈ Φ
′
, a, v, t, (60)

SSvt
xya ≤ BM · πvt

xy, ∀(x, y) ∈ Φ
′
, a, v, t, (61)

SSvt
xya ≥ Qt

xya −BM · (1− πvt
xy), ∀(x, y) ∈ Φ

′
, a, v, t, (62)

SSvt
xyr ≤ Qt

xyr, ∀(x, y) ∈ Φ
′′
, r, v, t, (63)
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SSvt
xyr ≤ BM · πvt

xy, ∀(x, y) ∈ Φ
′′
, r, v, t, (64)

SSvt
xyr ≥ Qt

xyr −BM · (1− πvt
xy), ∀(x, y) ∈ Φ

′′
, r, v, t, (65)

SSvt
xya, SS

vt
xyr ≥ 0. (66)

3.4 Model solving

Within this section, we will provide an explanation of various methods for solving the problem.

3.4.1 The AEC method

In the AEC method, the results of individual optimization of objective functions to complete the Payoff
table (range of ε values) are calculated using lexicographic optimization. Additionally, the constraints
of the objective functions are converted to equality by introducing appropriate auxiliary variables. This
second-order term in the objective function, with lower priority than the lexicographic method, forces the
model to produce only Pareto solutions [35]. If the problem is infeasible, the solution algorithm stops and
is not solved for subsequent iterations, which increases the solution speed compared to the conventional
ε-constraint method. There is a trade-off between the number of Pareto solutions generated and the solve
time, and the density of the Pareto collection can be controlled. According to the original ε-constraint
method, one objective of the problem is optimized according to the decision maker’s priority, while the
other objectives are limited to the upper limit of ε. The resulting equation is Equation (67).

Max F1(x)− δ × [ s2
r2

+ (10−1 × s3
r3
) + · · ·+ (10−(n−2) × sn

rn

]
s.t :
Fi(x) + si = ei, i = 2, 3, · · · , n, x ∈ S, si ∈ R+,

(67)

where S represents the solution region of the model, ei is the value to the right of the objective functions,
and δ is a small number (usually δ ∈ [10−6, 10−3]). ri denotes the domain of the i-th objective function
which is determined by table calculations. The model incorporates a form of lexicographic optimization
in the second expression of the objective function to ensure the existence of another optimal solution
for the remaining objectives. [35]. This approach allows the solver to find the best case for F1 and
subsequently optimize the other objectives in order.

3.4.2 Normalized normal constraint (NNC)

Figure 3 displays the ultra-surface of the Pareto frontier for a three-objective optimization problem,
where the ultra-surface takes the form of a 3D objective space. The NNC method is an exact solution
approach that yields a set of Pareto optimal points rather than a unique optimal point for multi-objective
problems [3]. Compared to the ε-constraint (EC) method [34], the NNC method offers more advanta-
geous features. In the NNC method, the objectives are first normalized and then new constraints are
applied in each phase to search for optimal solutions. The NNC method has been proven to effectively
solve multi-objective SCND problems in previous studies [6, 21, 46]. Uniformly distributing the solu-
tions at the Pareto boundary facilitates decision-making for selecting the optimal solution. However,
most techniques do not report well-distributed Pareto solutions [36]. The NNC method allows the den-
sity of Pareto sets to be controlled by a single parameterm1, with other settings ofm2 tom(n−1) being
automatically adjusted accordingly. This feature enhances the applicability and ease of implementation
of the NNC method Increasingm1 leads to a denser set of Pareto solutions but also incurs higher com-
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putational cost. Moreover, the NNC method does not require the determination of initial weights for the
objectives [49].

Figure 3: The NNC technique for a three-objective optimization problem.

TheNNCmethod is a solution approach for multi-objective optimization problems includes involves
the following process [41].

Step 1. The optimal objective function i is denoted by ui∗, and it is obtained by solving a single-
objective problem using Equation (68). By utilizing the solutions ui∗, the anchor points f i∗ are
generated as Equation (69). A utopian world is then formed by connecting these anchor points in
the objective space, called the ideal utopia.

