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Abstract. In this study, we explore soliton solutions for the con-
formable time-fractional Boussinesq equation utilizing the three-wave
method. To validate the precision of our findings, we discuss specific
special cases by adjusting certain potential parameters and also present
the graphical representations of our results. The results achieved in this
research align closely with those from previous studies, demonstrating
enhanced accuracy and simplicity. Given the extensive applications
of this equation in particle physics, understanding its dynamics is
crucial. Consequently, employing methods that encompass a broad
spectrum of solutions is imperative. The versatility of this method in
yielding diverse solutions is evident in the results we have obtained.
The solutions derived in this paper are novel and offer greater precision
compared to previous works.
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1 Introduction

The pursuit of exact or approximate solutions to nonlinear partial differential equations (NLPDEs)
and the Schrödinger equation is paramount across various disciplines within physics and chem-
istry [6, ?]. Despite its introduction nearly a century ago, the analytical solution of the
Schrödinger equation particularly in the context of quantum mechanics remains a formidable
challenge. Theoretical physicists have dedicated considerable effort to deriving exact or ap-
proximate solutions for the Schrödinger equation across a range of physically relevant poten-
tials [5, ?, ?]. The Schrödinger equation is one of the most extensively utilized equations in
physics, mathematics and engineering sciences, capable of describing a myriad of phenomena,
including the emergence of light and dark solitons in optical physics. The solutions obtained
are not only theoretically significant but also pragmatic and computationally accessible. To
date, a plethora of methodologies have been employed to solve these equations, as detailed in
the literature [2, ?, ?, ?, ?, ?, ?, ?]

The significance of the three-wave method in the context of the research lies in its applica-
tion to solving the nonlinear partial differential equations (NLPDEs) that are the focus of the
study. This method is likely one of the tools used to derive exact or approximate solutions for
the equations, which are difficult to solve analytically.

The three-wave method is particularly important as it allows researchers to:

1. Obtain solutions that are relevant to the physical phenomena being studied, such as the
behavior of light and dark solitons in optical physics.

2. Provide a systematic approach to handling the complexities of NLPDEs, which are known
for their nonlinearity and the challenges they present in terms of analytical solutions.

3. Contribute to the broader goal of the research, which is to advance the understanding of
NLPDEs and the Schrödinger equation in various branches of physics and chemistry.

By applying the three-wave method, the researchers aim to add to the body of knowledge re-
garding the solutions of NLPDEs and to potentially uncover new insights into the physical
processes governed by these equations. The main objectives of the research presented in the
paper are:

1. To explore the structure of the time-fractional coupled Boussinesq equation (tfcBE) and
understand how to apply wavelet transformation to this equation.

2. To introduce the three-wave method and demonstrate its application in the context of the
research.
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3. To present the results of the discussion, which likely include the solutions obtained for
the NLPDEs and the implications of these solutions for the relevant fields of physics and
chemistry.

This research is structured as follows: The second section assigned to the formulation of the
time-fractional coupled Boussinesq equation (tfcBE) and elucidates the application of wavelet
transform techniques. The third section introduces the three-wave method and demonstrates its
application, and the final section devoted to a brief discussion.

2 Basic Structure of the Conformable Fractional Coupled Boussinesq Equation

We begin by considering the conformable time fractional coupled Boussinesq equation (tfcBE)
which is represented as follows [10]:∂αu

∂tα + uux + vx + quxx = 0,

∂αv
∂tα + (uv)x + puxxx − qvxx = 0,

0 ≤ α < 1, (1)

where p, q ∈ R. By employing the conformable time-fractional derivative [1] and applying
the wavelet transformation u (x, t) = U (ξ) , v (x, t) = V (ξ) and ξ = kx + ω tα

α plus once
integrating respect to ξ, Equation (1) changes to the following ordinary differential equation:

ωU +
k

2
U2 + kV + qk2U ′ = R1,

ωV + kUV + pk3U ′′ − qk2V ′ = R2. (2)

In these equations R1 and R2 are the integration constants of first- and second-equation of
system (2), respectively. From first-equation of system (2), we get

V =
1

k

(
R1 − ωU − k

2
U2 − qkU ′

)
. (3)

By substituting Equation (3) into the second-equation of system (2), while for simplifying
we set R1 = 0 and R2 = 0, we get the following covering equation:

−ω2

k
U − 3

2
ωU2 − k

2
U3 + k3

(
p+ q2

)
U ′′ = 0. (4)

In summary, this section provides the foundational structure and approach for analyzing
the conformable time-fractional coupled Boussinesq equation, setting the stage for subsequent
sections where the method is applied and the results are discussed. A concise application of the
method to the Fractional Boussinesq equation (FBE) is detailed in the second section of this
paper. In the third section, the graphical behavior of solutions is introduced and analyzed.
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3 Three-Wave Approaches to the Conformable TFCBE

