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1 Introduction

Inspired by [13], we consider the following semi-infinite programming problem (SIP):

Minimize f(x),

s.t.
ft(x) ≤ 0, t ∈ T,

where T is an arbitrary index set, and all the emerging functions f and ft for t ∈ T are locally Lips-
chitz from Rn to R, not necessarily differentiable. If the index set T is finite, the SIP reduces to the
nonsmooth standard optimization problem (OP).

The Karush-Kuhn-Tucker (KKT) necessary optimality conditions for OP can be derived using dif-
ferent constraint qualifications (CQs). For an investigation and comparison of these CQs in both smooth
and non-smooth scenarios, refer to [5, 24]. We recall that the CQs are generally divided into two cat-
egories: geometric CQs and algebraic CQs. Geometric CQs are generally weaker than algebraic CQs,
but their main drawback is that verifying their validity requires the calculation of a special tangent cone
of the feasible set of OP, which is typically very difficult. In contrast, algebraic CQs have wider and
simpler applications than geometric CQs.

The KKT necessary optimality conditions for SIP have been studied extensively in the literature,
covering linear [6], convex and D.C. (difference of convex functions) [12], smooth [3, 4, 9], and nons-
mooth cases [7, 11, 13, 14, 15, 16, 17, 18, 19, 28], as well as nonsmooth fractional and minimax cases
[1, 25, 26].

In the existing works, almost all the CQs defined for SIP are geometric, and to the best of our
knowledge, there are only a few references considering algebraic CQs for SIP. The first goal of this
paper is to introduce two algebraic CQs for SIP in the Mangasarian-Fromovitz type. The second goal is
to present necessary optimality conditions for SIP under these CQs and compare them with geometric
CQs introduced in [13]. The third goal is to introduce a new category of generalized convex functions,
where the necessary KKT condition for optimality becomes a sufficient condition.

The structure of the subsequent sections is as follows. In Section 2, we define the required defini-
tions, theorems and relations of non-smooth analysis. In Section 3, we will introduce various constraint
qualifications for nonsmooth SIP and present relations between the defined constraint qualifications and
necessary optimality conditions. Section 4 focuses on sufficient optimality conditions for SIP, and Sec-
tion 5 contains a short conclusion.

2 Notations and Preliminaries

In this section, we briefly introduce some notations, basic definitions, and standard preliminaries that
will be used throughout the text.

The standard inner product of two vectors x, y ∈ Rn is denoted by 〈x, y〉, and the zero vector of Rn

is denoted by 0n. Given a nonempty set D ⊆ Rn, the notations D, conv(D), and cone(D) represent
the closure of D, the convex hull of D, and the convex cone generated by D (containing the origin),
respectively.
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Theorem 1. [5]. Let D ⊆ Rn be given:

i. If D is compact, then conv(D) is also compact.

ii. If D is finite, then cone(D) is closed.

It is established in [5] that if Π := {Ci | i ∈ I} is a collection of convex sets in Rn, then:

conv
(⋃
i∈I

Ci

)
=
{ n+1∑

r=1

µrcir | cir ∈ Cir , µr ≥ 0,

n+1∑
r=1

µr = 1
}
. (1)

Let ϑ : Rn → R be a convex function, i.e.,

ϑ
(
µx+ (1− µ)y

)
≤ µϑ(x) + (1− µ)ϑ(y), ∀x, y ∈ Rn, µ ∈ [0, 1],

the subdifferential of ϑ at x0 ∈ Rn is defined as:

∂ϑ(x0) := {ξ ∈ Rn | ϑ(x)− ϑ(x0) ≥ 〈ξ, x− x0〉, ∀x ∈ Rn}.

Theorem 2. [5]. If the convex function ϑ : Rn → R attains its minimum on Rn at x0 ∈ Rn, then
0n ∈ ∂ϑ(x0).

The function φ : Rn → R is said to be locally Lipschitz if for each x0 ∈ Rn, there exist a neigh-
borhood Ux0

of x0 and a positive number LUx0 > 0 such that

|φ(x)− φ(y)| ≤ LUx0 ‖x− y‖, ∀x, y ∈ Ux0 .