Step 2.This Step involves normalizing targets that have varying and sometimes inconsistent scales
to prevent them from influencing the optimization process. An ideal point, denoted as (fu), rep-
resents the best solution regarding the objective function and is determined using Equation (70).
The counter-point fN represents the worst solution of the objective function and is calculated
using Equation (71). Equation (72) is therefore applicable. Each objective function is normalized
using Equation (73), where f̄i represents the normalized form of fi. In Figure 3, which depicts a
three-objective optimization problem, the normalized objective functions f̄1, f̄2 and f̄3 are used
to coordinate the target space with anchor points f̄1∗, f̄2∗ and f̄3∗ also being normalized.

Step 3. The normalized ideal hyper-surface vectors (N̄k ) are calculated using Equation (74).
Each vector N̄k is drawn directly from the normalized pillar point k(f̄k∗) to the normalized pillar
point nm(f̄n∗). Figure 3 illustrates the vector way of N̄1 from f̄1∗ to f̄3∗ and the way N̄2 from
f̄2∗ to f̄3∗ is drawn.

Step 4. A normalized length (δk) is determined for a specific number of divisions (mk) on the
vector N̄k using Equation (75). In the NNCmethod, eachmk is consistent to withm1 is calculate
as per Equation (76).

Step 5. involves obtaining the wonderland hyperspace points (X̄j) in achieved on the normalized
wonderland hyperspace using Equation (77)), where the coefficients αkj(k = 1, · · · , k = n−1);∑n

k=1 αkj=1 and 0 ≤ αkj ≤ 1 are different. From the normalized increase of δk in Equation
(74). The last coefficient αnjis equal to αnj = 1−

∑n−1
k=1 αkj . For instance, in a three-objective

optimization problem (i.e., n = 3) with m1 = m2 = 5, the values of αkj(k = 1, 2, 3) are
shown in Figure 4, where δ1 = δ2 = 0.25. In this problem, 15 optimal X̄j(1 ≤ j ≤ 15) rays are
obtained, which are represented by small black circles in Figure 3.

Step 6. involves determining the Pareto optimal point for each wonderland hyperspace point
obtained by solving the one-objective optimization problem in Equation (78).
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ui∗ = arg min fi(u)

subject to :

{
ϕ(u) = 0 i = 1, 2, · · · , n,
Φ(u) ≤ 0,

(68)

f i∗ =
[
f i∗1 f i∗2 · · · f i∗n

]T
, i = 1, 2, · · · , n

=
[
f1(u

i∗) f2(u
i∗) · · · fn(u

i∗)
]T
, i = 1, 2, · · · , n, (69)

fu =
[
fu1 fu2 · · · fun

]T
=
[
f1(u

1∗) f2(u
2∗) · · · fn(u

n∗)
]T
, (70)

fN =
[
fN1 fN2 · · · fNn

]T
, (71)

fNi = max{fi(u1∗) fi(u2∗) · · · fi(un∗)}, i = 1, 2, · · · , n, (72)

f̄i =
fi − fUi
fNi − fUi

, i = 1, 2, · · · , n, (73)

N̄k = f̄n∗ − f̄k∗, k = 1, 2, · · · , n− 1, (74)

δk =
1

mk − 1
, k = 1, 2, · · · , n− 1 (75)

mk

‖N̄k‖
=

m1

‖N̄1‖
, k = 1, 2, · · · , n− 1, (76)

X̄j =

n∑
k=1

αkj · f̄k∗. (77)

min f̄n(u)
ϕ(u) = 0, ϕ(u) ≤ 0,
N̄k · (f̄ − X̄j) ≤ 0, k = 1, 2, · · · , n− 1,
f̄ = [f̄1(u), f̄1(u), · · · , f̄n(u)]T .

(78)

Figure 4: Coefficients for a three-objective problem withm1 = m2 = 5.

