In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Author

Department of Computer Engineering and Information Technology‎, ‎Payame Noor University (PNU)‎, ‎Tehran‎, ‎Iran‎.

10.30473/coam.2024.71425.1255

Abstract

Designing dynamically stable controllers for a robot with 2r legs is challenging due to its complex hybrid dynamics (r>1). This paper proposes a technique to decompose the robot into r biped robots, where the influence of other robot parts on each biped can be modeled as external forces. This approach allows existing research on biped control to be applied to the quadruped robot. Time-invariant controllers, which typically ensure walking stability for planar point-footed bipeds, are selected for this purpose. For clarity, we focus on a planar point-footed quadruped for decomposition. We extend a recent reinforcement learning method to optimize these controller parameters for walking on slopes or under specific forces, while accounting for significant modeling errors in the quadruped. Simulation results demonstrate that our method achieves stable walking with the desired features and effectively compensates for modeling errors.

Keywords

Main Subjects

[1] Agarwal, P., Kuo, P.H., Neptune, R.R., Deshpande, A.D. (2013). “A novel framework for virtual prototyping of rehabilitation exoskeletons”, IEEE International Conference on Rehabilitation Robotics.
[2] Ajallooeian, M., Pouya, S., Sproewitz, A., Ijspeert, A. (2013). “Central pattern generators augmented with virtual model control for quadruped rough terrain locomotion”, IEEE International Conference on Robotics and Automation.
[3] Ajallooeian, M., Gay, S., Tuleu, A., Sprowitz, A., Ijspeert, A.J. (2013). “Modular control of limit cycle locomotion over unperceived rough terrain”, IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS.
[4] Ajallooeian, M., Pouya, S., Gay, S., Tuleu, A., Sprowitz, A., Ijspeert, A.(2013).“Towards modular control for moderately fast locomotion over unperceived rough terrain”, Dynamic Walking.
[5] Anjidani, M., Jahed Motlagh, M.R., Fathy, M., Nili Ahmadabadi, M. (2019). “A novel online gait optimization approach for biped robots with point-feet”, ESAIM: Control, Optimisation and Calculus of Variations, 25(81).
[6] Baudoin, Y. Habib, M.K. (2011). “Using robots in hazardous environments: Landmine detection, de-mining and other applications”, Woodhead Publishing Limited.
[7] Cao, Q., Poulakakis, I. (2013). “Quadrupedal bounding with a segmented flexible torso: Passive stability and feedback control”, Bioinspiration & Biomimetics, 8(4), 046007.
[8] Cao, Q., Poulakakis, I. (2014). “On the energetics of quadrupedal bounding with and without torso compliance”, IEEE/RSJ International Conference on Intelligent Robots and Systems, 4901-4906.
[9] Cao, Q., Poulakakis, I. (2015).“ On the energetics of quadrupedal running‎: Predicting the metabolic cost of transport via a flexible-torso model”, Bioinspiration & Biomimetics, 10(5), 056008.
[10] Chevallereau, C., Westervelt, E.R., Grizzle, J.W.(2005).“ Asymptotically stable running for a five-link‎, ‎four-actuator‎, ‎planar bipedal robot”, International Journal of Robotics Research, 24, 431-464.
[11] Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F., Westervelt, E.R., Canudas-de-Wit, C., Grizzle, J.W. (2003). “RABBIT: A testbed for advanced control theory”, IEEE Control Systems Magazine, Paper number CSM-02-038.
[12] Dellon, B., Matsuoka, Y. (2007). “Prosthetics, exoskeletons, and rehabilitation”, IEEE Robotics & Automation Magazine.
[13] Goswami, A. (1999). “Postural stability of biped robots and the foot-rotation indicator (FRI) point”, International Journal of Robotics Research, 18(7), 523-33.
