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1 Introduction

There are several commercial and sociological motivations for researching legged robots, such
as their deployment in dangerous situations[6], movement rehabilitation for the disabled [1, 12]
. The control algorithms for legged robots can be categorized into time-dependent and time-
invariant groups [33]. Time-dependent algorithms, depicted in Figure 1(a), are widely used.
These include precomputed trajectory tracking methods [33], where trajectories generated by
Central Pattern Generators (CPGs) [2, 3, 4, 24, 25] or length-varying inverted pendulums [19,
20, 21, 22, 23] dominate. Such algorithms often rely on principles like the Zero Moment Point
(ZMP) criterion [18, 27, 28] which, however, do not guarantee stability [13, 33].

In contrast, few time-invariant control schemes have been proposed, as illustrated in Figure
1b. These controllers impose a set of holonomic constraints instead of tracking of precomputed
trajectories [7, 8, 9, 10, 11, 14, 15, 16, 29, 30, 31, 32]. A distinct advantage of the proposed
controller is its ability to induce backward walking by applying a sufficiently large external
force in the opposite direction of forward motion [11], indicating that external forces primarily
influence walking speed while still enforcing constraints [5].

(a) A time-dependent controller block diagram: Design-
ing trajectories, which results in stable, nonlinear, time-
varying, closed-loop system, is challenging [33].

(b) A time-invariant controller block diagram [33].

Figure 1: Control of legged robots

Time-invariant controllers for quadruped robots have primarily focused on bounding mo-
tions [7, 8, 9], where front and back legs operate synchronously, effectively modeling the
robot as a biped. However, considering all four legs introduce greater complexity, as the high-
dimensional dynamics depend on the configuration of the supporting legs [17]. Continuous
dynamics can switch with changes in supporting legs, and discontinuities occur at the impact
moments when legs touch the ground [17]. Consequently, designing a hybrid time-invariant
controller for a quadruped or robots with even more legs presents significant challenges.

In this paper, we propose a method to decompose a robot with 2r legs into r biped robots.
This is achieved by calculating the internal forces at the waist joints, allowing for a representa-
tion of the robot as r bipedal entities. Each biped part can then utilize a time-invariant controller

A supporting leg is one that is in contact with the ground.
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for locomotion. As noted, external forces affect only walking speed, ensuring that constraints
are enforced—the proposed controller is thus well-suited for this approach. This marks a novel
utilization of time-invariant controllers in this context.

The method is demonstrated for planar robots with point-feet and specialized waist config-
urations, but it can be generalized to various other designs. Here, we consider the biped parts
to also be planar with point-feet. Designing an exponentially stable walking gait to meet de-
sired specifications—characterizing the holonomic constraints of the biped parts—is framed as
a nonlinear optimization problem with constraints; solvable with existing numerical optimiza-
tion tools [10, 11, 32, 33]. Additionally, an online Reinforcement Learning (RL) technique
known as PI2-WG has recently been introduced for gait design [5]. Three primary reasons mo-
tivate our use of PI2-WG over traditional optimization methods. First, finding an initial gait
for PI2-WG is generally simpler than solving the optimization problem [5]. Second, this initial
gait is more adaptable across various situations compared to the optimization framework [5].
Lastly, learning via PI2-WG can continue to adjust for modeling errors present in real robots
[5].

We also extend PI2-WG for robots with 2r legs to design stable walking gaits incorporating
desired characteristics. Simulation results indicate that the robot can learn to walk with spe-
cific speeds and postures in various environments, including surfaces with defined slopes and
friction, while accounting for specific external forces and modeling errors. In Section 2, we
introduce the robot decomposition process. Section 3 details the closed-loop dynamics of the
biped parts, and Section 4 presents the RL method extension for the robot. Finally, Section 5
discusses simulation results.

2 Decomposition of the Robot with 2r Legs

In legged robots, the equations of continuous dynamics are determined based on the supporting
legs. This means that the continuous dynamics will vary depending on which legs are in contact
with the ground. Additionally, a discontinuity occurs at the moment a leg impacts the ground,
leading to an increase in the complexity of the system’s dynamics as more legs are added.
Consequently, designing a hybrid time-invariant controller becomes increasingly complicated
with the addition of more legs and the consequent discontinuities at contact.

To address this issue, we can compute the internal forces at the waist joints of a legged
robot. The core idea is to treat the dynamics of the robot as a series of biped parts, where
internal forces are represented as external forces acting on each biped component. Therefore,
by applying external forces to the torso of these biped parts, we can utilize a time-invariant
controller to manage the locomotion of the entire robot effectively.