3.4.3 Shannon entropy technique

The Shannon entropy technique was utilized in this study to determine the relative importance of ap-
praisal criteria. This technique is widely used for calculating the criteria weights [30]. The entropy
technique utilizes decision matrix information to assign weight to the criteria, with more weight given
to the index that creates greater differentiation between the options. Equations (79) to (84) were used to
implement the Shannon entropy process.
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X = [xij ]n×m =


x11 x12 · · · x1m
x21 x22 · · · x2m
. . . . . . . . . . . .
xn1 xn2 · · · xnm

 , (79)

Pij =
rij∑m
i=1 rij

, ∀i, j, (80)

Ej = −k
m∑
i=1

[Pij × LnPij ], ∀j, (81)

k =
1

Lnm
, (82)

dj = 1− Ej , ∀j, (83)

wj =
dj∑n
j=1 dj

, ∀j. (84)

Equation (79) represents the decision matrix for both the AEC and NNC methods, where the rows
and columns represent the options and indicators, respectively. For example, the x12 array shows the
score of the first alternative relative to the second criterion. The normal decision matrix is obtained by
dividing each column’s value by the sum of that column, as shown in Equation (80), where Pij specifies
normalized data. The entropy of each criterion is calculated using Equation (81), where k is a constant
value ensuring that 0 ≤ Ej ≤ 1. The value of k is determined using Equation (82). The degree of
deviation (dj) is calculated using Equation (83), which provides information for the decision maker
to decide. A smaller value of dj indicates that the criterion does not make much difference between
competing alternatives and hence should be less important in decision-making. Finally, Equation (84)
is used to calculate the weight of each criterion.

3.4.4 VIKOR technique

Once the weight of each criterion has been determined, the next step is to evaluate the alternatives.
In this study, the VIKOR technique was used to evaluate the alternatives using the AEC and NNC
methods, VIKOR is a multi-criteria optimization technique that was proposed in 1984 by a Serbian re-
searcher named Opricovic. This technique is particularly useful when decision-makers are faced with
contradictory criteria that make it difficult for them to express their preferences. In these cases, the
decision-makers can agree upon compromise solutions obtained from the VIKOR technique. This solu-
tion minimizes both group desirability (by the S criterion) and individual influences (by theR criterion)
to the minimum. The first and second steps of the VIKOR technique involve forming a decision ma-
trix and determining the weight of the criteria, respectively, as discussed in the previous section. The
subsequent steps of this method are shown in Equations (85) to (90).

f+ = max fij ; f− = min fij , (85)

Sj =

n∑
i=1

wi ·
f∗i − fij
f∗i − f

−
i

, (86)

Rj = max[wi ·
f∗i − fij
f∗i − f

−
i

], (87)

92Qj = v · Sj − S∗

S− − S∗ + (1− v) · Rj −R∗

R− −R∗ , (88)

S− = maxSj , S∗ = minSj , (89)
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R− = maxRj , R∗ = minRj . (90)

The third step involves determining the ideal positive and negative points, which are denoted by f+
and f− respectively. These points are identified for criteria with a profit aspect in Equation (85), and the
best and the worst of each criterion among the alternatives are used for this purpose. Equations (86) and
(87) are used to calculate the usefulness S and the amount of regret R for each alternative, respectively.
The relative distance of alternative j from the ideal solution (best combination) is determined by Sj , and
Rj represents the maximum inconvenience of alternative j from the ideal point. These steps complete
the fourth step. In the fifth step, the VIKOR index is calculated with the symbolQj using Equation (88),
which takes into account the importance of group agreement (parameter v). A high group agreement is
indicated by v > 0.5, while v = 0.5 represents group agreement with the majority vote, and v < 0.5
indicates low group agreement. Equation (89) and (90) represent the symbols S− and S∗, R− and R∗,
respectively. In the sixth step, the alternatives are sorted based on descending values of the S,R, and Q
indicators. The alternative with the lowest Q value is selected as the best alternative if it satisfies two
conditions.

To determine the acceptability score of substitutes A1 and A2, Equation (91) must be established.
First, if A1 and A2 are ranked first and second among the available alternatives, respectively.

(A2)−Q(A1) ≥
1

m− 1
, (91)

second, alternative A1 must have reached the top rank in at least one of the S and R groups to ensure
acceptable consistency in decision-making. If either of these conditions is not met, both substitutes are
considered equally good or superior.

