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1 Introduction

The Lotka-Volterra (L-V) competition model plays an important role in mathematical biology [5]. The
Lotka-Volterra equation is a pair of nonlinear differential equations used as a model for biological sys-
tems in which there are two species in the form of a predator and a prey. These equations were first
established by Lotka [10] and Volterra [19]. The deterministic form of the L-V competition two-species
model is expressed as

dx1(t)

dt
= x1(t) [δ1 − b11x1(t)− b12x2(t)] ,

dx2(t)

dt
= x2(t) [δ2 − b21x1(t)− b22x2(t)] , (1)

in which xi(t) denotes the size of the population for the ith species at t; δi and bij , i, j = 1, 2, are some
positive constants [9].

Due to the maturation time, there is a delay time for almost all species. Thus, it can be argued that
delayed systems can better represent the reality of the species. Suppose x∗ = (x∗1, x

∗
2) is an equilibrium

state of the system (1), the time-delayed form of this model can be represented as

dx1(t)

dt
= x1(t) [b11(x

⋆
1 − x1(t)) + b12(x

⋆
1 − x1(t− τ1(t))) + b13(x

⋆
2 − x2(t− τ2(t)))] ,

dx2(t)

dt
= x2(t) [b21(x

⋆
2 − x2(t)) + b22(x

⋆
2 − x2(t− τ3(t))) + b23(x

⋆
1 − x1(t− τ4(t)))] , (2)

where b13 and b23 are some positive constants; τi(t), i = 1, . . . , 4, are non-negative, and continuously
differentiable bounded functions on the closed interval [0,+∞] [9].

Because of the random fluctuations in the various parameters that affect the behavior of real bio-
logical systems, some additional noises are considered in the modeling of the L-V competition problem.
In the last two decades, many researchers have focused on several stochastic versions of systems (1)
and (2); Bahar and Mao presented an introductory study on stochastic L-V system with delay in [1]; in
[14], the authors constructed optimized harvesting techniques for stochastic L-V competition ecosys-
tems; while in [16], the authors studied the coexistence and extinction of these problems; in [15] the
authors proposed a numerical operational matrices approach to determine the solution of a stochastic
L-V problem; the author in [17] studied analytically and numerically three different stochastic models
of a deterministic L-V system; a backward Euler-Maruyama method was proposed in [22] for nonlinear
hybrid time-dependent delay stochastic differential equations (SDEs); [20] aimed to analyze a stochastic
L-V model with periodically distributed delay for three species; in [21] a stochastic L-V system with
Levy noises was considered and a related parameter estimation problem was solved; the unique exis-
tence of a global solution and a numerical solution based on an optimized Euler-Maruyama technique
for a stochastic age-structured cooperative L-V model with Poisson jumps were introduced in [23]; and
in [2, 8, 11] some positivity preserving numerical approaches were surveyed to solve the n-dimensional
stochastic L-V models.

In the present work, we study the Itô form of the stochastic L-V competition systemwith time delays,
written as

dx1(t) = x1(t) [δ1 − b11x1(t)− b12x1(t− τ1(t))− b13x2(t− τ2(t))] dt

+ µ1x1(t)(x1(t)− x⋆1)dW1(t),
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dx2(t) = x2(t) [δ2 − b21x2(t)− b22x2(t− τ3(t))− b23x1(t− τ4(t))] dt

+ µ2x2(t)(x2(t)− x⋆2)dW2(t), (3)

where µ2
i , i = 1, 2, denote white noises affecting δi; andW (t) = (W1(t),W2(t))

T denotes a Winner
process on a complete probability space (Ω,F ,P) with a filtration {Fi}i∈R+

. More details about the
coefficients and the interpretation of the model can be found in [9].

The initial value for system (3) is given as follows

N0 = {ζ(θ) = (ζ1(θ), ζ2(θ))
T
,−τ ≤ θ ≤ 0 ⊂ C}, (4)

where C = C
(
[−τ , 0];R2

+

)
is the family of continuous functions ϕ from [−τ , 0] to R2

+ = {(x, y)T ∈
R2 : x > 0, y > 0} with norm ‖ϕ‖ = sup−τ≤θ≤0 |ϕ(θ)| [9].