In
Pr
es
s

4 ANew Approach to Control of Legged Robots

Figure 2: Quadruped decomposition to two biped robots and a waist.

Wewill formulate the dynamics of a planar quadrupedwith point feet, as illustrated in Figure
2. This approach isolates the dynamics of two biped parts, identified as Biped 1 and Biped 2, as
well as the waist through the internal forces acting within the system. For simplicity, the waist
configuration shown in Figure 2 is a linear rod, which can bemodified for various waist designs.
The two joints connecting the waist to the biped parts are considered to be non-actuated. The
relationship between force and displacement in a linear rod behaves similarly to that of a spring
as shown in Figure 3:

F = (EA/l)u,

where F represents the force (in Newton), and u denotes the displacement along the rod (in
meters), which is the only direction of potential movement. The parameters E, A, M and l

correspond to the modulus of elasticity (in N/m2), cross-sectional area (inm2), total mass (in
kg), and free length (in meters) of the rod, respectively.

By adjusting the values ofK1,K2,E,A,M , and l, we can fine-tune the waist configuration
to achieve our desired design.

Figure 3: The relation of force and displacement for a rod [26].

Assuming that [a1; b1] and [a2; b2] represent the starting and ending points of a rod with a free
length l along its central axis, as illustrated in Figure 4, the coordinate of a point X on the
central axis can be expressed as follows:
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Figure 4: A rod with arbitrary planar motion.

X =

[ (
1− s

l

)
a1 + s

l a2(
1− s

l

)
b1 +

s
l b2

]
, (1)

where s represents the distance of point X from the starting point when the rod is in its free
(unstressed) length, the displacement of X from its equilibrium position can be calculated as
follows:

u =
s

l
(l − len) ,

The length of the rod is given by the formula len =
√
(a2−a1)2+(b2−b1)2 =

√
(△a)2+(△b)2

where△a=a2−a1 and△b=b2−b1. Additionally, the waist angle α can be calculated using the
formula α= arctan(△b/△a).

According to Hooke’s law, which states that P/A=E du/ds , the potential energy of the
rod can be computed as follows [26]:

U =
1

2

∫ l

0
AE

(
du

ds

)2

ds.

The total potential energy of the rod, taking into account the gravitational potential energy,
is expressed as:

U =
1

2

∫ l

0
AE

(
du

ds

)2

ds+

∫ l

0
mgh ds, (2)

The total mass of the points on the cross-sectional area of the rod inX can be denoted asm. In
this case,m equalsM/l, whereM is the total mass and l is the length of the rod. Additionally,
the height h for point X is given by: (

1− s

l

)
b1 +

s

l
b2.

Therefore, the potential energy is computed as:

U =
AE

2l
(l − len)2 +

Mg

2
(b2 + b1),

and Kinetic energy of the rod is:

T =
1

2
m

∫ l

0
V TV ds+

1

2
Iω2,
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where I = Mlen2/12 and ω = α̇ = (△ḃ△a−△ȧ△b)/len2 and the velocity V ofX according
to (1) is:

V =

[ (
1− s

l

)
ȧ1 + s

l ȧ2(
1− s

l

)
ḃ1 +

s
l ḃ2

]
.

Therefore the kinetic energy after simplifying by Maple is:

T =
M

6
(ȧ21 + ȧ1ȧ2 + ȧ22 + ḃ21 + ḃ1ḃ2 + ḃ22) +

M

24

(△b△ȧ−△a△ḃ)2

len2
.

To calculate the dynamics equations of the rod, we can use the Lagrange equations. The
Lagrangian is determined as the difference between the kinetic and potential energy:

L = T − U =
M

6

(
ȧ21 + ȧ1ȧ2 + ȧ22 + ḃ21ḃ1ḃ2 + ḃ22

)
+

M

24

(△b△ȧ−△a△ḃ)2

len2
−AE

2l
(l−len)2−Mg

2
(b2+b1).

The dynamics equations of the rod are:

d

dt

∂L

∂ȧ1
− ∂L

∂a1
= Fx1 ,

d

dt

∂L

∂ȧ2
− ∂L

∂a2
= Fx2 ,

d

dt

∂L

∂ḃ1
− ∂L

∂b1
= Fy1 ,

d

dt

∂L

∂ḃ2
− ∂L

∂b2
= Fy2 . (3)

Figure 5: A robot with six legs can be decomposed to three biped robots and two waists.