3.4.5 Evaluation criteria

In multi-objective optimization, preference is given over single-objective optimization. The aim is to
determine the degree to which a solution satisfies various objectives. After generating Pareto optimal
solutions, the most preferred point for the multi-objective optimization problem is selected based on the
importance of each objective function. Equation (92) defines the Pareto optimal point of k, denoted by
Pk,

Pk =

n∑
i=1

(
IFi

fNi − fki
fNi − fUi

)
, (92)

where fUi and fNi are robust and weak efficiency solutions defined in Equations (70) and (71) respec-
tively. Furthermore, fki represents the result obtained for the objective function i in k’s Pareto optimal
point. The essential coefficient of each objective function, denoted by IFi, is in the range of [0, 1], and
their sum equals one must specify essential coefficients. The Pareto optimal solution that optimizes more
essential objective functions, i.e., whose fki results are closer to the consistent fUi values or has a value
(fNi − fki/fNi − fUi ) closer to one is sanctioned as Pk, meaning that it is the sanctioned solution to the
multi-objective optimization problem. Additionally, considering IFi in Equation (92) prioritizes Pareto
optimal solution that optimizes more essential objective functions (i.e., with higher IFi values) a higher
priority. The Pareto optimal solution with the highest Pk value is sanctioned and the final solution to
the multi-objective optimization problem is chosen as the Pareto optimal solution with the highest Pk

value.
The NNC method has only one property,m1. In sensitivity analysis,m1 is changed around its base

value in both negative and positive directions with a step equal to the sensitivity coefficient calculated
using Equation(93).

F (%) =
∆Pk

∆m1
× 100 =

base Pk − deviated Pk

basem1 − deviatedm1
× 100. (93)
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In this study, the best solution for the three objective functions serves as the basis for further com-
parison. Given that the GAMS software yields the optimal solution for each objective function, the
performance of solution methods is evaluated using the relative error percentage criterion, as calculated
by Equation (94).

PRE =
Realsolution − Idealsolution

Idealsolution
× 100, (94)

the Realsolution refers to the value of the objective function obtained through the method, while the
Idealsolutionis represents the optimal value of the objective function, which was obtained by solving the
complex integer model in GAMS software. A lower value of this criterion indicates a higher quality of
responses.

Furthermore, the following section introduces and calculates the criteria for evaluating Pareto so-
lutions, in addition to the initial comparisons that demonstrated the superior performance of the NNC
method. The Run Time (RT), Mean Ideal Distance (MID), Diversification Metric (DM), and General
Distance Metric (GDM) are used as the basis for evaluating the performance of AEC and NNC solutions
methods in this study. The definition and calculation method for each criterion are as follows.

The Run Time (RT) is the time taken by each method to solve the problem and is one of the most
essential bases for comparing multi-objective problem-solving methods. A better method has a shorter
solving time, which is considered a negative aspect.

The Mean Ideal Distance (MID) measures the proximity of Pareto points to the ideal point. As all
three objective functions of this research problem are of the maximization type, symbols fmax1 , fmax2 and
fmax3 represent the ideal points of the functions, respectively. Equation (95) outlines how to calculate
MID.

MID =

∑n
i=1

{(
f1,i−fmax

1

fmax
1,total−fmin

1,total

)2

+

(
f2,i−fmax

2

fmax
2,total−fmin

2,total

)2

+

(
f3,i−fmax

3

fmax
3,total−fmin

3,total

)2} 1
2

n
. (95)

Here, n represents the number of Pareto points, and themaximum andminimum values of the unsuccess-
ful objective functions obtained in all model executions are denoted by fmaxi,total and fmini,total, respectively.
A lower MID value is considered a be tter method (negative aspect).

The Diversification Metric (DM) measures the extent of Pareto’s solutions by calculating the Eu-
clidean distance between the initial and final solutions of the Pareto set of solutions [53]. This criterion
is calculated based on Equation (96), and a higher DM value is considered a better method (positive
aspect).

DM =

n∑
i=1

{(
max f1,i −min f1,i
fmax
1,total − fmin

1,total

)2

+

(
max f2,i −min f2,i
fmax
2,total − fmin

2,total

)2

+

(
max f3,i −min f3,i
fmax
3,total − fmin

3,total

)2} 1
2

. (96)

General Distance Metric (GDM) evaluates the uniformity of Pareto solution distribution in the so-
lution space by considering the deviation of the distance criterion of efficient solutions. This criterion
measures the relative distance of consecutive Pareto solutions [10]. The method of calculating this cri-
terion is according to Equation (97).