Let x0 ∈ Rn and let φ : Rn → R be a locally Lipschitz function. The Michel-Penot (M-P) directional
derivative of φ at x0 in the direction ν ∈ Rn introduced in [22] is given by:

φMP(x0; ν) := sup
w∈Rn

lim sup
α↓0

φ(x0 + αν + αw)− φ(x0 + αw)

α
,

and the M-P subdifferential of φ at x0 is defined as:

∂MPφ(x0) :=
{
ξ ∈ Rn | 〈ξ, ν〉 ≤ φMP(x0; ν) for all ν ∈ Rn

}
.

The M-P subdifferential is a natural generalization of the derivative, as it is known (see [22]) that
when the function ψ is differentiable at x0, then ∂MPψ(x0) = {∇ψ(x0)}. Furthermore, ∂MPϑ(x0) =

∂ϑ(x0) for the convex function ϑ : Rn → R.
The following theorem summarizes some important properties of the M-P directional derivative and

the M-P subdifferential from [22, 23] which are widely used in the subsequent discussions.

Theorem 3. [22]. Let φ1 and φ2 be locally Lipschitz functions from Rn to R, and x0 ∈ Rn. Then, the
following assertions hold:

i. The following equalities and inclusions are valid:

φMP
1 (x0; ν) = max

{
〈ξ, ν〉 | ξ ∈ ∂MPφ1(x0)

}
, (2)

∂MP
(
max{φ1, φ2}

)
(x0) ⊆ conv

(
∂MPφ1(x0) ∪ ∂MPφ2(x0)

)
, (3)

∂MP(α1φ1 + α2φ2)(x0) ⊆ α1∂MPφ1(x0) + α2∂MPφ2(x0), ∀α1, α2 ∈ R. (4)

ii. The function ν → φMP
1 (x0; ν) is finite, positively homogeneous, and subadditive on Rn, and

∂
(
φMP
1 (x0; ·)

)
(0n) = ∂MPφ1(x0). (5)

iii. ∂MPφ1(x0) is a nonempty, convex, and compact subset of Rn.



56 On Constraint Qualifications and Optimality Conditions.../ COAM, 9 (2), Summer-Autumn (2024)

3 Qualification and Necessary Conditions

As a starting point, we assume that the feasible set of SIP is non-empty:

Ω :=
{
x ∈ R | ft(x) ≤ 0, ∀t ∈ T

}
6= ∅.

For a given x̂ ∈ Ω, the index set of all active constraints at x̂ is denoted by

T (x̂) :=
{
t ∈ T | ft(x̂) = 0

}
,

Additionally, we define the function

Ψ(x) := sup
t∈T

ft(x), ∀x ∈ Ω. (6)

One reason for the difficulty in extending results from OP to the SIP is that if T = {1, . . . ,m}, the
sup-function Ψ(·) reduces to the max-function, and hence, it is locally Lipschitz. In this case, we have

∂MPΨ(x) ⊆ conv
( ⋃

t∈T (x)

∂MPft(x)
)
, ∀x ∈ Ω,

but these properties do not necessarily hold for the SIP.
The following concept, known as the Pshenichnyi-Levin-Valadire (PLV) property, was introduced

by Kanzi [11] for the first time:

Definition 1. We say that the SIP has the PLV property at x̂ ∈ Ω, if Ψ(·) is Lipschitz around x̂, and

∂MPΨ(x̂) ⊆ conv
( ⋃

t∈T (x̂)

∂MPft(x̂)
)
.

Remark 1. Reference [11] presents an interesting sufficient condition that ensures the satisfaction of
the PLV property.

From [5], we recall that for a differentiable OPwith T = {1, 2, . . . ,m}, theMangasarian-Fromovitz
CQ (MFCQ) holds at x̂ if there exists a vector u∗ ∈ R such that

〈∇ft(x̂), u∗〉 < 0, ∀t ∈ T (x̂).

It can be shown that this condition is equivalent to the following implication (see, e.g., [5]):∑
t∈T (x̂)

µt∇ft(x̂) = 0n, µt ≥ 0 ∀t ∈ T (x̂) ⇒ µt = 0 ∀t ∈ T (x̂).