Initially, we assume that Equation (4) admits three-wave solutions of the form:

U (ξ) = γ1e
δξ + γ2 cos (λ1ξ) + γ3e

−δξ + 2γ4 cosh (λ2ξ) , (5)

where γ1, . . . , γ4, δ, λ1, λ2 are constants to be determined. Substituting (5) into (4) and collect-
ing coefficients of eiδξ, cos (λ1ξ) , cosh (λ2ξ) , sin (λ1ξ) , and sinh (λ2ξ) for i = −2,−1, 0, 1, 2

and setting them to zero, we obtain a system of algebraic equations. Solving these equations
yields:
Set 1: γ1 = 0, γ3 = 0, γ2 ̸= 0, and γ4 ̸= 0. Solving the algebraic equations gives:

γ2 =
1

2
, γ4 = −1

2
, w = −1

2

√
q2 + pk2, k = k. (6)

Consequently, we arrive at the general solutions of Equation (1) as depicted in Figure 1:

u1 (x, t) =
1

2
cos

(
λ1

(
kx− 1

2

√
q2 + pk2

tα

α

))
− cosh

(
λ2

(
kx− 1

2

√
q2 + pk2

tα

α

)
.

From (3), we directly obtain:

v1 (x, t) =

[
R1 −

w

2
cos

(
λ1

(
kx− 1

2

√
q2 + pk2

tα

α

))
+ w cosh

(
λ2

(
kx− 1

2

√
q2 + pk2

tα

α

))
− k

2

(
1

2
cos

(
λ1

(
kx− 1

2

√
q2 + pk2

tα

α

))
− cosh

(
λ2

(
kx− 1

2

√
q2 + pk2

tα

α

)))2

+
1

2
qk sin

(
λ1

(
kx− 1

2

√
q2 + pk2

tα

α

))
+qk sinh

(
λ2

(
kx− 1

2

√
q2 + pk2

tα

α

))]
.

Set 2: γ2 = 0, γ4 = 0, γ1 ̸= 0, and γ3 ̸= 0. Solving the algebraic equations gives:

γ1 =
2

3

δ2k4q2 + δ2k4p− w2

k2γ3
, γ3 = γ3, w =

√
q2 + pk2δ, k = k. (7)

Thus, we have:

u2 (x, t) =
2

3

δ2k4q2 + δ2k4p− w2

k2γ3
e
δ
(
kx+

√
q2+pk2δ tα

α

)
+ γ3e

−δ
(
kx+

√
q2+pk2δ tα

α

)
.

From (3), we have:
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Dynamical Analysis For Real Part

3D-Plot for α = 0.3 3D-Plot for α = 0.9

2D-Plot for α = 0.3 2D-Plot for α = 0.9

Density Plot for α = 0.3 Density Plot for α = 0.9

Figure 1: Geraphical representation of the behavior of u1(x, t), for α = 0.3 (A,C and E) and α = 0.9 (B,D

and F ) with p = q = k = 1.

v2 (x, t) =
2

3

δ2k4q2 + δ2k4p− w2

k3γ3
e
δ
(
kx+

√
q2+pk2δ tα

α

)
+

γ3
k
e
−δ

(
kx+

√
q2+pk2δ tα

α

)

−1

2

(
2

3

δ2k4q2 + δ2k4p− w2

k2γ3
e
δ
(
kx+

√
q2+pk2δ tα

α

)
+ γ3e

−δ
(
kx+

√
q2+pk2δ tα

α

))2

− q

(
2

3
δ
δ2k4q2 + δ2k4p− w2

k2γ3
e
δ
(
kx+

√
q2+pk2δ tα

α

)
− γ3δe

−δ
(
kx+

√
q2+pk2δ tα

α

))
.
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Dynamical Analysis For Real Part B

3D-Plot for α = 0.3 3D-Plot for α = 0.9

2D-Plot for α = 0.3 2D-Plot for α = 0.9

EF

Density Plot for α = 0.3 Density Plot for α = 0.9

Figure 2: Geraphical representation of the behavior of u3(x, t), for α = 0.3 (A,C and E) and α = 0.6 (B,D

and F ) with p = q = k = 1

Set 3: γ1 = 0, γ2 = 0, γ3 ̸= 0, and γ4 ̸= 0. Solving the algebraic equations gives (as shown in
Figure 2):