SM =

√√√√ 1

n− 1

n∑
i=1

(di − d̄)2, (97)

di =
min
j {|f1i − f1j |+ |f2i − f2j |+ |f3i − f3j |}, i, j = 1, 2, . . . , n; i 6= j, (98)

d̄ =

∑n
i=1 di
n

. (99)
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Determining Pareto boundary points based on Equation (97) in three-dimensional space requires
more complex calculations and time. Therefore, a straightforward relation is used to determine Pareto
points’ scattering (Equation (100)).

SM =

∑n
i=1 |d̄− di|
n× d̄

, (100)

where, di indicates the number of Pareto points in cell i, and d̄ is the average number of Pareto points
in all cells. Accordingly, the cell solution space is divided into several specific areas (see Figure 5).
Each of the three small three-dimensional cells in this diagram contains several Pareto points. A lower
standard deviation of the distance between Pareto points in the created cells is considered a better method
(negative aspect).

Figure 5: Cell configuration of the solution area and location of Pareto points in cells.

4 Results

This section presents a numerical example to solve the mathematical model discussed in the previous
section. The numerical example comprises five suppliers, six manufacturers, four distributors, eight cus-
tomers, four collection centers, six recycling centers, and four periods. Other experimental parameters
are randomly generated through the uniform distribution function. In multi-objective problems, opti-
mizing one objective function may lead to deterioration in the other objectives [40]. Thus, an outcome
matrix is created for the goals to determine if there is a conflict between objectives. For this purpose, the
other objectives are optimized individually while subject to their optimality, and the results are presented
in Table 3 for the green profitability (f1), social responsibility (f2), and reliability (f3) functions. The
results in Table 4 show that individual optimization of each objective function leads to acceptable out-
comes for that objective function but unsuitable outcomes for the other objective functions. For instance,
f2 = 1282.13 obtained from single-objective optimization of f3 is 0.27 less than f2 = 1756.73 obtained
from single-objective optimization f2. Similarly, f3 = 2.96 obtained from single-objective optimization
f1 is 0.4 less than f3 = 4.91 obtained from single-objective optimization f3. Therefore, single-objective
optimization cannot provide a good compromise between rival objective functions highlighting the need
for multi-objective optimization for the SCND problem.

In general, the mathematical model presented in this paper considers three objectives: economic
profit, social responsibility, and reliability which may conflict with each other. To minimize purchasing
costs, it may be beneficial to secure a raw material supply contract with a supplier offering lower prices.
However, such a supplier may be located further away from the plant, resulting in increased carbon
emissions and associated costs. To minimize the cost of carbon emissions, choosing a close supplier can
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Table 4: Payoff Matrix of objectives for little size problem.

Consequences Objective 1 Objective 2 Objective 3
Profitability optimization (f1) 14465372.18 1531.84 2.96

social responsibility optimization (f2) 13916527.04 1756.73 4.24

Reliability optimization (f3) 12296024.95 1282.13 4.91

be beneficial. However, their reliability may be compromised due to limited access to energy sources,
which are often closer to distant suppliers. Additionally, the purchase price of materials may be higher
than that of other suppliers. Therefore, decision-makers must weigh the benefits of each objective and
make a trade-off between them. To illustrate the proposed approach, four different examples are consid-
ered based on the significant coefficients of the objective functions f1, f2, and f3, as shown in Table 5.
IZ1, IZ2, and IZ3 show represent the significant coefficients of the functions f1, f2, and f3, respectively.

Table 5: Different samples of the designed experimental example.

Sample counter Objective
IZ1 IZ2 IZ3

First 0.33 0.33 0.33
Second 0.25 0.25 0.5
Third 0.25 0.5 0.25
Fourth 0.5 0.25 0.25

In practice, the company’s management can determine the importance of the coefficients based on
the technical and economic conditions of the industry they operate in. In the first sample, the same
importance is assigned to the objectives with a coefficient of 0.33 for each. In the second case, social
responsibility and reliability are considered equally important, with coefficients of 0.25 each. Profitabil-
ity with a coefficient of 0.5 is considered more essential because all businesses generally aim to make
a profit. With this approach, the third model places more emphasis on social responsibility, while the
fourth places more emphasis on reliability. As stakeholders often monitor corporate social responsibil-
ity, in addition to its real-world applications, a supply chain’s reliability may be more vulnerable to its
profitability or social responsibility.

