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1 Introduction

In 2020, Mehlitz [13] introduced a class of complex optimization problems called “mathematical pro-
gramming with switching constraints” (MPSC). After defining the MPSC problem and establishing
the optimality conditions, known as stationary conditions, this topic has been of interest to several re-
searchers in both the smooth [7, 10, 11, 12, 13, 15, 17] and nonsmooth [3, 4] cases.

In this paper, we consider the following MPSC:

(∆) :

Minimize f(x)

s.t.
Gi(x)Hi(x) = 0, i ∈ I = {1, . . . , p},

where functions f,Hi, Gi : Rn −→ R are continuously differentiable for all i ∈ I . It is important to
note that MPSC generalizes two well-known classes of optimization problems: called “Mathematical
programming with equilibrium constraints” (MPEC [2, 14]) and “Mathematical programming with van-
ishing constraints” (MPVC [1, 8, 9]). The product function Gi(x)Hi(x) is typically nonconvex, even
when Gi(x) and Hi(x) are convex. Consequently, the feasible set of MPSC is nonconvex and, unlike
convex sets, has multiple normal cones. The Fréchet and Mordukhovich normal cones are two of the
most important normal cones for nonconvex sets, and they are used to define the “strong stationarity con-
dition” and the “M-stationarity condition”, respectively, as optimality conditions for MPSC. Estimating
these normal cones of the feasible set of problem∆ is an important research topic in MPSC theory. The
Fréchet normal cone of the feasible set of MPSCs has been estimated in [6], and this paper focuses on
estimating the Mordukhovich normal cone of the feasible set of problem ∆. It should be noted that the
strong stationarity condition and M-stationarity conditions have been presented in [3, 4, 13, 15] using
some geometric constraint qualifications (in Abadie and Goignard types) for specific MPSC problems.
Since the geometric constraint qualifications are based on tangent cones, which are often difficult to cal-
culate, introduction of some algebraic constraint qualifications and the calculation of mentioned normal
cones are of great practical importance, and this paper focuses on this important issue.

We organize the paper as follows. In Section 2, we provide the preliminary results to be used in the
rest of the paper. Section 3 contains the main results, includingMPSC-No Nonzero Abnormal Multiplier
Constraint Qualification, upper approximations for the Mordukhovich normal cone of the feasible set of
∆, and necessary M-stationarity conditions for problem∆. Section 4 includes a conclusion an overview
of the content of the presented paper.

2 Notations and Preliminaries

In this section, we introduce some notations and preliminary results from [16] that will be used through-
out the paper. Let Y 6= ∅ be a subset of Rp and ŷ ∈ Y . The Bouligand tangent (or contingent) cone of
Y at ŷ is defined as:

Γ(Y, ŷ) :=
{
u ∈ Rp | ∃tℓ ↓ 0, ∃uℓ → u such that ŷ + tℓuℓ ∈ Y, ∀ℓ ∈ N

}
.
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The Fréchet (or regular) normal cone and the Mordukhovich (or limiting) normal cone of Y at ŷ are
respectively defined as:

NF (Y, ŷ) :=
{
y ∈ Rp | 〈y, u〉 ≤ 0, for all u ∈ Γ(Y, ŷ)

}
,

NM (Y, ŷ) := lim sup
y→ŷ

NF (Y, y),

where 〈·, ·〉 denotes the standard inner product in Rp, and the limsup in the latter definition represents
the outer set-limit, i.e.,

lim sup
y→ŷ

NF (Y, y) :=
{
v ∈ Rp | ∃yℓ → ŷ, ∃vℓ → v, with vℓ ∈ NF (Y, yℓ) as ℓ→∞

}
.

Theorem 1. [16, Theorem 6.12] If the continuously differentiable function φ : Rp → R attains its
minimum on Y ⊆ Rp at ŷ ∈ Y , then

−∇φ(ŷ) ∈ NF (Y, ŷ) ⊆ NM (Y, ŷ).