Therefore having [a1; b1], [ȧ1; ḃ1], [ä1; b̈1], [a2; b2], [ȧ2; ḃ2] and [ä2; b̈2], the internal forces
[Fx1 ;Fy1 ] and [Fx2 ;Fy2 ] can be calculated using (3). It’s important to note that Fext1 =

[−F x1 ;−F y1 ] represents the impact of Biped 2 and the waist on Biped 1, while Fext2 =

[−F x2 ;−F y2 ] represents the impact of Biped 1 and the waist on Biped 2. This method is also
applicable to a robot with more legs. For instance, we can apply it to a robot with six legs, as
depicted in Figure 5. The external force on the second biped is the cumulative force calculated
from the dynamics equations of the two waists for the point [a2; b2].
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3 Closed-Loop System of Each Biped Part

In this paper, we have reformulated the close-loop hybrid dynamics model of point-footed pla-
nar biped robots [33] in order to specify the walking gait parameters that will be learned by a
vectorΘ. Consider the hybrid dynamics model for a planar point-footed biped robot as follows
[33]: 

D (q) q̈ + C (q, q̇) + V (q) =

 u

0

− Ffr(q, q̇) + JTFext, t/∈Timpact,

[q+; q̇+] = ∆([q−; q̇−]), t∈Timpact,

where Ffr(q, q̇) represents the viscous and Coulomb friction torques. The matrix D ∈ ℜn×n

represents the inertia, C ∈ ℜn×n represents the Coriolis and centripetal forces, and V ∈ ℜn×1

denotes the forces due to gravity and elasticity. Additionally,Ffr ∈ ℜn×1 represents the viscous
and Coulomb friction torques, and Fext = [Fx; Fy] includes the external force and torque
applied on the highest robot point.

Moreover, J ∈ ℜn×2 represents the Jacobian matrix, where n represents the degree of
freedom. The generalized coordinates are denoted as q = [qb; qn], with qb = [q1; . . . ; qn−1]

involving n− 1 body coordinates and qn representing the robot orientation with respect to the
inertial frame. The control input is represented as u = [u1; . . . ;un−1] ∈ ℜn−1.

The set Timpact represents the possible impact moments, i.e., the ground impact times of
the swing leg1 . Furthermore, q− and q+ denote the generalized coordinates before and after
the impact time, respectively. The role of two legs, either stance or swing, exchanges at this
moment, and the state before impactx− = [q−; q̇−]maps to the state after impactx+ = [q+; q̇+]

by the function△ : ℜ2n → ℜ2n, thus marking the beginning of a new step. Therefore, the state
space form can be formulated as follows:ẋ = f (x) + h (x)u, t /∈ Timpact,

x+ = △ (x−) , t ∈ Timpact,

where x = [q; q̇]. and

f=

[
q̇

D−1(q)(−C(q, q̇)−V (q)−Ffr(q, q̇)+JTFext)

]
,

h=

[
0n×(n−1)

D−1(q)B

]
, B=

[
I(n−1)×(n−1)

01×(n−1)

]
,

1 During walking, there are two main phases of locomotion: single support and double support. The single support
phase occurs when only the stance foot is in contact with the ground, while the double support phase is when the
swing foot makes contact with the ground and both feet are supporting the body.



In
Pr
es
s

8 ANew Approach to Control of Legged Robots

Figure 6: The closed-loop model of the biped robot.

The diagram in Figure 6 depicts the closed-loop system, with the control effort u being
defined as follows [33]:

u = −(LhLfy)
−1(KP y +KDẏ + L2

fy),

Here, Lh, Lf , and L2
f represent Lie derivatives. The gain matrices KP and KD are positive

definite. LhLfy is the decoupling matrix. Additionally, y = qb− qb,des, where the waking gait
qb,des(z) is defined as:

qb,des (z) = G(s(z))Θ,

where z = cq is a scalar where c ∈ ℜ1×n is a constant row vector ensuring that z has a
monotonic change between z+ = cq+ and z− = cq− during a walking step [33]. Furthermore,
s(z) = (z − z1)/(z2 − z1), where z1 and z2 are constant as defined in [5]. G(s(z)) and Θ are
defined as:

G(s(z)) =


g(s(z))T O

. . .
O g(s(z))T

 ,

Θ = [θ1; θ2; . . . ; θn−1] , θd =
[
θ0d; θ

1
d; . . . ; θ

L
d

]
,

where vector g(s(z)) ∈ ℜ(L+1) is defined by Bezier basis as:

g(s(z))=

[
(1−s(z))L; . . . ; L!s(z)

m(1−s(z))L−m

m!(L−m)!
; . . . ; s(z)L

]
,

Furthermore,Θ involves the gait parameters, adjusting the virtual constraints qb−qb,des(z) = 0

that the feedback controller should impose. In other words, Θ involves the joint trajectory pa-
rameters (θd, 1 ≤ d ≤ n−1). Lastly, vector θd, representing the dth joint trajectory parameter,
contains L + 1 components (θmd , 0 ≤ m ≤ L), thus the Bezier function of the trajectory for
the dth joint is:

g(s(z))T θd =
L∑

m=0

θmd
L!

m! (L−m)!
s(z)m(1− s(z))L−m.
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Table 1: PI2-WG pseudo-code for point-footed planar biped robot

Given: Θinit(i.e., θd=1,...,n−1,init), Σd=1,...,n−1,init, x0,

K = 10, u = 0.