We now extend the MFCQ to SIP in two different forms.

Definition 2. Suppose that the PLV property holds at a point x̂ ∈ Ω. We say that SIP satisfies:

i. the strong MFCQ (SMFCQ) at x̂ if we can find a vector u∗ ∈ Rn such that:

〈ξt, u∗〉 < 0, ∀ξt ∈ ∂MPft(x̂), ∀t ∈ T (x̂). (7)



Hassani Bafrani/ COAM, 9 (2), Summer-Autumn (2024) 57

ii. the weakMFCQ (WMFCQ) at x̂ if for each finite index set T ∗ ⊆ T (x̂), the following implication
is true:

0n ∈
∑
t∈T∗

µt∂MPft(x̂), µt ≥ 0, ∀t ∈ T ∗ ⇒ µt = 0, ∀t ∈ T ∗. (8)

We observe that there is no direct implication between the PLV property and the conditions (7) and
(8). The PLV property may hold for any finite index set T , but SIP may still not satisfy (7) or (8).
Conversely, the following example demonstrates the problem that satisfies both the (7) and (8) at x̂ = 0,
but the PLV property does not hold at this point.

Example 1. Let T = N, x̂ = 0, f(x) = |x|, and

ft(x) =


10x− 5

t+1 , if t is odd,
12x, if t = 2,

14x− 3
t , if t ≥ 4 and t is even.

Then, T (x̂) = {2}, ∂MPf2(x̂) = {12}, and we have

〈12, u∗〉 < 0, for all u∗ ∈ (−∞, 0),

0 ∈ µ2∂MPf2(x̂) ⇒ 12µ2 = 0 ⇒ µ2 = 0.

Therefore, SIP satisfies both (7) and (8) at x̂. However, a simple calculation shows that:

Ψ(x) =

{
14x, if x ≥ 0,

10x, if x < 0,
⇒

∂MPΨ(x̂) = [10, 14] ⊈ {12} = ∂MPf2(x̂) = conv
( ⋃

t∈T (x̂)

∂MPft(x̂)
)
.

Hence, the PLV property is not satisfied in this example.

The following theorem establishes the relationship between SMFCQ and WMFCQ at the given
feasible point x̂ ∈ Ω.

Theorem 4. Let x̂ ∈ Ω be given a feasible point. Then, the SMFCQ holds at x̂ implies the WMFCQ
also holds at x̂.

Proof. Since the SMFCQ holds at x̂, there exists a vector u∗ ∈ R such that:

〈ξt, u∗〉 < 0, ∀ξt ∈ ∂MPft(x̂), ∀t ∈ T (x̂). (9)

Assume that there exists a finite index set T ∗ ⊆ T and the non-negative scalars µt as t ∈ T ∗ such that

0n ∈
∑
t∈T∗

µt∂MPft(x̂).

Consequently,
∑
t∈T∗

µtξt = 0n for some ξt ∈ ∂MPft(x̂) as t ∈ T ∗. Multiplying both sides of this

equation by u∗ gives: ∑
t∈T∗

µt〈ξt, u∗〉 = 〈0n, u∗〉 = 0.

Due to the non-negativity of µt and (9), the last equality can only hold when µt = 0 for all t ∈ T ∗.
Therefore , the WMFCQ holds at x̂.
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The following definition, introduced by Kanzi and Nobakhtian [16], is required to establish the
converse of Theorem 4.

Definition 3. Let □ ∈
{
<,≤, >,≥,=

}
, and consider the following inequality or equality system:

Ξ :=
{
ϕℓ(x) □ 0 | ℓ ∈ L

}
,

where L is an arbitrary index set, and ϕℓ : Rn → R is a given function for each ℓ ∈ L. For each finite
subset L0 with L0 ⊆ L, we define the following subsystem:

Ξ0 :=
{
ϕℓ(x) □ 0 | ℓ ∈ L0

}
.

We say that Ξ is compactable if the non-emptiness of the feasible set of all its finite subsystems
Ξ0 implies the non-emptiness of its own feasible set. In other words, Ξ is compactable if the following
assertion holds: “ If Ξ0 has a solution for each finite index set L0 ⊆ L, then Ξ has a solution.”