Here, ∇φ(ŷ) denotes the gradient of function φ(·) at ŷ. This inclusion can be written as:

0p ∈ {∇φ(ŷ)}+NF (Y, ŷ) ⊆ {∇φ(ŷ)}+NM (Y, ŷ),

where 0p denotes the zero vector in Rp.

We recall from [16, Theorem 6.41] that if Y ⊆ Rp, Z ⊆ Rq , and (ŷ, ẑ) ∈ Y × Z, then

NM

(
Y × Z, (ŷ, ẑ)

)
= NM

(
Y, ŷ

)
×NM

(
Z, ẑ

)
. (1)

Theorem 2. [5, Corollary 3.4] Assume that the set-valued mappingM : Rp ⇒ Rq is given by

M(y) := {x ∈ Rq | Ψ(x, y) ∈ E},

where the function Ψ : Rq × Rp → Rs is continuously differentiable and E ⊆ Rs is closed. If
x0 ∈M(y0) and{

∇x〈ν,Ψ(·, ·)〉(x0, y0) | 0s 6= ν ∈ NM (E,Ψ(x0, y0))
}
∩ {0q} = ∅,

thenM is calm at (y0, x0), i.e., there exist some L > 0 and neighborhoods U and V around x0 and y0,
respectively, such that

d
(
M(y0), x

)
≤ L‖y − y0‖, for all y ∈ V, x ∈ U ∩M(y),

where d
(
M(y0), x

)
denotes the distance between x andM(y0).

Theorem 3. [5, Theorem 4.1] Assume that the set-valued mappingM : Rp ⇒ Rq is defined by

M(y) := {x ∈ Rp | Φ(x) + y ∈ E},

where the function Φ : Rp → Rq is continuously differentiable and E ⊆ Rq is closed. If x0 ∈ M(0q)

andM is calm at (0q, x0), then

NM

(
M(0q), x0

)
⊆
{
∇
〈
ν,Φ(·)

〉
(x0) | ν ∈ NM

(
E,Φ(x0)

)}
.
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3 Main Results

Throughout this paper, we will suppose that the feasible set of (∆), denoted by S, is nonempty, i.e.,

S = {x ∈ Rn | Gi(x)Hi(x) = 0, i ∈ I} 6= ∅.

Considering a feasible point x̂ ∈ S (this point will be fixed throughout this paper), we define fol-
lowing index sets:

IG := {i ∈ I | Gi(x̂) = 0, Hi(x̂) 6= 0},

IH := {i ∈ I | Gi(x̂) 6= 0, Hi(x̂) = 0},

IGH := {i ∈ I | Gi(x̂) = 0, Hi(x̂) = 0}.

Let us define the set:

D :=
{
(a, b) ∈ R2 | ab = 0

}
=
{
(0, b) ∈ R2 | b 6= 0

}
∪
{
(a, 0) ∈ R2 | a 6= 0

}
∪ {02}. (2)

Employing [13, Lemma 3.2], we deduce that:

Γ
(
D, (0, b)

)
= {0} × R, for all b 6= 0,

Γ
(
D, (a, 0)

)
= R× {0}, for all a 6= 0,

Γ
(
D, 02

)
= D,

and hence, 

NF

(
D, (0, b)

)
= R× {0}, for all b 6= 0,

NF

(
D, (a, 0)

)
= {0} × R, for all a 6= 0,

NF

(
D, 02

)
= {02}.

(3)

Consequently, we have:

NF

(
D, (a, b)

)
⊆ D, for all (a, b) ∈ D. (4)

For calculating the Mordukhovich normal cone of D at (a, b) ∈ D the following two lemmas are
required. Note that the counterpart of the following lemma for MPVC is presented in [1].

Lemma 1. Assume that D is defined as in (2). Then,

NM

(
D, 02

)
= D.