Repeat

1. Generate_K_Rollouts (x0,Θ) where Θ = [θ1, . . . , θn−1],

2. Update(Θ),

3. u = u+ 1.

Until termination condition is satisfied

Generate_K_Rollouts (x0,Θ)

1. For k = 1, . . . ,K do

2. For d = 1, . . . , n− 1 do

3. θd,k ← N(θd,Σd) where εd,k = θd,k − θd

4. Θk = [θ1,k; . . . ; θn−1,k]

5. g̃k,i=0,...,N−1, Qk,i=0,...,N−1, ϕk,N=Rollout(x0,Θk)

Update (Θ)

1 For d = 1, . . . , n− 1, k = 1, . . . ,K and i = 0, . . . , N − 1 do:

2 Md,k,i = (R−1
d g̃k,ig̃

T
k,i)/(g̃

T
k,iR

−1
d g̃k,i)

3 For i = 0, . . . , N − 1 do

4 For k = 1, . . . ,K do

5 Si,k = ϕk,N +
∑N−1

j=i Qk,j

6 + 1
2

∑N−1
j=i

∑n−1
d=1 (θd+Md,k,jεd,k)

T
Rd(θd+Md,k,jεd,k)

7 For k = 1, . . . ,K do

8 SN i,k = 10
Si,j − minj=1,...,K Si,j

maxj=1,...,K Si,j − minj=1,...,K Si,j

9 Pi,k = exp (−SN i,k) /
∑K

j=1 exp (−SN i,k)

10 For d = 1, . . . , n− 1 do

11 δθd,i =
∑K

k=1 Pi,kMd,k,iεd,k

12 For d = 1, . . . , n− 1 do

13 δθd =
[∑N−1

i=0 (N − i) δθd,i

]
/
∑N−1

i=0 (N − i)

14 θd = θd + δθd.
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Table 2: PI2-WG pseudo-code for point-footed planar quadruped robot

Given: Θinit(i.e., θd=1,...,n−1,init), Σd=1,...,n−1,init, x0,

K = 10, u = 0, xB1
0 = xB2

0 = x0,Θ
B1=ΘB2=Θinit.

Repeat

1. Generate_K_Quadruped_Rollouts (xB1
0 , xB2

0 ,ΘB1,ΘB2)

2. Update (ΘB1,ΘB2) %ΘB1=[θ1, . . . , θn−1], ΘB2=[θn, . . . , θ2n−2]

3. u = u+ 1

Until termination condition is satisfied

Generate_K_Quadruped_Rollouts (xB1
0 , xB2

0 ,ΘB1,ΘB2)

1. For k = 1, . . . ,K do:

2. For d = 1, . . . , 2n− 2 do

3. θd,k ← N(θd,Σd)

5. ΘB1
k = [θ1,k; . . . ; θn−1,k]

6. | ΘB2
k = [θn,k; . . . ; θ2n−2,k]

7. | Generate_Quadruped_Rollout (xB1
0 , xB2

0 ,ΘB1
k ,ΘB2

k )

Generate_Quadruped_Rollout (xB1
0 , xB2

0 ,ΘB1
k ,ΘB2

k )

Initial state of Biped 1 = xB1
0 ,

Initial state of Biped 2 = xB2
0 ,

Initial forces of the bipeds: Fext1 = Fext2 = [0;−Mg/2].

1. For i = 0, . . . , N − 1 do

2. [qB1; q̇B1; q̈B1]=nextState(Closed-loop equation of Biped 1 (ΘB1
k )),

3. [qB2; q̇B2; q̈B2]=nextState(Closed-loop equation of Biped 2 (ΘB2
k )),

4. [a1; b1], [ȧ1; ḃ1] and [ä1; b̈1] = Torso_end_point (qB1, q̇B1, q̈B1),

5. [a2; b2], [ȧ2; ḃ2] and [ä2; b̈2] = Torso_end_point (qB2, q̇B2, q̈B2),

6. Compute Fext1 and Fext2 according to (3),

7. Compute g̃B1
k,i , g̃B2

k,i , QB1
k,i , QB2

k,N , ϕB1
k,i , and ϕB2

k,N .