The proposed sustainable and reliable SCND problem (relationships 1 to 60) was solved using multi-
objective problem-solvingmethods and comparedwithAEC andNNC techniques. To solve the example,
both AEC andNNCmethods were implemented in the GAMS 24.2.1 software package using the CPLEX
solver. These results are presented in normalized form for the four samples in Table 6. To ensure a fair
comparison, both solving methods generated 66 Pareto solutions. The NNC method used m1 = 11 to
generate 66 Pareto solutions, while the AEC method determined the appropriate step for ε to achieve the
desired Pareto number. Due to the nonlinear and multi-objective (three objective functions) nature of the
proposed SCNDmodel, the problem is NP-hard and requires considerable time to solve. The calculation
times of the NNC and AEC methods are approximately 1633 and 2465 seconds, respectively, measured
on an Intel Core i7 laptopwith a 2.4 GHz processor and 16GB ofmemory. TheNNC’s shorter computing
time is a crucial advantage, facilitating its practical application to solve the multi-objective problem in
SCND.

The NNC and AEC methods produce a set of Pareto optimal points and select the best solution. The
results of Table 5 show that the AEC method is better than the NNC only in the third sample, but the
NNC outperforms the AEC in searching the Pareto border more effectively. To illustrate this feature, the
Pareto set produced by the NNC is compared to that produced by the AEC in Figure 6.
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Table 6: Obtained results for the four experimental samples.

Normalized objective Technique Normalized objective Pk
f̄3 f̄2 f̄1

First NNC 0.217 0.171 0.301 0.7702
AEC 0.018 0.149 0.558 0.7585

Second NNC 0.201 0.169 0.327 0.7755
AEC 0.021 0.168 0.751 0.7597

Third NNC 0.236 0.146 0.314 0.7895
AEC 0.019 0.138 0.544 0.7902

Fourth NNC 0.231 0.168 0.355 0.7227
AEC 0.020 0.132 0.545 0.6895
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Figure 6: Efficient solutions obtained by AEC and NNC methods.

This figure shows that the NNC method can search for areas of the Pareto border that the AEC
method does not have to access. Therefore, the NNC can be more suitable for covering the Pareto border
than the AEC. Additionally, it is observed that the preferred NNC solutions differ from the preferred AEC
solutions because the most preferred NNC solutions are located in parts of the Pareto boundary that only
the NNC can search (such as some edges of the Pareto boundary).

Table 6 performed a sensitivity analysis of the NNC method by setting m1 to values that differed
from its base value (11) in both negative and positive directions with a step equal to two. Values 11−2×
3 = 5 (three-step of negative), 11− 2× 2 = 7 (two-step of negative), 11 - 2 = 9 (one-step of negative),
11 (without deviation), 11 + 2 = 13 (one-step of positive), 11 + 2 × 2 = 15 (two-step of positive), and
11+2×3 = 17 (three-step of positive) are considered for settingm1 . For eachm1 value, the number of
Pareto points, the values of the objective functions f1, f2, and f3, the Pk preference, and the sensitivity
coefficient (SF) percentage are shown in Table 7.

Table 6 indicates that the Pk preference changes slightly by altering them1 setting, resulting in low
sensitivity coefficient values and demonstrating the stability of the NNC method. The only weak result
for the NNC method is the lower Pk in the third sample compared to the AEC method. However, this
difference is only 0.0007, while in the first sample (0.0117), in the second sample (0.0158), and in the
fourth sample (0.0332), this difference is in favor of the NNCmethod. Table 8 shows the PRE values for
all three objective functions in the AEC and NNC methods. Carefully, examining the table information,
it can be inferred that in the first and second objective functions, the NNC method has less deviation
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Table 7: The results of sensitivity analysis on the settingm1 in the first case.