Obviously, each finite system (i.e., the system Ξ with a finite index set L) is automatically com-
pactable. The following example from Kanzi and Nobakhtian [16] shows that there are some non-
compactable systems with an infinite index set L.

Example 2. Let L = N and ϕℓ(x) = ℓ + x ≤ 0 for all ℓ ∈ N. It is easy to check that if L0 is a finite
subset of L, then x∗ = −max{ℓ | ℓ ∈ N} is a solution of Ξ0, but Ξ has no solution. Thus, Ξ is a
non-compactable system.

Theorem 5. Let x̂ ∈ Ω be given, and
{
fMP
t (x̂; d) < 0 | t ∈ T (x̂)

}
be a compactable system with

respect to d. Then, the WMFCQ implies the SMFCQ at x̂.

Proof. Suppose that WMFCQ holds at x̂. We first prove that for any given t1 ∈ T (x̂), there exists a
vector d∗ ∈ Rn such that

fMP
t1 (x̂; d∗) < 0. (10)

Suppose, on the contrary, that fMP
t1 (x̂; d) ≥ 0 for all d ∈ Rn. From this and the fact that fMP

t1 (x̂; 0n) =

0, we understand that d̂ := 0n is a solution for the following optimization problem:

min
d∈Rn

fMP
t1 (x̂; d).

Since the objective function of the above problem is convex, Theorem 2 deduces that

0n ∈ ∂
(
fMP
t1 (x̂, ·)

)
(0n) = ∂MPft1(x̂),

which contradicts the WMFCQ assumption. Hence, (10) holds for some d∗ ∈ Rn.
Now, we claim that for any two indexes t1, t2 ∈ T (x̂), there exists a vector d∗ ∈ Rn such that

fMP
t1 (x̂; d∗) < 0,

fMP
t2 (x̂; d∗) < 0.

Suppose, on the contrary, that fMP
t2 (x̂; d) ≥ 0 for all vector d ∈ Rn satisfying fMP

t1 (x̂; d∗) < 0. This
implies that d̂ := 0n is a solution to the following convex optimization problem:
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Minimize fMP
t2 (x̂; d)

s.t.
fMP
t1 (x̂; d) ≤ 0.

From this problem and (5), we can find some non-negative scalars µt1 and µt2 such that (µt1 , µt2) 6=
02 and

0n ∈ µ2∂
(
fMP
t2 (x̂, ·)

)
(0n) + µ1∂

(
fMP
t1 (x̂, ·)

)
(0n) = µt2∂

MPft2(x̂) + µt1∂
MPft1(x̂),

which contradicts WMFCQ.
Now, the mathematical induction concludes that for each finite index set T ∗ ⊆ T (x̂) there exists a

vector d∗ ∈ Rn such that
fMP
t (x̂, d∗) < 0, for all t ∈ T ∗.

Finally , the compactable assumption of
{
fMP
t (x̂; d) < 0 | t ∈ T (x̂)

}
implies that there is a u∗ ∈ Rn

such that
fMP
t (x̂, u∗) < 0, for all t ∈ T (x̂).

Hence, owning to (2) we have:

〈ξt, u∗〉 ≤ max
ζ∈∂MPft(x̂)

〈ζ, u∗〉 = fMP
t (x̂, u∗) < 0, ∀ξt ∈ ∂MPft(x̂), ∀t ∈ T (x̂),

and the proof is complete.

The following theorem gives a KKT necessary condition at optimal solution of SIP under the WM-
FCQ.

Theorem 6. Let x̂ be an optimal solution for SIP. If WMFCQ holds at x̂, we can find a finite index set
T ∗ ⊆ T (x̂) and non-negative scalars µt for t ∈ T ∗ such that

0n ∈ ∂MPf(x̂) +
∑
t∈T∗

µt∂MPft(x̂).

Proof. According to (6), the feasible set of the SIP can be written as

Ω =
{
x ∈ Rn | Ψ(x) ≤ 0

}
.

Therefore, x̂ is an optimal solution for the following optimization problem:

Minimize f(x)

s.t. Ψ(x) ≤ 0.