Lemma 1 in [9] proves the unique existence of a global positive solution of the system (3) for t ≥ −τ
under the condition

τ ′ = max
i=1,2,3,4

sup
t≥0
{τ ′i(t)} < 1.

Also, in [9], the following theorem is presented to investigate the stability of the state (x∗1, x∗2) for
system (3).

Theorem 1. Assume

A = −b11 +
2− τ ′

2(1− τ ′)
b12 +

b13
2

+
b23

2(1− τ ′)
+

1

2
µ2
1x

∗
1,

B = −b21 +
2− τ ′

2(1− τ ′)
b22 +

b23
2

+
b13

2(1− τ ′)
+

1

2
µ2
2x

∗
2.

The positive equilibrium state (x∗1, x∗2) of the system (3) subject to (4) is almost surely (a.s.) globally
asymptotically stable if A,B < 0.

This work is about the application of the Milstein method [6] to obtain the numerical solution of the
L-V system (3)-(4). The main challenge in using finite difference techniques to solve stochastic systems
is selecting an appropriate step size. In other words, the accuracy of these methods essentially depends
on the choice of the size of each step. In fixed step-size algorithms, a suitable size is first chosen for all
steps and the recursion relation is performed based on this predetermined step-size. Thus, conventional
constant step-size algorithms perform uniform steps throughout the problem domain. To increase the ac-
curacy of the method, one usually has to reduce the step-size in these cases, which may lead to excessive
computations and increase the computational time of the numerical process. By introducing an adaptive
step-size strategy, the convergence behavior of the method can be improved. The most important benefit
of a variable step-size algorithm is the reduction of the step-size when sufficient progress is not achieved.
Therefore, using an adaptive procedure improves the convergence rate and the computational efficiency
of the method significantly.

The most crucial concern with adaptive procedures is to determine an effective local error estimator
to choose the optimal step size for each stage. In the following, we propose a variable step size algorithm
for solving the system (3), where the numerical approach is adopted by the famous Milstein method,
and the step sizes are determined by two local error estimators corresponding to the diffusion and drift
components of the system at each recursion.
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The subsequent sections of this paper are organized as follows: In Section 2, we introduce the adap-
tive discretization of the Milstein method and investigate the details of the adaptive step-size algorithm.
In Section 3, we describe some simulation experiments to verify the efficiency of the algorithm. At the
end, in Section 4 a conclusion is drawn.

2 The Proposed Adaptive Algorithm

In general, any variable step size algorithm consists of the following three basic components [18]:

• Numerical method,

• Step-size selection mechanism,

• Step-size control mechanism.

Inspired by the fixed step-size algorithm proposed in [9] for (3), a variable time discretization of
the Milstein method is used to drive the numerical solution of (3) in the proposed adaptive algorithm.
To select and control the step-sizes in the proposed algorithm, a local error estimation is obtained using
some reminder terms of the Stratonovic-Taylor expansion in the context of the Milstein method. In the
following, we will describe the details of this procedure.

2.1 Milstein method with variable step-sizes

Consider the following general SDE in Itô form:

dX(t) = f(X, t)dt+ g(X, t)dW, (5)

where f, g ∈ C2(R) [4]. The Stratonovic form of (5) is:

dX(t) = f̄(X, t)dt+ g(X, t)odW, (6)

in which f̄ = f − 1
2gg

′.
The Milstein method for the solution of (6) is defined as follows:

Xn+1 = Xn +∆Wg(Xn) + hf̄(Xn) +
1

2
g(Xn)g

′(Xn)(∆W )2 +R, (7)

where h and∆W are the step-size and the correspondingWiener increment, respectively, andR denotes
the reminder terms, which is O(h

3
2 ).