γ4 =
2

3

λ2
2k

4q2 + λ2
2k

4p− w2

kw
, γ3 = γ3, w = w, k =

√√
q2 + pδw√
q2 + pδ

. (8)
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Therefore,

u3 (x, t) = γ3e
−δ

(
kx+ω tα

α

)
+

4

3

λ2
2k

4q2 + λ2
2k

4p− w2

kw
cosh

(
λ2

(
kx+ ω

tα

α

))
,

and

v3 (x, t) =
1

k

(
R1 − ωU − k

2
U2 − qkU ′

)
×

R1

k
− γ3

k
e
−δ

(
kx+ω tα

α

)
− 4

3

λ2
2k

4q2 + λ2
2k

4p− w2

k2w
cosh

(
λ2

(
kx+ ω

tα

α

))
− wγ3e

−δ
(
kx+ω tα

α

)
− 4

3

λ2
2k

4q2 + λ2
2k

4p− w2

k
cosh

(
λ2

(
kx+ ω

tα

α

))
− 1

2

(
γ3e

−δ
(
kx+ω tα

α

)
+

4

3

λ2
2k

4q2 + λ2
2k

4p− w2

kw
cosh

(
λ2

(
kx+ ω

tα

α

)))2

+
γ3
k
δe

−δ
(
kx+ω tα

α

)
− 4λ2

3

λ2
2k

4q2 + λ2
2k

4p− w2

k2w
sinh

(
λ2

(
kx+ ω

tα

α

))
Set 4: γ1 ̸= 0, γ2 = 0, γ3 ̸= 0, and γ4 ̸= 0 then by solving algebraic equation we have

γ4 =
4

3

δ2k4q2 + δ2k4p− w2

k2
, γ3 =

1

2
, γ1 = γ1, w = w,

k =

√√
2δ2q2 − q2λ2

2 + 2δ2p− pλ2
2w√

2δ2q2 − q2λ2
2 + 2δ2p− pλ2

2w
, (9)

u4 (x, t) = γ1e
δ


√√

2δ2q2−q2λ22+2δ2p−pλ22w√
2δ2q2−q2λ22+2δ2p−pλ22w

x+w tα

α


+

1

2
e
−δ


√√

2δ2q2−q2λ22+2δ2p−pλ22w√
2δ2q2−q2λ22+2δ2p−pλ22w

x+w tα

α



+
8

3

δ2k4q2 + δ2k4p− w2

k2
×

cosh

λ2


√√

2δ2q2 − q2λ2
2 + 2δ2p− pλ2

2w√
2δ2q2 − q2λ2

2 + 2δ2p− pλ2
2w

x+ w
tα

α


Now, from (3) we have:

v4 (x, t) =
1

k
R1 −

1

k
γ1we

δ


√√

2δ2q2−q2λ22+2δ2p−pλ22w√
2δ2q2−q2λ22+2δ2p−pλ22w

x+w tα

α



− 1

2k
we

−δ


√√

2δ2q2−q2λ22+2δ2p−pλ22w√
2δ2q2−q2λ22+2δ2p−pλ22w

x+w tα

α


− 8w

3

δ2k4q2 + δ2k4p− w2

k3

× cosh

λ2


√√

2δ2q2 − q2λ2
2 + 2δ2p− pλ2

2w√
2δ2q2 − q2λ2

2 + 2δ2p− pλ2
2w

x+ w
tα

α
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− 1

2

γ1eδ


√√
2δ2q2−q2λ22+2δ2p−pλ22w√

2δ2q2−q2λ22+2δ2p−pλ22w
x+w tα

α



+
1

2
e
−δ


√√

2δ2q2−q2λ22+2δ2p−pλ22w√
2δ2q2−q2λ22+2δ2p−pλ22w

x+w tα

α



+
8

3

δ2k4q2 + δ2k4p− w2

k2

× cosh

λ2


√√

2δ2q2 − q2λ2
2 + 2δ2p− pλ2

2w√
2δ2q2 − q2λ2

2 + 2δ2p− pλ2
2w

x+ w
tα

α

2

− γ1δqe
δ


√√

2δ2q2−q2λ22+2δ2p−pλ22w√
2δ2q2−q2λ22+2δ2p−pλ22w

x+w tα

α



+
qδ

2
e
−δ


√√

2δ2q2−q2λ22+2δ2p−pλ22w√
2δ2q2−q2λ22+2δ2p−pλ22w

x+w tα

α



− 8qλ2

3

δ2k4q2 + δ2k4p− w2

k2

× cosh

λ2


√√

2δ2q2 − q2λ2
2 + 2δ2p− pλ2

2w√
2δ2q2 − q2λ2

2 + 2δ2p− pλ2
2w

x+ w
tα

α

 .

4 Conclusion

In this study, we have successfully derived innovative solitary soliton solutions of the cou-
pled fractional Boussinesq equation by applying the three-wave method. The equation under
consideration features a set of arbitrary parameters, which, when assigned specific values, can
generate various well-established models. A significant advantage of this approach is its ca-
pacity to produce a wide array of solutions within a single unified framework, thereby offering
a singular methodological tool for addressing numerous equations. Furthermore, as previously
emphasized, the solutions obtained through this method demonstrate superior accuracy and
computational efficiency compared to those derived from alternative techniques, such as the
generalized Kudryashov method. This advancement not only broadens the scope of potential
applications but also reinforces the robustness of the three-wave method as a powerful tool in
nonlinear wave dynamics and analysis.
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