Since the objective function f and the constraint function F are Lipschitz near x̂, the well-known Fritz-
John necessaty optimality condition [5] concludes that:

0n ∈ β0∂MPf(x̂) + β1∂MPΨ(x̂),

for some non-negative scalars β0, β1 such that β0 + β1 = 1. This inclusion and the PLV property imply
that:
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0n ∈ β0∂MPf(x̂) + β1conv
( ⋃

t∈T (x̂)

∂MPft(x̂)
)
.

Hence, we can find a finite index set T ∗ ⊆ T (x̂) and γt ≥ 0 for t ∈ T ∗ such that
∑
t∈T∗

γt = 1 and:

0n ∈ β0∂MPf(x̂) + β1
∑
t∈T∗

γt∂MPft(x̂).

We claim that β0 6= 0. Otherwise, if β0 = 0, then β1 = 1 by β0+β1 = 1. Thus the above inclusion
and WMFCQ assumption would imply γt = 0 for all t ∈ T̂ , which contradicts

∑
t∈T∗

γt = 1, and our

claimed is proved. The result is deduced by setting:

µt :=
β1γt
β0

, ∀t ∈ T̂ ∗.

As mentioned in the Introduction section, Kanzi [13, Theorem 5] has presented the KKT necessary
optimality condition for the SIP under the first regularity condition(RC1), defined as follows:

Definition 4. [13, Definition 1] Let x̂ ∈ Ω. We say that the first regularity condition (RC1) holds at x̂
if: {

ν ∈ Rn | 〈ν, ξ〉 ≤ 0, ∀ξ ∈
⋃

t∈T (x̂)

∂MPft(x̂)
}
⊆ KΩ(x̂),

whereKΩ(x̂) denotes the contingent cone of Ω at x̂, defined by:

KΩ(x̂) :=
{
ν ∈ Rn | ∃tr ↓ 0, ∃νr → ν such that x̂+ trνr ∈ Ω, ∀r ∈ N

}
.

Theorem 7. [13, Theorem 5] Suppose that x̂ is an optimal solution of SIP and the RC1 holds at x̂. If
the following set is closed,

cone
( ⋃

t∈T (x̂)

∂MPft(x̂)
)
, (11)

then we can find a finite index set T ∗ ⊆ T (x̂) and non-negative scalars µt as t ∈ T ∗ such that:

0n ∈ ∂MPf(x̂) +
∑
t∈T∗

µt∂MPft(x̂).

We observe that the restrictive assumption in Theorem ?? is the closedness of the cone expressed
in (11). If the active index set T (x̂) is finite and the functions ft for t ∈ T (x̂) are continuously dif-
ferentiable, then

⋃
t∈T (x̂)

∂MPft(x̂) is a finite subset of Rn, and hence, cone
( ⋃

t∈T (x̂)

∂MPft(x̂)
)
is closed

by Theorem 1. However, in the general case where the index set T (x̂) is infinite or ∂MPft(x̂) contains
infinite many elements for some t ∈ T (x̂), the closedness of the cone expressed in (11) is a very restric-
tive assumption, which reduces the effectiveness of Theorem 7. Another issue in using Theorem 7 is
the necessity of calculating the contingent coneKΩ(x̂), which is generally difficult, especially when Ω
is non-convex. These two basic problems reduce the effectiveness of the above theorem and showcase
the strength of Theorem 6. The following theorem demonstrates that the RC1 condition is weaker than
SMFCQ at each feasible point of the SIP.



Hassani Bafrani/ COAM, 9 (2), Summer-Autumn (2024) 61

Theorem 8. If the SMFCQ holds at x̂ ∈ Ω, then the RC1 condition is satisfied at x̂.

Proof. Since the SMFCQ holds at x̂, there exists a vector u∗ ∈ R such that:

〈ξt, u∗〉 < 0, ∀ξt ∈ ∂MPft(x̂), ∀t ∈ T (x̂). (12)

Let ξ ∈ conv
( ⋃

t∈T (x̂)

∂MPft(x̂)
)
be given arbitrarily. According to (1), there exist ξt1 , . . . , ξtn+1 ∈⋃

t∈T (x̂)

∂MPft(x̂) and non-negative scalars αt1 , . . . , αtn+1
such that:

ξ =

n+1∑
ℓ=1

αtℓξtℓ , and
n+1∑
ℓ=1

αtℓ = 1.