Now, assuming a variable step-size partition of an interval [0, T ], such that 0 = t0 < t1 < . . . <

tN = T , the Milstein method for (3) is given by

xi1 = xi−1
1 + xi−1

1

δ1 − b11xi−1
1 − b12x

i−1−
[τ1((i− 1)hi)

hi

]
1 − b13x

i−1−[
τ2((i− 1)hi)

hi
]

2

hi
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+ µ1x
i−1
1 (xi−1

1 − x⋆1)∆W i
1 +

µ2
1

2
xi−1
1 (2xi−1

1 − x⋆1)(xi−1
1 − x⋆1)[(∆W i

1)
2 − hi], (8)

xi2 = xi−1
2 + xi−1

2

δ2 − b21xi−1
2 − b22x

i−1−
[τ3((i− 1)hi)

hi

]
2 − b23x

i−1−[
τ4((i− 1)hi)

hi
]

1

hi
+ µ2x

i−1
2 (xi−1

2 − x⋆2)∆W i
2 +

µ2
2

2
xi−1
2 (2xi−1

2 − x⋆2)(xi−1
2 − x⋆2)[(∆W i

2)
2 − hi],

where hi = ti−ti−1 for i = 1, . . . , n, and∆W i
1 and∆W i

2 areWiener increments∆W i
j =
√
hiN(0, 1),

for i = 1, . . . , n and for j = 1, 2. Due to the time delayed nature of (3), the following initial solutions
are also assumed:

xi1 = ζ1(ih0), xi2 = ζ2(ih0), i = −m, . . . ,−1, 0, (9)

with partition −τ = t−m < . . . < t−1 < t0 = 0 of the interval [−τ , 0], where h0 is a predetermined
fixed value, τ = max

i=1,2,3,4
supt≥0{τi(t)} ≥ 0 andm = τ/(h0).

As illustrated in Figure 1, all step-sizes in the interval [−τ , 0] have the fixed value h0, while the
step sizes in the interval [0, T ] are variable.

Figure 1: Time partition on the interval [−τ , T ] = [−τ , 0] ∪ [0, T ].

2.2 Mechanism for selecting step-size

In the proposed algorithm, the following generalization of the standard step-size selection mechanism
from the literature on ordinary differential equations is used to select the next step-size:

hnew = hold ×min

(
facmax,max

(
facmin, fac×

(
TOL
EST

) 1

p+1
2

))
, (10)

where hold is the accepted step-size in the previous step, TOL is the tolerance threshold calculated for
the current step, EST is the local error estimate, p is the global order of the procedure, fac ∈ (0, 1) is a
safety factor for the possibility of reducing the step-size in each step of the algorithm, and facmin and
facmax are the minimum and maximum scale coefficients of the step-size, respectively [3].

2.2.1 Drift and diffusion based local error estimation

In each step of the presented algorithm, two different approximations of the local truncation error,EST ,
based on drift and diffusion coefficient functions, are calculated using the reminder term R of (7):
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R = J10f̄
′g + J01g

′f̄ +
1

6
(∆W )3g′′

2
+

1

6
(∆W )3g′

2
g︸ ︷︷ ︸

O(h
3
2 )

+
1

2
h2f̄ ′f̄︸ ︷︷ ︸
O(h2)

+ . . . , (11)

where for simplicity (Xn) has been removed [7]. The multiple Stratonovic integrals J01 and J10 in (11)
are defined by

J01 =

∫ tn+1

tn

∫ s1

tn

ds1 o dW,

J10 =

∫ tn+1

tn

∫ s1

tn

o dW ds1, (12)

and are calculated using numerical integration methods.
Neglecting the higher order terms in (11), we propose the following local error estimates concerning

the diffusion and drift coefficient functions, respectively

Ediff (Xn, h,∆W ) := ‖J10f̄ ′(Xn)g(Xn) + J01g
′(Xn)f̄(Xn)

+
1

6
(∆W )3g′′

2
(Xn) +

1

6
∆W 3g′(Xn)

2g(Xn)‖, (13)

Edrift(Xn, h) :=
1

2
h2‖f̄ ′(Xn)f̄(Xn)‖, (14)

where ‖ · ‖ denotes a vector norm.

