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1 Introduction

Optimal Control Problems (OCPs) are prevalent across various scientific disciplines, including
engineering and economics; see e.g., [1, 7, 15]. Consequently, finding solutions to these prob-
lems holds significant importance. Two primary strategies exist for approximating solutions:
direct and indirect methods. In the indirect approach, the original problem is first transformed
into a system of differential equations, which are then solved using analytical or numerical
methods. Conversely, in direct methods, the problem is reformulated into a nonlinear opti-
mization problem through techniques such as discretization and parametrization, enabling the
derivation of approximate solutions for the initial OCP; refer to [2, 11, 16, 19]. It is evident that,
regardless of the method employed—direct or indirect—the application of effective approxi-
mate schemes for solving differential equations is crucial in achieving approximate solutions
to the problems at hand.

Recently, the Sub-Ordinary Differential Equation (Sub-ODE) method has been developed
as a means for obtaining solutions to nonlinear partial differential equations (NLPDEs). So-
lutions derived using this method take the form power series based on the solutions of well-
established ordinary differential equations (ODEs), such as the Bernoulli and Riccati differ-
ential equations. Various types of Sub-ODE methods have been introduced, including the G-
expansion, Bernoulli Sub-ODE [13, 23, 24], ( 1

G′ )-expansion [5, 21], (G
′

G )-expansion [9, 20, 22]
and (G

′

G , 1
G′ )-expansion [10]. A significant advantage of the Sub-ODE method is its ability to

produce near-analytical solutions to both ordinary and partial differential equations. This is a
primary motivation for this paper, as we propose an approach to derive near-exact solutions,
for certain classes of OCPs utilizing the Sub-ODE methods.

The structure of this paper is organized as follows: Section 2 presents the problem of optimal
control, while Section 3 offers an overview of Sub-ODEmethod. In Section 4, we describe how
the Sub-ODE method can be applied to solve optimal control problems, including an algorithm
that illustrates the application process, along with a discussion on the method’s convergence. In
Section 5, we demonstrate the effectiveness of the proposed scheme through several numerical
examples. The final section concludes the discussion.

2 Preliminaries

Consider the following OCP:

Minimize J =
∫ tf
t0

F◦(x, u, t)dt,
s.t. F(x, ẋ, u) = 0,

x(t0) = x0,
(1)
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where F◦ : Rnx+mu+1 → R and F : R2nx+mu → Rnx are polynomial functions. Here,
x(·) : Rnx → R and u(·) : Rmu → R represent the state and control functions, respectively,
both of which are assumed to be continuously differentiable. Also Additionally, x0 ∈ Rnx is a
known vector.

3 An Overview of the Bernoulli Sub-ODE Method

Let w be a function of two variables, x and u. If Q is polynomial in x, u and their derivatives,
then the partial differential equation given by

Q(w,
∂w

∂x
,
∂w

∂u
,
∂2w

∂x2
,
∂2w

∂x∂u
,
∂2w

∂u2
, . . . ) = 0,

can be transformed by introducing the new variable ξ = x+ cu, where c is a nonzero constant
.This transformation leads to the ordinary differential equation expressed as

P (w,w′, w′′, w′′′, . . . ) = 0. (2)

Consider w to have a power series expansion in terms of ϕ as follows:

w(ξ) =
n∑

i=0

aiϕ
i(ξ), (3)

where ϕ is the solution of the Bernoulli differential equation as defined by

ϕ′ + λϕ = µϕ2. (4)

Subsequently, the derivatives of ϕ are computed as follows:

ϕ′ = −λϕ+ µϕ2,

ϕ′′ = 2µ2ϕ3 + λ2ϕ,

ϕ′′′ = 2µ3ϕ4 − 2λµ2ϕ3 + µλ2ϕ2 − λ3ϕ,

...

By substituting the expression (3) into (2) and simplifying the resulting expressions, one
obtains a polynomial in terms of the various powers of ϕ. By equating the coefficients to zero,
a system of algebraic equations can be derived , enabling the determination of the parameters
ai (i = 0, 1, 2, . . .).
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4 A Parametrization Approach via the Bernoulli Sub-ODE Method

In this section, we consider a control-state parameterization within the governing system of the
problem. Substituting the control and state functions in the form of a power series expansion
yields:

x(t) =
n∑

i=0

aiΦ
(i)(t), u(t) =

m∑
j=0

bjΦ
(j)(t), (5)

where ai and bj are constants for i = 0, 1, 2, . . . , n and j = 0, 1, 2, . . . ,m. The resulting
polynomial is arranged in terms of Φ(i) = [ϕi

1, . . . , ϕ
i
n]

T , i = 1, 2, . . . . To elucidate the pa-
rameterization approach through the Bernoulli Sub-ODE method, without losing the generality
of the method, we restrict our discussion to the one-dimensional case, i.e., mu = nx = 1.
While noting that this method can be readily generalized to higher dimensions.
For the purposes of this exposition , let us assume that ϕ is the fundamental function used uti-
lized in the parametric representations in Equation (5). Consider the OCP represented as (1),
wherein F◦ and F are two polynomials in x, u, and their derivatives.