Using (12), we have:

〈ξ, u∗〉 =
〈 n+1∑

ℓ=1

αtℓξtℓ , u
∗
〉
=

n+1∑
ℓ=1

αtℓ〈ξtℓ , u∗〉 < 0, ∀ξ ∈ conv
( ⋃

t∈T (x̂)

∂MPft(x̂)
)
.

This inequality and the PLV property imply that 〈ξ, u∗〉 < 0 for all ξ ∈ ∂MPΨ(x̂), and hence,
ΨMP(x̂;u∗) < 0 by (2). Now, employing the definition of M-P subdifferential, we get:

lim sup
α↓0

Ψ(x̂+ αu∗)−Ψ(x̂)

α
≤ ΨMP(x̂;u∗) < 0.

Hence, there exists a scalar ε > 0 such that:

ft(x̂+ αu∗) ≤ Ψ(x̂+ αu∗) < Ψ(x̂) ≤ 0, ∀ α ∈ (0, ε), ∀t ∈ T.

This means that x̂+αu∗ ∈ Ω for all α ∈ (0, ε), and hence u∗ ∈ KΩ(x̂). Since u∗ was arbitrarily chosen
to satisfy (12), we have:{

ν ∈ Rn | 〈ν, ξ〉 < 0, ∀ξ ∈
⋃

t∈T (x̂)

∂MPft(x̂)
}
⊆ KΩ(x̂).

After performing the closure on both sides of the above inclusion, considering the closedness of
KΩ(x̂), and recalling the following equality:{

ν ∈ Rn | 〈ν, ξ〉 ≤ 0, ∀ξ ∈
⋃

t∈T (x̂)

∂MPft(x̂)
}

=
{
ν ∈ Rn | 〈ν, ξ〉 < 0, ∀ξ ∈

⋃
t∈T (x̂)

∂MPft(x̂)
}
,

we conclude that:{
ν ∈ Rn | 〈ν, ξ〉 ≤ 0, ∀ξ ∈

⋃
t∈T (x̂)

∂MPft(x̂)
}
⊆ KΩ(x̂) = KΩ(x̂).

Hence, the RC1 condition holds at x̂, and the proof is complete.
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4 Sufficient Conditions

To find sufficient conditions, we need the following definition.

Definition 5. Assume that η : Rn × Rn → Rn and ψ : Rn × Rn → [0,+∞) are given functions. A
locally Lipschitz function h̄ : Rn → R is said to be (η, ψ)-invex at x0 ∈ Rn if for each x ∈ Rn one has:

h̄(x)− h̄(x0) ≥ 〈ζ, η(x, x0)〉+ ψ(x, x0), ∀ζ ∈ ∂MPh̄(x0).

Remark 2. From Definition 5, the following special cases arise:

• If ψ(x, x0) = 0 and η(x, x0) = x− x0, we obtain the definition of a convex function.

• If ψ(x, x0) = 0, we obtain the definition of a η-invex function (see [8] in differentiable case, and
[20] in nonsmooth case).

• If ψ(x, x0) = 0 and η(x, x0) = ϑ(x,x0)
b(x,x0)

for some ϑ : Rn × Rn → [0,+∞) and b : Rn × Rn →
(0,+∞), we obtain the definition of a bϑ-invex function, introduced in [21].

• If ψ(x, x0) = ρ‖x − x0‖2 and η(x, x0) = x − x0 for some ρ ∈ [0,+∞), then (η, ψ)-invexity
reduces to the definition of a nonsmooth ρ-convex function defined by Vial [27].

• If ψ(x, x0) = ρ‖θ(x, x0)‖2 for some ρ ∈ [0,+∞) and θ : Rn × Rn → Rn \ {0n}, then (η, ψ)-
invexity reduces to the definition of a nonsmooth ρ-invex function, introduced by Jeyakumar
[10].