Update(ΘB1,ΘB2)

1. For k = 1, . . . ,K and i = 0, . . . , N − 1 do

2. For d = 1, . . . , n− 1 do

3. Md,k,i = [R−1
d g̃B2

k,i (g̃
B2
k,i )

T
]/[(g̃

B2
k,i )

T
R−1

d g̃B2
k,i ]

4. For d = n, . . . , 2n− 2 do

5. Md,k,i = [R−1
d g̃B1

k,i (g̃
B1
k,i )

T
]/[(g̃

B1
k,i )

T
R−1

d g̃B1
k,i ]

6. For i = 0, . . . , N − 1 do

7. For k = 1, . . . ,K do

8. Si,k = (ϕB1
k,N + ϕB2

k,N ) +
∑N−1

j=i (QB1
k,i +QB2

k,i ) +
1
2

∑N−1
j=i

∑2n−2
d=1 (θd+Md,k,jεd,k)

T
Rd(θd+Md,k,jεd,k)

9. For k = 1, . . . ,K do

10. SN i,k = 10
Si,j − minj=1,...,K Si,j

maxj=1,...,K Si,j − minj=1,...,K Si,j

11. Pi,k = exp (−SN i,k) /
∑K

j=1 exp (−SN i,k)

12. For d = 1, . . . , 2n− 2 do

13. δθd,i =
∑K

k=1 Pi,kMd,k,iεd,k

14. For d = 1, . . . , 2n− 2 do

15. δθd =
[∑N−1

i=0 (N − i) δθd,i

]
/
∑N−1

i=0 (N − i)

16. θd = θd + δθd
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Note that vector g̃ (z, ż), which is used in the next section, is defined as [17]:

g̃(z, ż) = KP g(s(z))+KD
ż

z2−z1
∂g(s(z))

∂s(z)
+

ż2

(z2−z1)2
∂2g(s(z))

∂s(z)2
.

The stochastic closed-loop hybrid dynamics model can be expressed as follows:ẋ = f cl (x,Θ+ ϵt) , t /∈ Timpact,

x+ = △ (x−) , t ∈ Timpact.

The exploration noise ϵt is defined as:

ϵt = [ε1,t; ε2,t; . . . ; εn−1,t],

where εd,t is the exploration noise vector drawn from a mean-zero multivariate Gaussian dis-
tribution with covariance Σd, and added to the shape parameter θd. To achieve an optimal Θ,
the RL method PI2-WG, which is presented in the next section, can be utilized.

4 Reinforcement Learning Method

PI2-WG [17] is an RL algorithm designed to optimize the walking gait in a planar biped robot
with point-feet having n degrees of freedom and 1 degree of underactuation. The pseudo-code
of PI2-WG can be found in Table 1.

In PI2-WG, exploration is managed by adding noise to the walking gait parameter vector
Θ = [θ1; . . . ; θn−1], where the vectors θ1, . . . , θn−1 represent the joint trajectory parameters.
Essentially,K samples of θd, d = 1, . . . , n−1 are drawn from themultivariate normal distribu-
tionN(θd,Σd), resulting inK samples ofΘ. The samples ofΘ, denoted asΘk, k = 1, . . . ,K ,
are then used to generate new rollouts starting from x0, which are evaluated by a cost function.
The vector Θ is updated by a weighted averaging of the parameter samples with regard to the
cost of the generated rollouts in the Update function. In the Update function,Qk,i is an arbitrary
state-dependent cost function at time ti and ϕk,N is the final cost at time tN of the kth rollout.
Additionally, Sk,i denotes the cost of the kth rollout after time ti and Pk,i represents the weight
of the kth rollout after time ti. Vector g̃k,i is equal to:

g̃k,i = g̃(zk,i, żk,i),

where zk,i and żk,i denote the value of z and ż at time ti of the kth rollout.

4.1 Extending PI2-WG for a Robot with r Biped Parts

Table 2 contains the pseudo-code of the extended PI2-WG for the quadruped robot, considering
the decomposition done in the previous section. The function Generate_Quadruped_Rollout



In
Pr
es
s

12 A New Approach to Control of Legged Robots

is utilized to generate a rollout for the quadruped robot. Within the function, q, q̇, and q̈ are
renamed to qB1, q̇B1, and q̈B1 for Biped 1, and are renamed to qB2, q̇B2, and q̈B2 for Biped 2.
The function Torso_end_point calculates the position and acceleration of a point on the torso
of the biped parts that are connected to the waist, while the function Rotational_spring_angles
computes the angles between the waist and the torsos. It is important to note that we use the
index d∈[1, . . . , 2n − 2] for the quadruped joints, with d∈[1, . . . , n − 1] denoting the joint
index of Biped 1 and d∈[n, . . . , 2n − 2] denoting the joint index of Biped 2. Therefore,
we denote the walking gait parameters of Biped 1 and Biped 2 as ΘB1=[θ1, . . . , θn−1] and
ΘB2=[θn, . . . , θ2n−2] respectively. It is important to note that the following cost function is
used for the quadruped in the Update function:

Si,k = (ϕB1
k,N + ϕB2

k,N ) +

N−1∑
j=i

(QB1
k,i +QB2

k,i )

+
1

2

N−1∑
j=i

2n−2∑
d=1

(θd +Md,k,jεd,k)
TRd(θd +Md,k,jεd,k),

The immediate costs, i.e., ϕB1
k,N and ϕB2

k,N , and the final costs, i.e., Q
B1
k,i and QB2

k,i of the biped
parts are defined the same as ϕk,N andQk,j for a biped robot in PI2-WG [17]. By this approach,
the parameters ΘB1 and ΘB2 can be optimized in the closed-loop systems of the biped parts,
resulting in good quadruped locomotion. PI2-WG can be similarly extended for a robot with
2r legs, in which case the cost function is:

Si,k =
r∑

p=1

ϕ
Bp

k,N +
N−1∑
j=i

r∑
p=1

Q
Bp

k,i

+
1

2

N−1∑
j=i

rn−r∑
d=1

(θd +Md,k,jεd,k)
TRd(θd +Md,k,jεd,k),

where Bp denotes the pth biped part.

5 Result

This section examines the performance of the proposed method on a simulated model of the
quadruped as discussed in the previous section. The waist parameters are adjusted as detailed
in Table 3. Both bipeds parts share the same model parameters, which are outlined in the
Appendix. The extended PI2-WG aims to enhance the quadruped locomotion. The values of
Σd, where d=1, . . . , 4, are specified in [17] as follows:

Σ1 = 2ρI, Σ2 = 3ρI, Σ3 = ρI, Σ4 = 5ρI,
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Figure 7: The quadruped’s locomotion is evaluated in several specific scenarios: (a) Flat surface, (b) Flat surface
with a horizontal external force of 80 N exerted indefinitely, (c) Flat surface with a horizontal external force of -60
N exerted indefinitely, (d) 15-degree slope, and (e) -15-degree slope. The blue arrows illustrate the internal forces
at the two waist joints in each scenario.

where the initial value of ρ is provided in Table 5. In each scenario, 1500 updates are executed,
and ρ is uniformly reduced over 1000 updates to a value of 0.0001, and subsequently set to
ρ = 0.0001.

Table 3: Waist parameters of the quadruped

E A l M

100000 0.001 1.1 20

Figure 7 depicts various walking postures achieved using gaits designed by extended PI2-
WG for the quadruped in different scenarios. The blue arrows above the torso of the biped
parts represent internal forces, while the black arrow indicates an external force applied to the
quadruped. The yellow link denotes the stance leg’s tibia, and the green link represents the
swing leg’s tibia of the biped parts. Although the robot initially struggles to walk even a single
step with the initial gait (4) according to Remark 2 in the Appendix, it demonstrates improved
walking ability after the learning process.
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Table 4: The features for designed gaits

Gait Scenario Biped part µa
req Ab Bc

G1 Flat Biped 1 0.594 0.0206 62

G1 Flat Biped 2 0.50333 0.0219 61.6

G2 Flat with E1 Biped 1 0.72239 0.0379 69

G2 Flat with E1 Biped 2 0. 669 0.0371 65

G3 Force -60 N Biped 1 0. 6977 0.0109 120.7

G3 Force -60 N Biped 2 0.6186 0.0817 109.1

G4 Force -60 N with E2 Biped 1 0.4132 0.0012 134

G4 Force -60 N with E2 Biped 2 0.40325 0.0188 65.2

G5 Force 80 N Biped 1 0.6293 0.0422 131.9

G5 Force 80 N Biped 2 0.5575 0.0403 140.9

G6 Force 80 N with E2 Biped 1 0.361 0.0038 143.3

G6 Force 80 N with E2 Biped 2 0.424 0.0108 133.7

G7 Slope -15 Biped 1 0.5435 0.0031 136.7

G7 Slope -15 Biped 2 0. 5069 0.0009 131.1

G8 Slope -15 with E3 Biped 1 0.5818 0.0423 131.7

G8 Slope -15 with E3 Biped 2 0.5608 0.0338 124.6

G9 Slope 15 Biped 1 0.7379 0.0028 120.9

G9 Slope 15 Biped 2 0.6569 0.0196 140

G10 Slope 15 with E3 Biped 1 0.8159 0.0152 142.7

G10 Slope 15 with E3 Biped 2 0.6952 0.0026 122.7

µa
req: Required friction coefficient of the ground,

Ab: Absolute difference between last step speed and the desired speed,

Bc: Pick torque (Nm) [17].
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Table 5: Initial value of ρ

Learned gait ρ

G1, G2, G5, and G6 0.01

G3, G4, G7, and G8 0.02

G9 and G10 0.001

Figure 8: Learning curve for Left: G1, Right: G2.