Remark 1. Since the computation of f̄ and f̄ ′ requires the computation of the first and second derivatives
of the diffusion coefficient, respectively, and the diffusion function in (3) is very simple, the computa-
tional cost of g′(Xn) and g′′(Xn) is very low. Therefore, all the first four terms of R were used in the
definition of Ediff .

In each step of the presented variable step size algorithm, four different choices of new step sizes are
proposed, one of which is selected by comparing the values of Ediff and Edrift, to continue the numerical
procedure. When Ediff is greater than Edrift, Edrift is used instead of EST to determine the new step-size
in (10), and vice versa, whenEdiff is less thanEdrift,Ediff is used instead ofEST . Algorithm 1 illustrates
more details of the proposed new step-size.

2.3 Controlling the step size

In each step of the algorithm, the new step-size hnew and the corresponding Wiener expansion ∆W are
accepted if

EST (tn, hnew,∆W ) ≤ σ(TOL), (15)

whereTOL is a tolerance threshold, σ(TOL) is an upper bound on the local error, andEST (tn, hnew,∆W )

is an approximation of the local error obtained by the following proposition.

Proposition 1. Let Xn−1 = Xtn−1 and Xn = Xtn be two currently approximated solutions computed
in n− 1 and nth steps, respectively, of a numerical method with the order of accuracy p. Then, for each
function f : Rd → Rd, the local error of the numerical method is as follows
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EST (tn, hnew,∆W )

:≈ hp+1
new(

(hn−1 + hnew)p+1 − hp+1
new

)‖E[f(1Xtn+hnew)]− E[f(2Xtn+hnew ])‖. (16)

where, 1Xtn+hnew and 2Xtn+hnew are two numerical approximations of the analytical solution X(tn +

hnew) calculated in two different ways. 1Xtn+hnew is calculated starting from Xn, with step-size hnew,
and 2Xtn+hnew is calculated starting fromXn−1 with step size hn−1+hnew. Figure 2 demonstrates these
different possibilities.

Proof. Based on the definitions of the numerical approximations 1Xtn+hnew and
2Xtn+hnew , the following are satisfied

E[f(Xtn+hnew)]− E[f(1Xtn+hnew)] = hp+1
new E[Ψ(tn, Xn, hnew; f)], (17)

E[f(Xtn+hnew)]− E[f(2Xtn+hnew)]

= (hn−1 + hnew)
p+1E[Ψ(tn−1, Xn−1, hn−1 + hnew; f)], (18)

where E[·] denotes the mathematical expectation and Ψ : I × Rd × R+ −→ Rd is an expression
containing elementary differentials that is of big-oh order one, O(1), when hnew tends to zero [13].

Figure 2: Two different numerical approximations ofX(tn + hnew).

Now, considering the continuity of the preliminary differentials and assuming that the behavior ofΨ
forhnew is such that the expressions on the right-hand side of the relations (17) and (18) are asymptotically
approximately equal, the difference of the relations (17) and (18) leads, by some algebraic calculations,
to the following equality

hp+1
new(

(hn−1 + hnew)p+1 − hp+1
new

)‖E[f(1Xtn+hnew)]− E[f(2Xtn+hnew)]‖

= hp+1
new ‖E[Ψ(tn, Xn, hnew; f)]‖+O(hp+2

new ). (19)

From (19) the proof is now complete.

Remark 2. In addition to the main steps mentioned in the proposed variable step size algorithm, we set
two predefined parameters hmin and hmax to control the upper and lower bounds of the step size in each
step of Algorithm 1.
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Remark 3. Based on the definition of the numerical solution 1Xtn+hnew , the tolerance threshold TOL
in (15) is calculated as follows:

TOL = Atol + Rtol×max{‖E[1Xtn+hnew ]‖, ‖E[Xn]‖}. (20)

where Atol and Rtol are the given absolute and relative error tolerance thresholds, respectively. Al-
gorithm 1 shows the main steps of the proposed adaptive strategy. In this algorithm, we define
σ(TOL) = 0.85 TOL.

In addition, there are two predefined parameters dtmin and dtmax which control the upper and lower
bounds of the step size. That is, in each iteration of the proposed algorithm, a step size with a minimum
length of dtmin is always selected to go to the next iteration, and therefore the algorithm does not get
stuck at a specific time point. This guarantees that it will surely converge to the endpoint of the simulation
domain.