From the above notions, it follows that the following theorem extends the corresponding existing
results in the literature, see, for instance, [28, Theorem 4.1] and [2, Theorems 4.3 and 4.4].

Theorem 9. Let x̂ ∈ Ω be a feasible point. Suppose that there exist a finite index set T ∗ ⊆ T (x̂) and
non-negative scalars µt as t ∈ T ∗ such that

0n ∈ ∂MPf(x̂) +
∑
t∈T∗

µt∂MPft(x̂). (13)

If f and ft as t ∈ T ∗ are (η, ψ)-invex functions at x̂, then x̂ is an optimal solution for SIP.

Proof. According to (13), there exist some ξ ∈ ∂MPf(x̂) and ξt ∈ ∂MPft(x̂) for t ∈ T ∗ such that

ξ +
∑
t∈T∗

µtξt = 0n. (14)

Since for each t ∈ T ∗ and each x ∈ Ω, we have ft(x) ≤ 0 = ft(x̂), the (η, ψ)-invexity of ft at x̂
implies that

0 ≥ ft(x)− ft(x̂) ≥ 〈ξt, η(x, x̂)〉+ ψ(x, x̂),

where the last inequality holds by (14). This means( ∑
t∈T∗

µt

)
ψ(x, x̂) ≤ 〈ξ, η(x, x̂)〉 .

This inequality, along with the non-negativity of ψ(x, x̂), and the (η, ψ)-invexity of f at x̂ leads to
the conclusion that
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0 ≤
(
1 +

∑
t∈T∗

µt

)
ψ(x, x̂) ≤ 〈ξ, η(x, x̂)〉+ ψ(x, x̂) ≤ f(x)− f(x̂),

and hence, f(x̂) ≤ f(x). Since x was an arbitrary feasible point for the SIP, the last inequality implies
that x̂ is an optimal solution for the SIP.

At the final point, we note that similarly to Caristi and Kanzi [2], we can now define (η, ψ)-pseudo-
invex and (η, ψ)-quasi-invex functions, receptively, and also obtain a generalization of Theorem 9 as
follows.

Definition 6. Assume that η : Rn × Rn → Rn and ψ : Rn × Rn → [0,+∞) are given functions.

i. A locally Lipschitz function h̄ : Rn → R is said to be (η, ψ)-pseudo-invex at x0 ∈ Rn if for each
x ∈ Rn one has:

h̄(x)− h̄(x0) < 0 ⇒ 〈ζ, η(x, x0)〉+ ψ(x, x0) < 0, ∀ζ ∈ ∂MPh̄(x0).

ii. A locally Lipschitz function h̄ : Rn → R is said to be (η, ψ)-quasi-invex at x0 ∈ Rn if for each
x ∈ Rn one has:

h̄(x)− h̄(x0) ≤ 0 ⇒ 〈ζ, η(x, x0)〉+ ψ(x, x0) ≤ 0, ∀ζ ∈ ∂MPh̄(x0).

Since the proof of the following theorem is similar to Theorem 9, we omit it.

Theorem 10. Let x̂ ∈ Ω be a feasible point. Suppose that there exists a finite index set T ∗ ⊆ T (x̂) and
non-negative scalars µt as t ∈ T ∗ such that:

0n ∈ ∂MPf(x̂) +
∑
t∈T∗

µt∂MPft(x̂).

If f is (η, ψ)-pseudo-invex and ft for t ∈ T ∗ are (η, ψ)-quasi-invex functions at x̂, then x̂ is an optimal
solution for SIP.

5 Conclusion

In this paper, we have introduced several geometric constraint qualifications for nonsmooth semi-infinite
programming problems (SIPs). We have presented the necessary optimality conditions for the SIPs under
the proposed constraint qualifications. Furthermore, we have introduced the concept of (η, ψ)-invexity
for locally Lipschitz functions, and leveraged this notion to establish a sufficient optimality condition
for the SIP. The (η, ψ)-invexity property provides a generalization of convexity that allows for a broader
class of functions to satisfy the sufficient optimality condition. This expanded class of functions can
lead to improved modeling capabilities and solution methods for a variety of nonsmooth SIP problems
encountered in practical applications.
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