Figure 9: The phase portraits of 100 walking steps by G1. Left: Biped 1, Right: Biped 2.

Figure 10: The torques applied in time interval [3s, 4s] during walking by G1. Left: Biped 1, Right: Biped 2.
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Figure 11: The phase portraits of 100 walking steps by G2. Left: Biped 1, Right: Biped 2.

Figure 12: The torques applied in time interval [3s, 4s] during walking by G2. Left: Biped 1, Right: Biped 2.

The parameters of the quadruped’s waist are outlined in Table 3. Table 4 provides the
features of example gaits generated by the extended PI2-WG under various conditions. The
symbol µreq represents the necessary friction coefficient of the ground for the biped compo-
nents. Column B specifies the maximum torque for the biped joints, which must not exceed
150 Nm.

Figure 13: Learning curve for Left: G3, Right: G4.

The results show that using extended PI2-WG, the robot is capable of learning to walk with
desired features in the scenarios even considering a large modeling error in feedback controller
design.
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Figure 14: The phase portraits of 100 walking steps by G3. Left: Biped 1, Right: Biped 2.

Figure 15: The torques applied in time interval [3s, 4s] during walking by G3. Left: Biped 1, Right: Biped 2.

Figure 16: The phase portraits of 100 walking steps by G4. Left: Biped 1, Right: Biped 2.

Figure 17: The torques applied in time interval [3s, 4s] during walking by G4. Left: Biped 1, Right: Biped 2.
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Figure 18: Learning curve for Left: G5, Right: G6.

Figure 19: The phase portraits of 100 walking steps by G5. Left: Biped 1, Right: Biped 2.

Figure 20: The torques applied in time interval [3s, 4s] during walking by G5. Left: Biped 1, Right: Biped 2.

Figure 21: The phase portraits of 100 walking steps by G6. Left: Biped 1, Right: Biped 2.
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Figure 22: The torques applied in time interval [3s, 4s] during walking by G6. Left: Biped 1, Right: Biped 2.

Remark 1. The ability of large modeling error compensation is a feature of the RL method to
continue the learning with the real robot which is not possible by an offline optimization.

Figure 23: Learning curve for Left: G7, Right: G8.

Figure 24: The phase portraits of 100 walking steps by G7. Left: Biped 1, Right: Biped 2.

The data presented in Table 4 indicates that the robot successfully learned to walk on a flat
surface with static friction of 0.75, even in the presence of external forces -60 N or 80 N and
modeling errors E1-E2 (refer to Table 7 in the Appendix). Additionally, the table demonstrates
the robot’s ability to walk on a slope of -15 degrees with static friction of 0.6, despite the
presence of modeling error E3. Furthermore, it shows that walking on a slope of 15 degrees is
achievable, even in the presence of modeling error E3.



In
Pr
es
s

20 A New Approach to Control of Legged Robots

Figure 25: The torques applied in time interval [3s, 4s] during walking by G7. Left: Biped 1, Right: Biped 2.

Figure 26: The phase portraits of 100 walking steps by G8. Left: Biped 1, Right: Biped 2.

Figure 27: The torques applied in time interval [3s, 4s] during walking by G8. Left: Biped 1, Right: Biped 2.

Figure 28: Learning curve for Left: G9, Right: G10.
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Figure 29: The phase portraits of 100 walking steps by G9. Left: Biped 1, Right: Biped 2.

Figure 30: The torques applied in time interval [3s, 4s] during walking by G9. Left: Biped 1, Right: Biped 2.

Figure 31: The phase portraits of 100 walking steps by G10. Left: Biped 1, Right: Biped 2.

Figure 32: The torques applied in time interval [3s, 4s] during walking by G10. Left: Biped 1, Right: Biped 2.
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Figures 8, 13, 18, 23, and 28 showcase the average learning curves derived from 10 runs
of extended PI2-WG in various scenarios with/without modeling error. These curves depict
the progress over iterations of extended PI2-WG. Moreover, the phase portraits in Figures 9,
11, 14, 16, 19, 21, 24, 26, 29, and 31 illustrate the designed gaits of the different scenarios
with/without modeling error for 100 walking steps. The red circle in the figures represents the
robot’s initial state. Figures 10, 12, 15, 17, 20, 22, 25, 27, 30, and 32 display the motor torques
during walking with the designed gait in the different scenarios.