If x and u can be expressed as finite series in ϕ, according to Equation (5), where ai and bj
are constants for i = 0, 1, 2, . . . , n and j = 0, 1, 2, . . . ,m, then m and n are positive integers
determined by balancing the highest-order derivative with the highest-order nonlinear term.
The function ϕ(t) is the solution to the first-order ODE given in Equation (4), expressed in the
following form (see [13, 23, 24]):

ϕ(t) = − λ

2µ

(
tanh(

λ

2
t)− 1

)
(λ, µ ̸= 0).

To determine n and m, we must identify the two terms with the highest order of ϕ, in the
expression

F(x, ẋ, u) = 0, (6)

subject to the following conditions:

i. At least one of the two terms must be xi for i = 1, 2, . . . or ẋ.

ii. One of terms must include ui for i = 1, 2, . . . . If ui, i = 1, 2, . . . does not appear in
in Equation (6), the balance must be established between the expressions ẋ and xj for
i = 1, 2, . . . using the highest-order ϕ.

Given these conditions, we can express m in terms of n as m = g(n) where g : N → N.
The choice of g depends on the specifics of (1). By substituting the power series (5) into (6),
simplifying the resulting polynomial in ϕ according to different powers, and setting the coeffi-
cients of the various powers of ϕ to zero, we obtain a system of algebraic equations involving
the parameters ai, bj , λ, and µ. Solving this system leads to the determination of the parameters
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ai, bj , λ, and µ for i = 0, 1, 2, . . . , n and j = 0, 1, 2, . . . ,m, allowing us to find the state and
control variables outlined in (5) and to ascertain the optimal cost function.

Furthermore, this approach can be extended to control problems expressed in the vector
form, where both x and u are vectors. This framework can also accommodate cases involving
constraints represented by systems of vector equations. When the exact solution to the OCP is
known as an ordered pair of functions (x∗(t), u∗(t)) along with the optimal cost function value
J∗, the following expressions can be employed to compute the error at each iteration k of the
algorithm:

Ecf
k = |

∫ tf

t0

F◦(xk, uk, t)dt− J∗|,

Ec
k =

∫ tf

t0

∥F(xk, uk, ẋk)∥dt,

Esc
k =

∫ tf

t0

|xk − x∗|dt+
∫ tf

t0

|uk − u∗|dt, (7)

TEk = Ecf
k + Ec

k + Esc
k ,

where the pair (xk(t), uk(t)) serves as the approximate solution to the OCP. Here,Ecf
k , Ec

k, E
sc
k ,

and TEn represent the cost function error, the constraint error, the state-control error, and the
total error in the kth iteration, respectively. Based on the preceding discussion , we propose the
following algorithm to determine a near-exact solution to the OCP as outlined in Equation (1).

4.1 Convergence Analysis

Consider the control and state functions, u, x expanded as detailed in (5). By substituting these
functions into the constraints, initial and boundary conditions, and the cost function of the OCP
outlined in (1), we obtain the following minimization problem:

Minimize J =
∫ tf
t0

F◦(t,
∑n

i=0 aiϕ
i(t),

∑m
j=0 bjϕ

j(t),
∑n

i=1 iaiϕ
i(t)(µϕ(t)− λ))dt,

s.t. F(
∑n

i=0 aiϕ
i(t),

∑m
j=0 bjϕ

i(t),
∑n

i=1 iaiϕ
i(t)(µϕ(t)− λ)) = 0.

Let α = (a0, a1, . . . , an)
T and β = (b0, b1, . . . , bm)T , then the OCP in (1) can be reformulated

as the following optimization problem:

Minimize J = J(α, β),

s.t. N [α, β] = 0.

Define S to be the set of all admissible pairs (x(t), u(t)), which satisfies the OCP described
in (1) along with the specified initial and final conditions.
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Algorithm 1 Assume that the maximum number of iterations of the algorithm is k. Consider
error thresholds ϵ1 > 0 and ϵ2 > 0. Initialize with n = 0.
Step 1 Compute the values of n and m using steps (i) and (ii) in Section 4, represented as

m = g(n).