m1 No. Pareto
solution

Normalized objectives Pk SF

f̄1 f̄2 f̄3
5 15 0.213201 0.183069 0.308227 0.765402 0.081183
7 28 0.201151 0.175092 0.320135 0.768106 0.054175
9 45 0.186021 0.195018 0.309151 0.770167 0.005300
11 66 0.217301 0.171325 0.301245 0.770273 0
13 91 0.187099 0.190684 0.310719 0.770729 0.022800
15 120 0.190144 0.174962 0.322183 0.771133 0.021500
17 153 0.210987 0.197281 0.248304 0.781362 0.184816

from the optimal state than the AEC method. Additionally, compared to the NNC method, the AEC
method can estimate the value of the third objective function with less deviation from the ideal situation.

Table 8: Percentage of relative error (PRE) for solving methods.

Solving method Objectives
f1 f2 f3

AEC 2.16616 25.4133 33.6396

NNC 1.65093 10.6366 54.4292

The decision matrix is presented in Table 9. This table includes the values of each index in the AEC
and NNC methods. Table 10 presents the criteria weights based on Shannon’s entropy method. The
results of the comparison and ranking of AEC and NNC methods in solving research problems using the
VIKOR technique are presented in Table 11. The superiority of the NNC method over the AEC method
is demonstrated by the information in the table.

Table 9: Final decision matrix.

−
RT

−
MID

+
DM

−
SM

AEC 2465 1.030707 1.964588 1.141415
NNC 1633 1.260091 2.233026 0.787879

Table 10: Attributes weighting with Shanon entropy technique.

Symbol Title Criteria
RT MID DM SM

Ej Entropy 0.970059 0.992755 0.997048 0.97564

dj Degree of deviation 0.029941 0.007245 0.002952 0.02436

wj Normalized weight 0.464222 0.112326 0.04577 0.377682



124 Optimizing Supply Chain Design for Sustainability and Reliability .../ COAM, 9 (1), Winter-Spring (2024)

Table 11: Results of comparison of AEC and NNC methods.

Method S R Q Rank
AEC 0.887674 0.464222 1 Second
NNC 0.112326 0.112326 0 First

5 Discussion

5.1 Sensitivity analysis of mathematical model

To validate and examine the behavior of the proposed model more accurately, the sensitivity of the
parameters to changes in their value is observed. Therefore, in this section, by changing the demand
in the primary market (Demt

er)), the behavior of the model’s three objective functions, profit, social
responsibility, and reliability, is examined. The effect of changing the value of objective functions,
including profitability, social responsibility, and reliability, under the influence of the primary market
demand parameter (Demt

er) is shown in Figure 7. This Figure shows that profitability increased with
an increase in primary market demand, but social responsibility and reliability decreased. Given the
cost of fines for shortages, the model tries to satisfy the maximum demand. The operational strategy
of production management is to increase production when faced with a sudden increase in customer
demand. This strategy is expressed in the profitability objective function of the mathematical model by
multiplying the selling price of products and production costs (parameter) by the number of production,
which is a decision variable.

The proposed model suggests that the level of supply chain social responsibility is influenced by the
number of production, but it has a negative impact. Increasing production to meet rising demand often
results in overworking existing staff instead of hiring new employees. Moreover, maximizing nominal
production capacity by increasing working hours can result in increased sick leave usage among em-
ployees. Consequently, an increase in demand can lead to decreased social responsibility and increased
reliability, as illustrated in Figure 6. This can be attributed to the fact that meeting higher demand re-
quires more raw materials, which may necessitate contracting with less reliable suppliers. Given that
suppliers’ capacity is limited, it is often impossible for a single supplier to meet the supply chain’s needs
under normal circumstances, and this problem is further exacerbated by increasing demand. In terms of
supply chain design, customer satisfaction is typically prioritized over reliability.
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5.2 Sensitivity analysis of the solution method

This section aims to validate and analyze the sensitivity of the problem model’s solution methods. In-
tended sensitivity analysis examines the variability of the proposed ranking by changing the criteria
weights. To this end, the ranking of alternatives after assigning equal weight to the criteria is compared
with the initial ranking. In this regard, the alternatives’ usefulness, regret, and VIKOR index values are
shown with the weights obtained from the Shannon entropy method for the criteria in Part A of Figure
8 and equal weights for the criteria in Part B of Figure 8. These values play a crucial role in ranking
alternatives in the VIKOR process. In Figure 8, it can be concluded that even with the same importance
assigned to the criteria, the ranking result has not changed. This result emphasizes the desirability and
priority of the NNC method in different situations.
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Figure 8: The effect of attribute weighting on alternative ranking (a: Shannon entropy weights - b: equal weights).