Proof. It is enough to prove the inclusions ⊆ and ⊇.
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“⊆”: Suppose that w ∈ NM

(
D, 02

)
is arbitrarily given. In view of the definition of the Mordukhovich

normal cone, we can find some sequences {(ak, bk)} ⊆ D converging to 02 and {wk} ⊆ R2

converging to w such that wk ∈ NF

(
D, (ak, bk)

)
for all k ∈ N, and hence wk ∈ D for all k ∈ N

by (4). Since D is a closed set, the limiting element w also belongs to D. This gives the desired
inclusion.

“⊇”: Let w ∈ D. Thus, (2) implies that w = (0, b) for some b 6= 0 or w = (a, 0) for some a 6= 0 or
w = 02.

• If w = (0, b) for some b 6= 0, then there exists a sequence {(0, bk)} converging to w such
that bk 6= 0 for all k ∈ N. Since (0, bk) ∈ NF

(
D, ( 1k , 0)

)
for all k ∈ N by (3), and since

{( 1k , 0)} converges to 02 as k →∞, we have w ∈ NM

(
D, 02

)
, as required.

• If w = (a, 0) for some a 6= 0, then there exists a sequence {(ak, 0)} converging to w such
that ak 6= 0 for all k ∈ N. Since (ak, 0) ∈ NF

(
D, (0, 1k )

)
for all k ∈ N by (3), and since

{(0, 1k )} converges to 02 as k →∞, we have w ∈ NM

(
D, 02

)
, as required.

• Because of NM

(
D, 02

)
is a cone, we have w ∈ NM

(
D, 02

)
if w = 02.

The proof is complete.

Lemma 2. Assume that D is defined as in (2). Then,
NM

(
D, (0, b)

)
= R× {0}, for all b 6= 0,

NM

(
D, (a, 0)

)
= {0} × R, for all a 6= 0,

Proof. Since the proofs of the both equalities are similar, we just prove the second one.

“⊆”: Suppose that w ∈ NM

(
D, (a, 0)

)
is arbitrarily given. Thus, there exist some sequences

{(ak, bk)} ⊆ D converging to (a, 0) and {wk} ⊆ R2 converging to w such that wk ∈
NF

(
D, (ak, bk)

)
for all k ∈ N. We can suppose that ak 6= 0 for all k ∈ N, and hence bk = 0 by

(ak, bk) ∈ D. Consequently, owing to (3), we obtain that

wk ∈ NF

(
D, (ak, 0)

)
= {0} × R, ∀k ∈ N,

and hence, w ∈ {0} × R by closedness of {0} × R.

“⊇”: Let w ∈ {0} × R. So, w = (0, a) for some a 6= 0 or w = 02.

• If w = (0, a) for some a 6= 0, then there exists a sequence {(0, ak)} converging to w such
that ak 6= 0 for all k ∈ N. Since

(0, ak) ∈ {0} × R = NF

(
D, (ak, 0)

)
, ∀k ∈ N,

by (3), and since {(ak, 0)} converges to (a, 0) as k →∞, thenw = (a, 0) ∈ NM

(
D, (0, a)

)
,

as required.

• If w = 02, then w ∈ NM

(
D, (0, a)

)
by conicity of NM

(
D, (0, a)

)
.
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The following theorem is a direct consequence of Lemmas 1 and 2.

Theorem 4. Assume that D is defined as in (2). Then, the following statements hold:

NM

(
D, (0, b)

)
= R× {0}, for all b 6= 0,

NM

(
D, (a, 0)

)
= {0} × R, for all a 6= 0,

NM

(
D, 02

)
= D.

Now, we recall the following definition from [13, Definition 4.2].

Definition 1. We say that the “MPSC-No Nonzero Abnormal Multiplier Constraint Qualification”
(MPSC-NNAMCQ) is satisfied at a given point x̂ if the following implication holds:∑

i∈IG∪IGH

αi∇Gi(x̂) +
∑

IH∪IGH

βi∇Hi(x̂) = 0n,

αiβi = 0, ∀i ∈ IGH ,

 =⇒


αi = 0, ∀i ∈ IG ∪ IGH ,

βi = 0, ∀i ∈ IH ∪ IGH .