Step 2 Increment n by one.
Step 3 Using Equation (5), evaluate the approximate values for xn and ug(n).
Step 4 Substitute the approximate values xn and ug(n) into Equation (6) along with the bound-

ary conditions, thereby setting the resulting polynomial coefficients to zero.
Step 5 Solve the system of algebraic equations obtained from the previous step to determine

parameters ai and bj .
Step 6 To compute xn and ug(n), substitute the solutions for ai and bj into statements derived

from Equation (5).
Step 7 Determine the cost function value jn using the values xn and ug(n) obtained in the

previous step.
Step 8 Calculate the total error TEn using the expressions provided in Equation (7).
Step 9 If any of the following conditions are met, then the algorithm terminates, otherwise,

return to Step 2:

i) If n ̸= 1, and |jn − jn−1| < ϵ1,

ii) n > k,

iii) If TEn < ϵ2.
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Let Sn,g(n) represents the set of all functions (xn(t), ug(n)(t)) on the interval [t0, tf ] such
that

xn(t) =
n∑

i=0

aiϕ
i(t), ug(n)(t) =

g(n)∑
j=0

bjϕ
j(t),

which satisfy the dynamic of the problem defined in (1). If there exists a solution to the OCP
(1) as expressed in the form of (5), then the convergence of this approach can be characterized
by the following theorem.

Theorem 1. Let r = infS J , and rn,g(n) = infSn,g(n)
J for n = 1, 2, 3, . . . . Then, we have

lim
n→+∞

rn,g(n) = r.

Proof. Assume
rn,g(n) = min

(αn,βg(n))∈Rn+1×Rg(n)+1
J(αn, βg(n)),

then there exists a pair (α∗
n(t), β

∗
g(n)) such that

(α∗
n(t), β

∗
g(n)) ∈ argmin{J(αn, βg(n)) : (αn, βg(n)) ∈ Rn+1 × Rg(n)+1},

and consequently,
rn,g(n) = J(α∗

n, β
∗
g(n)).

Thus , (x∗n(t), u∗g(n)(t)) = (
∑n

i=0 a
∗
iϕ

i(t),
∑g(n)

j=0 b∗jϕ
j(t)) belongs to Sn,g(n) and satisfies

(x∗n(t), u
∗
g(n)(t)) ∈ argmin{J(x(t), u(t)) : (x(t), u(t)) ∈ Sn,g(n)},

which indicates that

J(x∗n(t), u
∗
g(n)(t)) = min

(x(t),u(t))∈Sn,g(n)

J((x(t), u(t)),

and therefore,
rn,g(n) = J(x∗n(t), u

∗
g(n)(t)).

Noticing the definition of Sn,g(n) and increasing function g, it follows that Sn,g(n) ⊂
Sn+1,g(n+1). Consequently, we have:

min
(x(t),u(t))∈Sn+1,g(n+1)

J(x(t), u(t)) ≤ min
(x(t),u(t))∈Sn,g(n)

J(x(t), u(t)).

This implies that the sequence {rn,g(n)}+∞
n=1 is decreasing. Since this sequence is bounded

below, it must converge.

Assuming limn−→+∞ rn,g(n) = r∗ and r∗ > r, we can set ε =
r∗ − r

2
. This leads to the

existence of at least one pair (x(·), u(·)) ∈ S such that J((x(·), u(·)) < r + ε < r∗, which
creates a contradiction. Therefore, we conclude that

lim
n−→+∞

rn,g(n) = min
(x,u)∈S

J(x(·), u(·)) = r.
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5 Numerical Results and Discussion

In this section, we evaluate the performance of the algorithm presented in Section 4 through its
application to several OCPs.

Example 1. Consider the following OCP (refer to [3, 8, 11, 14]):

Minimize J =
1

2

∫ 1
0 (x

2(t) + u2(t))dt,

s.t. x′(t) = −x(t) + u(t),

x(0) = 1.

The analytical solution of this problem, derived using Pontryagin’s maximum principle, is as
follows [8]:

x(t) = Ae
√
2t + (1−A)e−

√
2t,

u(t) = A(
√
2 + 1)e

√
2t − (1−A)(

√
2− 1)e−

√
2t,

J =
e−2

√
2t

2
((
√
2 + 1)(e4

√
2 − 1))A2 +

e−2
√
2t

2
((
√
2− 1)(e2

√
2 − 1))(1−A2),

where

A =
2
√
2− 3

−(e
√
2)

2
+ 2

√
2− 3

.

In a manner analogous to (5), we express the state and control variables as follows:

x′(t) = nanϕ
n+1 + · · · ,

u(t) = bmϕm + bm−1ϕ
m−1 + · · ·+ b0.