2.4 Economical saving of values of the Wiener increments

If the inequality (15) in Algorithm 1 is not satisfied, the step-size hnew, the Wiener increment ∆W and
the approximate solution 1Xtn+hnew should be discarded, and the calculations must be repeated for a
smaller step-size. For new calculations, we may need intermediate values for the Wiener increments. To
avoid repeating the calculations already performed, it is recommended to save the intermediate values
of the Wiener increments and use them again in the future.

Assume that the Wiener increment∆W t
h =W (t+h)−W (t), related to the two points t and t+h,

has been calculated for t > 0, and h > 0. Let h = h1+h2 for h1 > 0 and h2 > 0, then the intermediate
values ofWiener increments∆W t

h1
=W (t+h1)−W (t) and∆W t+h1

h2
=W (t+h1+h2)−W (t+h1),

can be simulated as follows:

∆W t
h1

=
h1
h
∆W t

h +

√
h1h2
h

ξ,

and

∆W t
h2

=
h2
h
∆W t

h −
√
h1h2
h

ξ,

where ξ is a normal vector random variable [12]. As the above formulas show, to compute∆W t
h1
,∆W t

h2

and W (t + h1), it is not necessary to recalculate W (t) and W (t + h). Using the value of ∆W t
h1
, we

obtain the value ofW (t+ h1) asW (t+ h1) = ∆W t
h1

+W (t). In the implementation of Algorithm 1,
we define a two-dimensional array to save the pair (t,W (t)) at each time t.

3 Numerical Results

Here, some test problems are examined to check the applicability of the proposed algorithm. In the
absence of an analytical solution for the system (3), we compute an approximation using a very small
fixed step-size href by the numerical method (8), which we call “Reference” solution. Moreover, starting
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Algorithm 1Main steps of the proposed adaptive step-size algorithm
Inputs: start time t0; initial stepsize h0; error tolerance TOL > 0; absolute error Atol and relative error Rtol.
Output: Numerical solution of (3) at discrete points on interval [0, T ].
Step 0: Compute the initial solution by (9).
Step 1: Set n = 1 and tn = tn−1 + hn−1.
Step 2: ComputeXn using (8) as an estimation ofX(tn).
Step 3: Compute EST (tn, hnew,∆W ) using (16) and TOL using (20).
Step 4: If EST (tn, hnew,∆W ) ≤ 0.85× TOL then

hn = hnew,

Xn+1 = 1Xtn+hnew ,

If Edrift(Xn, hnew) ≤ Ediff (Xn, hnew,∆W ) then

hnew = hn ×min

(
1.9,max

(
0.6, 0.8×

(
TOL

Edrift(Xn, hnew)

) 1
2

))
,

else

hnew = hn ×min

(
1.65,max

(
0.6, 0.8×

(
TOL

Ediff(Xn, hnew)

) 2
3

))
.

end
else

If Edrift(Xn, hnew) ≤ Ediff (Xn, hnew,∆W ) then

hnew = hn−1 ×min

(
0.99,max

(
0.1, 0.8×

(
TOL

Edrift(Xn, hnew)

) 1
2

))
,

else

hnew = hn−1 ×min

(
0.99,max

(
0.1, 0.8×

(
TOL

Ediff(Xn, hnew)

) 2
3

))
.

end
If n = 1 then

Set h0 = hnew and go to Step 1,
else

Set hn = hnew and go to Step 3.
end

end
Step 5: Set hn+1 = min{T − tn, hnew}, n = n+ 1 and tn = tn−1 + hn−1.
Step 6: ComputeXn using (8) as an estimation ofX(tn).
Step 7: If tn < T then go to Step 3, else Stop.

from a predefined step size h0, we compute another numerical solution of (3) by applying Algorithm 1,
which we name it “Adaptive” solution.