Equivalently, the MPSC-NNAMCQ holds at x̂ if
p∑

i=1

(
αi∇Gi(x̂) + βi∇Hi(x̂)

)
= 0n,

αi = 0, ∀i ∈ IH ,

βi = 0, ∀i ∈ IG,

αiβi = 0, ∀i ∈ IGH ,


=⇒ (α1, . . . , αp) = (β1, . . . , βp) = 0p.

It should be noted that the MPSC-NNAMCQ is a generalization of the MPVC-NNAMCQ, which
was introduced in [1], and is weaker than the MPSC-LICQ, which was defined in [3].

Example 1. Consider the following MPSC:

Minimize x41 + x22 s.t. x21x2 = 0.

This problem can be formalized as∆ by the following data:

f(x1, x2) = x41 + x22, G1(x1, x2) = x21, H1(x1, x2) = x2.

Let x̂ = 02. Since

IGH = {1}, ∇G1(x̂) = 02, ∇H1(x̂) = (0, 1),

we have:
α1∇G1(x̂) + β1∇H1(x̂) = 02,

α1β1 = 0,

⇏ α1 = β1 = 0.

Consequently, the MPSC-NNAMCQ is not satisfied at the point x̂.
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Example 2. Taking the following data in∆:

f(x1, x2) = x41 + x22, G1(x1, x2) = x1 − x22, H1(x1, x2) = x2 − x21,

and considering x̂ = 02, we have

IGH = {1}, ∇G1(x̂) = (1, 0), ∇H1(x̂) = (0, 1).

Since
α1∇G1(x̂) + β1∇H1(x̂) = 02,

α1β1 = 0,

⇒ α1 = β1 = 0,

the MPSC-NNAMCQ is satisfied at the point x̂.

Let the function φ : Rn → R2p be defined by

φ(x) :=
(
G1(x),H1(x), . . . , Gp(x),Hp(x)

)
.

Clearly, we can write φ = (φ1, . . . , φp), where the functions φi : Rn → R2, for i ∈ I , are defined
as:

φi(x) :=
(
Gi(x),Hi(x)

)
, for all i ∈ I.

Therefore, we have:

x ∈ S ⇐⇒ φ(x) ∈ Dp ⇐⇒ φi(x) ∈ D, for all i ∈ I.

Now, we consider the following parameterized problem, which has been parameterized regarding
w ∈ R2p:

Q(w) : Minimize f(x)

s.t. φ(x) + w ∈ Dp,

x ∈ Rn,

where D is defined as (2). If the feasible set of Q(w) is denoted byM(w), we can considerM(·) as a
set-valued mapping from R2p to Rn, i.e.,

M : R2p ⇒ Rn, M(w) := {x ∈ Rn | φ(x) + w ∈ Dp}.

Obviously,M(02p) = S and Q(02p) coincides with the problem∆.
The following theorem presents an interrelation between the concepts of MPSC-NNAMCQ and

calmness.

Theorem 5 (Necessary Conditions for Calmness). If the MPSC-NNAMCQ is satisfies at x̂ ∈ S, then
M(·) is calm at (02p, x̂).

Proof. Suppose that i ∈ IG is considered. We can write φi(x̂) = (0, bi) where bi := Hi(x̂) 6= 0, and
so, NM

(
D,φi(x̂)

)
= R × {0} by Theorem 4. Repeating this process for i ∈ IH and i ∈ IGH , we

conclude that:
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NM

(
D,φi(x̂)

)
=



R× {0}, for i ∈ IG,

{0} × R, for i ∈ IH ,

D, for i ∈ IGH .