The criteria used in both AEC and NNC methods, as presented in Figure 9, can be compared to
determine the reasons for the superiority and strengths of one method over the other. Therefore, the
superiority of the NNC technique compared to the AEC method can be attributed to the criteria of run
time, diversification metric, and standard deviation metric. A comparison of the length between the
solutions and the optimal solution in the AEC and NNC methods reveals that the length between the
points and the ideal point in the AEC method is about 19% less than in the NNC method. Additionally,
the solution time and the general distance size of the solutions in the NNC method are 33% and 31%
less than in the AEC method, respectively. The distribution of solutions in the NNC method is also 13%
higher than in the AEC method.

 

-1

0

1

RT MID DM SM

AEC NNC

Figure 9: Comparison of attributes in AEC and NNC methods.
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6 Conclusion

This problem involves conflicting objective functions, namely sustainability and reliability, alongside
profitability and social responsibility. To address this conflict, a mixed integer linear programming
model is formulated with sustainability dimensions as constraints and reliability as the primary objective.
However, this single-objective approach may not effectively balance the conflicting objectives, result-
ing in an unsustainable or unreliable supply chain. To overcome this limitation, two methods (AEC and
NNC) are utilized in multi-objective problems, and a numerical example with four different weights of
objective functions is coded and modeled using GAMS software. The results of the AEC and the NNC
methods were compared using the four criteria of Run Time (RT), Mean Ideal Distance (MID), Diver-
sification Metric (DM), and Standard Deviation Metric (SDM). The Shannon Entropy technique is used
to obtain the criteria weights, and the VIKOR technique is employed to select the superior method. The
results indicate that the NNC method is more efficient than the AEC method in solving the proposed
model. The NNC method exhibits several advantages over the AEC method, including a systematic
approach to reducing feasible space and effectively covering the objective space through the uniform
distribution of Pareto solutions. These capabilities enable the NNC method to discover more preferred
multi-objective solutions compared to the AEC method. Previous research has focused on developing
sustainable and reliable strategies for biofuel and blood supply chains. However, with a slight adjustment
to the assumptions, these models can be applied to industries that require greater consideration of sus-
tainability and reliability approaches, such as energy and healthcare. While past studies have primarily
focused on sustainability’s economic and environmental dimensions, there is a need to balance all three
dimensions (economic, environmental, and social) for optimal benefits. In addition to greenhouse gas
emissions and job creation, other criteria such as energy consumption, use of renewable resources, waste
disposal, community well-being, safety, job satisfaction, and personnel training must also be considered
for a comprehensive assessment of sustainability. Despite the growing trend of integrating sustainabil-
ity and reliability in SCND literature, this topic is still a developing field that requires more empirical
studies to formulate precise and long-term guidelines for simultaneous application. Future researchers
can draw a roadmap by adding or changing problem assumptions, providing more criteria for evaluating
solution methods, and using other multi-objective solving techniques.

Here are some suggestions for this road map: The proposed model assumes no distinction between
goods produced with raw materials and those produced with recycled raw materials and thus accounts
for differences in production costs, prices, and demand for these two types of products. While this study
considered fixed and certain model parameters, incorporating uncertainty conditions can enhance the
model’s realism. To validate the model’s performance, a numerical example and random data with a
uniform distribution are provided, and the model’s flexibility is examined through a real case study.
Four criteria are used to evaluate the performance of problem-solving methods, and additional appro-
priate performance criteria are employed to compare and demonstrate the effectiveness of the proposed
methods. The Shannon entropy method is utilized to weigh the evaluation criteria, and the weighting
result is combined with several MCDM methods such as Best Worst Method (BWM) for a more com-
prehensive assessment of criterion weights.
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