[14] Grizzle, J.W., Abba, G., Plestan, F. (1999). “Proving asymptotic stability of a walking cycle for a five DOF biped robot model”, International Conference on Climbing and Walking Robots, 69-81.
[15] Grizzle, J.W., Abba, G., Plestan, F. (2001). “Asymptotically stable walking for biped robots: Anaysis via systems with impulse effects”, IEEE Transactions on Automatic Control, 46, 51-64.
[16] Grizzle, J.W., Plestan, F., Abba, G. (1999). “Poincare’s method for systems with impulse effects: Application to mechanical biped locomotion”, IEEE International Conference on Decision and Control, Phoenix, AZ.
[17] Hardt, M., Stryk, O.V. (2000). “Towards optimal hybrid control solutions for gait patterns of a quadruped”, CLAWAR 2000 - 3rd International Conference on Climbing and Walking Robots, Madrid.
[18] Hirai, K., Hirose, M., Haikawa, Y., Takenake, T. (1998). “The development of Honda humanoid robot”,IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1321-1326.
[19] Kajita, S., Tani, K. (1996). “Experimental study of biped dynamic walking”, IEEE Control Systems Magazine, 16(1), 9-13.
[20] Kajita, S., Yamaura, T., Kobayashi, A. (1992). “Dynamic walking control of biped robot along a potential energy conserving orbit”, ‎IEEE Transactions on Robotics and Automation, 8(4), 431-437.
[21] Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H. (2001). “The 3D linear inverted pendulum mode: A simple modeling for a biped walking pattern generation”, IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, HI, 239-246.
[22] Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Yokoi, K., Hirukawa, H. (2002). “A realtime pattern generator for biped walking”, IEEE International Conference on Robotics and Automation, Washington, D.C.
[23] Park, J.H., Kim, E.S. (2009). “Foot and body control of biped robots to walk on irregularly protruded uneven surfaces”, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 39(1), 289-297.
[24] Sugimoto,N.,Morimoto,J.(2011).“ Phase-dependent trajectory optimization for CPG-based biped walking using path integral reinforcement learning”, 11th IEEE-RAS International Conference on Humanoid Robots, Bled, Slovenia, 26-28.
[25] Taga, G. (1995). “A model of the neuro-musculo-skeletal system for human locomotion II: Real- time adaptability under various constraints”, Biological Cybernetics, 73, 113-121.
[26] Thomson, W.T., Dahleh, M.D. (1998). “Theory of Vibration with Applications”, Fifth Edition, Prentice Hall, Copyright.
[27] Vukobratovic, M., Borovac, B. (2004). “Zero-moment point–thirty five years of its life”, International Journal of Humanoid Robotics, 1(1), 157-73.
[28] Vukobratovic, M., Borovac, B., Surla, D., Stokic, D. (1990). “Biped Locomotion”, Springer-Verlag, Berlin.
[29] Westervelt, E.R., Buche, G., Grizzle, J.W. (2004). “Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds”, International Journal of Robotics Research, 23(7), 559-82.
[30] Westervelt, E.R., Buche, G., Grizzle, J.W. (2004). “Inducing dynamically stable walking in an under actuated prototype planar biped”, IEEE International Conference on Robotics and Automation, New Orleans, LA, 4234-9.
[31] Westervelt, E.R., Grizzle, J.W., Canudas, C. (2003). “Switching and PI control of walking motions of planar biped walkers”, IEEE Transactions on Automatic Control, 48(2), 308-12.
[32] Westervelt, E.R., Grizzle, J.W., Koditschek, D.E. (2003). “Hybrid zero dynamics of planar biped walkers”, IEEE Transactions on Automatic Control, 48(1), 42-56.
[33] ‎Westervelt‎, ‎E.R.‎, ‎Grizzle‎, ‎J.W.‎, ‎Chevallereau‎, ‎Ch.‎, ‎Choi‎, ‎J.H.‎, ‎Morris‎, ‎B‎. (2007).“ Feedback control of dynamic bipedal robot locomotion”, CRC Press, Taylor & Francis Group.