Regarding (1) and the above equality, we deduce that:

NM

(
Dp, φ(x̂)

)
= NM

( p∏
i=1

D,
(
φ1(x̂), . . . , φp(x̂)

))
=

p∏
i=1

NM

(
D,φi(x̂)

)
=

p∏
i=1

Ai,

where,

Ai :=



R× {0}, for i ∈ IG,

{0} × R, for i ∈ IH ,

{
(a, b) ∈ R2 | ab = 0

}
, for i ∈ IGH .

Now, due to the above equality and the MPSC-NNAMCQ assumption at x̂, we have

p∑
i=1

(
αi∇Gi(x̂) + βi∇Hi(x̂)

)
= 0n,

(αi, βi) ∈ NM (D,φi(x̂)) , i ∈ I,

 =⇒ (αi, βi) = 02, for all i ∈ I.

This implication can be rewritten as

p∑
i=1

(
αi∇Gi(x̂) + βi∇Hi(x̂)

)
= 0n,

(α1, β1, . . . , αp, βp) ∈ NM

(
Dp, φ(x̂)

)
,

 =⇒ (α1, β1 . . . , αp, βp) = 02p. (5)

On the other hand, for all wi := (ẇi, ẅi) ∈ R2 and i ∈ I we have

∇Gi(x̂) = ∇x

(
Gi + ẇi

)
(x̂, 0), and ∇Hi(x̂) = ∇x

(
Hi + ẅi

)
(x̂, 0).

Therefore, putting λi = (αi, βi) for i ∈ I , we obtain that

p∑
i=1

(
αi∇Gi(x̂) + βi∇Hi(x̂)

)
= α1∇x

(
G1 + ẇ1

)
(x̂, 0) + β1∇x

(
H1 + ẅ1

)
(x̂, 0) + . . .

+ αp∇x

(
Gp + ẇp

)
(x̂, 0) + βp∇x

(
Hp + ẅp

)
(x̂, 0)

= ∇x

(
α1

(
G1 + ẇ1

)
+ β1

(
H1 + ẅ1

)
+ . . .+ αp

(
Gp + ẇp

)
+ βp

(
Hp + ẅp

))
(x̂, 02p)

= ∇x

〈
(α1, β1, . . . , αp, βp), (G1 + ẇ1,H1 + ẅ1, . . . , Gp + ẇp,Hp + ẅp

〉
(x̂, 02p)
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= ∇x

〈
(λ1, . . . , λp), (φ1(x) + w1, . . . , φp(x) + wp)

〉
(x̂, 02p)

= ∇x

〈
λ, φ(x) + w

〉
(x̂, 02p),

where λ := (λ1, . . . , λp) ∈ R2p and w := (w1, . . . , wp) ∈ R2p. This equality and (5) yield

∇x

〈
λ, φ(x) + w

〉
(x̂, 02p) = 0n,

λ ∈ NM (Dp, φ(x̂)) ,

 =⇒ λ = 02p.

This means that

0n /∈
{
∇x

〈
λ, φ(x) + w

〉
(x̂, 02p) | 02p 6= λ ∈ NM (Dp, φ(x̂))

}
,

and hence, {
∇x

〈
λ, φ(x) + w

〉
(x̂, 02p) | 02p 6= λ ∈ NM (Dp, φ(x̂))

}
∩ {0n} = ∅.

Now, employing Theorem 2 with data E = Dp and Ψ(x,w) = φ(x) + w, and observing that
x̂ ∈ S =M(02p), we deduceM(·) is calm at (02p, x̂).

The following theorem, which is the main result, presents an upper estimate for the Mordukhovich
normal cone of the set S at the point x̂, under the MPSC-NNAMCQ assumption.

Theorem 6. (Mordukhovich Normal Cone Inclusion) If the MPSC-NNAMCQ is satisfied at x̂ ∈ S,
then

NM (S, x̂) ⊆


p∑

i=1

(
λGi ∇Gi(x̂) + λHi ∇Hi(x̂)

)
∣∣∣∣∣∣∣∣∣∣∣∣

λGi = 0, for all i ∈ IH

λHi = 0, for all i ∈ IG

λGi λ
H
i = 0, for all i ∈ IGH


.