6 Conclusion

In this paper, the proposed technique for decomposing a robot with 2r legs into r biped robots
has been presented. The effects of the other robot parts on each biped can be represented as
external forces. The results section includes a consideration of a planar point-footed quadruped
robot for decomposition to simplify the explanation of the idea. An extension of a recent rein-
forcement learning method has been utilized to optimize the time-invariant controller parame-
ters for walking with specific features on a certain slope or in the presence of a certain force,
considering a large error in the model of the quadruped robot. The simulation results indicate
that the proposed method achieves stable walking with desired features and quickly compen-
sates for modeling errors. Future exploration includes the potential use of a camera sensor for
adapting to real-time changes in the environment, such as detecting the slope of the surface and
selecting a suitable walking gait previously learned for the encountered slope. Additionally,
future work will aim to extend the method for 3D motions, as the robot motions in this paper
are currently limited to planar motions.

Appendix: RABBIT and PARAMETERS

RABBIT is a point-footed robot with 5 degrees of freedom (n = 5) and planar motions[33]. Its
model parameters can be found in Table 6. Figure 23 displays the robot and its associated model
parameters. For detailed information on RABBIT modeling and the computation of ground
reaction forces, please refer to [33]. The equations of motion for RABBIT can be produced
using MATLAB code, which can be accessed at the provided https://web.eecs.umich.
edu/~grizzle/biped_book_web/

In early rollouts of the learning, RABBIT starts walking with the initial state x0 = [q0; q̇0]

where q0 and q̇0 are:

q0 = [3.2741; 3.4364; 0.1701; 0.6643;−0.012],

https://web.eecs.umich.edu/~grizzle/biped_book_web/
https://web.eecs.umich.edu/~grizzle/biped_book_web/
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(a) Generalized coordinates for the biped
robot.

(b) Link length and center of mass
position [33].

Figure 33: The robot and its associated model parameters

q̇0 = [−1.5344; 2.0201;−0.2029; 0.0244; 0].

The row vector c is set to c=[−1; 0;−0.5; 0;−1]T . The initial Θ is set as (the unit of the
numbers is radian):

Θ = [θ1; θ2; . . . ; θn−1] (4)

θ1=


3.47

3.294

3.399

2.947

, θ2=


2.934

3.606

3.62

3.445

, θ3=


0.1962

0.1712

0.153

0.115

, θ4=


0.1258

1.147

0.3627

0.2013

 .

Except for the flat scenario, the initial Θ is used in all scenarios.

Table 6: The value for parameters which is illustrated in Figure 23

link parameter Value

Mass (kg) MT=12,Mf=6.8,Mt=3.2

Inertia (kgm2) IT = 0.33, If = 0.47, It = 0.2

Length (m) lT = 0.2, lf = 0.4, lt = 0.4

Center (m) pMT =0.1, pMf =0.11, pMt =0.24

Remark 2. In the test phase, even one successful step is not possible by the initial gait (4)
because the torque and friction limitation are considered. Note that for the learning phase, we
have considered,
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Table 7: Errors considered for model parameters

No. MT IT lT pM
T Mf If lf pM

f Mt It lt pM
t

E1 -0.4 0.4 -0.01 0.1 -0.4 0.4 -0.01 0.1 0.4 -0.4 0.01 0.1

E2 0.4 -0.4 0.01 -0.1 0.4 -0.4 0.01 0.1 -0.4 -0.4 0.01 -0.1

E3 0.4 0.4 0.01 -0.1 -0.4 0.4 0.01 0.1 -0.4 0.4 0.01 -0.1

1. No saturation.

2. An unreal and very large fiction coefficient for the surface.

Therefore in the learning phase of all the scenarios, the robot is usually able to walk at least
one successful step with the initial Θ.

The time step is dt = 0.01 1. The gains of PD for feedback controller are considered as:

KP = 500I(n−1)×(n−1),KD = 50I(n−1)×(n−1).

The joint friction which is compensated by the controller is:

Ffr(q, q̇) = Fv q̇ + Fssgn(q̇).

where the coefficients in viscous and Coulomb friction terms are considered as:

Fv = diag(16.5, 16.5, 5.48, 5.48, 0),

Fs = diag(15, 15, 8.84, 8.84, 0).

Table 7 includes three modeling errors. They are applied to the model parameters to specify the
effects of modeling errors on the RL algorithm performance.
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