The total number of accepted and rejected steps of this scenario is used to calculate the following
fixed step size

hfixed =
T − t0
Stried

, (21)
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where the symbol Stried indicates the total number of steps, including rejected and accepted steps during
the execution of the adaptive algorithm. The calculated value of hfixed, is now used to create another
numerical solution, which we refer to as the “Fixed” solution.

Figure 3: Dotted line: solution with adaptive step-size, dashed line: solution with fixed step-size, solid-line:
reference solution with small step-size, for Example 1.

Example 1. In this example, we use the simulation parameters t0 = 0, h0 = 10−3, Atol = 0.001,
Rtol = 0.0005, dtmin = h0, dtmax = 0.1, δ1 = δ2 = 0.3, b11 = 0.95, b12 = 0.15, b13 = 0.1,
b21 = 0.9, b22 = 0.2, b23 = 0.1, τ1 = 1

3 (5 + sin t), τ2 = 1
4 (4 + sin t

2 ), τ3 = 1
2 (6 + 4 sin t

3 ),
τ4 = 1

5 (8+ sin t
4 ), ζ1(θ) = ζ2(θ) = 0.15 for θ ∈ [−5, 0], x∗1 = x∗2 = 0.25, µ2

1 = 0.8 and µ2
2 = 0.2. The

resulted values of Stried and hfixed are 65 and T
65 respectively. As Figure 3 shows, the solution (x1, x2)

tends to the equilibrium state x∗ = (x∗1, x
∗
2), and the proposed adaptive algorithm is more accurate

than the fixed step size to the reference solution. In addition, the number of iterations of the function
calculations in the variable step size algorithm is lower compared to the fixed step size one, which leads
to a reduction in the computational cost and, as a result, an increase in the algorithm execution speed.

Example 2. To demonstrate the influence of user-adjusted parameters on the performance of our pro-
posed algorithm, in this example, numerical results obtained by choosing different values of the maxi-
mum step size control parameter, dtmax, and accuracy parameter, Rtol are reported. Other parameters
are set as in Example 1, except for Atol.

In the literature on adaptive step-size methods, one usually tends to satisfy the following inequality

‖Exact solution− calculated solution‖ < Rtol × |exact solution|+Atol.

Using this fact, in the first iteration of Algorithm 1, starting with an initial guess, a suitable value for
the Atol parameter is calculated. In this order, if the inequality Atol < Rtol ∗ (calculated solution) is
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established, Atol is accepted; otherwise new value Atol = Rtol ∗ (calculated solution) is computed and
the first step of Algorithm 1 is re-run. This process is iterated until convergence.

As Table 1 shows, by decreasing the value of the dtmax, the Stried increases but the number of step-
size rejection cases decreases. Also, by decreasing the value of the Rtol, the Stried and the number of
step-size rejection cases increases. In all cases, the proposed adaptive algorithm is more accurate and
faster than the fixed step size.

Table 1: Numerical results for different values of Rtol and dtmax.

dtmax Rtol Atol Stried Sreject
T
75 0.00001 1.125e− 06 265 21

0.0001 1.125e− 05 135 6

0.001 1.126e− 04 106 1

T
100 0.00001 1.125e− 06 279 14

0.0001 1.125e− 05 151 3

0.001 1.126e− 04 128 1

T
200 0.00001 1.125e− 06 344 19

0.0001 1.125e− 05 228 2

0.001 1.126e− 04 223 2

T
500 0.00001 1.125e− 06 569 13

0.0001 1.125e− 05 514 4

0.001 1.126e− 04 512 2

4 Conclusion

This paper presented a variable step size strategy for a stochastic Lotka-Volterra competitive system
with time delays. The strategy utilizes the Milstein technique for numerical solution and employs two
local error estimators based on the diffusion and drift components of the system to determine and con-
trol the step sizes. The numerical results exhibit higher accuracy of the proposed strategy compared to
a fixed step size mechanism when compared to a reference solution. It would be interesting for future
investigations to explore the combination of the proposed adaptive strategy with other well-known fi-
nite difference methods for solving stochastic models. Additionally, the method presented in this work
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has potential applicability to other biological systems, such as the HIV/AIDS system, the Gilpin-Ayala
system, cancer metastasis models, etc.
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