Proof. According to Theorem 5, we deduce thatM(·) is calm at (02p, x̂). Therefore, by Theorem 3, we
have:

NM (S, x̂) ⊆
{〈
λ, φ(·)

〉
(x̂) | λ ∈ NM (Dp, φ(x̂))

}
, (6)

where λ :=
(
λG1 , λ

H
1 , . . . , λ

G
p , λ

H
p

)
. Regarding

〈λ, φ(·)〉(x̂) =
p∑

i=1

(
λGi ∇Gi(x̂) + λHi ∇Hi(x̂)

)
,

and Theorem 4, we get{〈
λ, φ(·)

〉
(x̂) | λ ∈ NM (Dp, φ(x̂))

}

=


p∑

i=1

(
λGi ∇Gi(x̂) + λHi ∇Hi(x̂)

)
∣∣∣∣∣∣∣∣∣∣∣∣

λGi = 0, for all i ∈ IH

λHi = 0, for all i ∈ IG

λGi λ
H
i = 0, for all i ∈ IGH


.
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The above equality and (6) conclude that

NM (S, x̂) ⊆


p∑

i=1

(
λGi ∇Gi(x̂) + λHi ∇Hi(x̂)

)
∣∣∣∣∣∣∣∣∣∣∣∣

λGi = 0, for all i ∈ IH

λHi = 0, for all i ∈ IG

λGi λ
H
i = 0, for all i ∈ IGH


,

as required.

Theorem 7 presents a necessary optimality condition for the problem∆ derived from the application
of Theorem 6.

Theorem 7. Suppose that x̂ ∈ S is an optimal solution for ∆ and the MPSC-NNAMCQ is satisfied at
x̂ ∈ S. Then, there exist some scalars λGi and λHi as i ∈ I such that:

∇f(x̂) +
p∑

i=1

(
λGi ∇Gi(x̂) + λHi ∇Hi(x̂)

)
= 0n,

λGi = 0, i ∈ IH ,

λHi = 0, i ∈ IG,

λGi λ
H
i = 0, i ∈ IGH .

(7)

Proof. Since x̂ is a minimizer of f on S, by applying Theorem 1, we deduce that

−∇f(x̂) ∈ NM (S, x̂).

From this inclusion and Theorem 6, we have

−∇f(x̂) ∈


p∑

i=1

(
λGi ∇Gi(x̂) + λHi ∇Hi(x̂)

)
∣∣∣∣∣∣∣∣∣∣∣∣

λGi = 0, i ∈ IH

λHi = 0, i ∈ IG

λGi λ
H
i = 0, i ∈ IGH


.

Therefore, there exist some λGi and λHi as i ∈ I such that:

−∇f(x̂) =
p∑

i=1

(
λGi ∇Gi(x̂) + λHi ∇Hi(x̂)

)
,

λGi = 0, i ∈ IH ,

λHi = 0, i ∈ IG,

λGi λ
H
i = 0, i ∈ IGH .
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The proof is now complete.

It is worth mentioning that conditions (7) are referred to as the “M-stationarity conditions” for ∆
at x̂ in the literature [3, 13]. Additionally, Theorem 7 is proved in [13, Corollary 4.3] using a different
method.

4 Conclusion

This paper has explored mathematical programming problems with switching constraints (abbreviated
as MPSC), assuming that all involved functions are continuously differentiable. We have analyzed the
properties of the Mordokhovich normal cone associated with MPSC. Specifically, we have introduced
Mangasarian-Fromovitz type constraint qualifications for the MPSC, referred to as MPSC-NNAMCQ.
Additionally, we have derived an upper estimate for the Mordukhovich normal cone of MPSC and es-
tablished the M-stationarity conditions for optimal solutions in MPSC.
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