By equating x′ with u, we obtain m = n + 1 For n = 13 and using the initial condition
x(0) = 1, the coefficients ϕi for i = 0, 1, 2, . . . , 14, are derived as follows:

ϕ0 :− 1

8192

a13λ
13

µ13
− 1

4096

a12λ
12

µ12
− 1

2048

a11λ
11

µ11
− 1

1024

a10λ
10

µ10
− 1

512

a9λ
9

µ9
− 1

256

a8λ
8

µ8

− 1

128

a7λ
7

µ7
− 1

64

a6λ
6

µ6
− 1

32

a5λ
5

µ5
− 1

16

a4λ
4

µ4
− 1

8

a3λ
3

µ3
− 1

4

a2λ
2

µ2
− 1

2

a1λ

µ
− b0 + 1,

ϕ1 : −a1λ+ a1 − b1 = 0, ϕ2 : a1µ− 2a2λ+ a2 − b2 = 0,

ϕ3 : 2a2µ− 3a3λ+ a3 − b3 = 0, ϕ4 : 3a3µ− 4a4λ+ a4 − b4 = 0,

ϕ5 : 4a4µ− 5a5λ+ a5 − b5 = 0, ϕ6 : 5a5µ− 6a6λ+ a6 − b6 = 0,
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ϕ7 : 6a6µ− 7a7λ+ a7 − b7 = 0, ϕ8 : 7a7µ− 8a8λ+ a8 − b8 = 0,

ϕ9 : 8a8µ− 9a9λ+ a9 − b9 = 0, ϕ10 : 9a9µ− 10a10λ+ a10 − b10 = 0,

ϕ11 : 10a10µ− 11a11λ+ a11 − b11 = 0, ϕ12 : 11a11µ− 12a12λ+ a12 − b12 = 0,

ϕ13 : 12a12µ− 13a13λ+ a13 − b13 = 0, ϕ14 : 13a13µ− b14 = 0.

By formulating the given OCP transforming it into a non-linear programming problem, we
can then solve for the coefficients ai, bj , λ, and µ.

When n = 13, the optimal cost function and global error are given by

J13 = 0.192909800170240453,

and e13 = 0.00109885557,respectively.
In Table 1, the cost function and the total error of the approximation for the n-th iteration

obtained using Sub-ODE method for n = 1, 2, . . . , 7, are presented. Table 2 displays the error
values for Ecf

n , Ec
n, E

sc
n and, Ebc

n .

Table 1: Approximate values of the cost function for various value of n

n Cost function Jn Total error TEn

1 0.194979898049381095 0.06566533217
2 0.193399605906644678 0.03222016221
3 0.192938322598352696 0.00763863267
4 0.192926126244441942 0.00594798197
5 0.192918005539758908 0.00426610087
6 0.192916627744976005 0.00400681067
7 0.192913196974128398 0.00290693807

Table 2: Error values in different iterations of the Algorithm 1

n Ecf
n Ec

n Esc
n Ebc

n

1 0.19561333× 10−2 5.154653423× 10−10 0.6370919821× 10−1 0
2 0.3758412× 10−3 5.052783997× 10−10 0.3184432061× 10−1 0
3 0.854421× 10−4 2.232019800× 10−10 0.755319037× 10−2 0
4 0.976385× 10−4 3.800125559× 10−10 0.585034307× 10−2 0
5 0.1057592× 10−3 6.004922738× 10−10 0.416034107× 10−2 0
6 0.1071370× 10−3 1.722175130× 10−10 0.389967347× 10−2 0
7 0.1105677× 10−3 5.473879389× 10−10 0.279636967× 10−2 0

Figure 1 illustrates the total error TEn for various values of n. It is evident that the total
error diminishes as n increases.
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Figure 1: Graph of total error for Example 1.

The comparison of the Sub-ODE method with other methods for calculating the optimal
cost function J is presented in Table 3.

Table 3: Comparison of the Sub-ODE method with other methods for computing the optimal cost function J

Method Cost function J Absolute error
Sub-ODE method (n = 13) 0.192909800170240453 0.1139645× 10−3

Salama [14] 0.192909298 0.1144667× 10−3

Kafash et al. [8] 0.192909776 0.1139887× 10−3

Mehne and Borzabadi [11] 0.193828723 0.8049583× 10−3

Elnagar [4] 0.192909281 0.1144837× 10−3

Based on the values obtained from the Sub-ODEmethod in conjunction with other literature
, we assert the accuracy and efficiency of the solution derived from the Sub-ODE method given
the initial conditions. Figure 2 illustrates the comparison between the exact solutions and those
provided by the Sub-ODE solutions for x(t) and u(t).

In Figure 3, we present the error graphs for x(t) and u(t). Finally, the graph depicting the
constraint error, |x′(t) + x(t)− u(t)| is shown in Figure 4.

Example 2. In this example, we analyze the following OCP:

Minimize J =
∫ 1
0 u2dt,

s.t. x′(t) = x2(t) + u(t),

x(0) = 0, x(1) = 0.5.

To derive the solution through the Sub-ODE method, we express the variables as follows:
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Figure 2: Comparison between the exact solutions and the Sub-ODE solutions of x(t) and u(t) for Example 1.

Figure 3: Error graph for x(t) and u(t) for Example 1.

Figure 4: Constraint error graph |x′(t) + x(t)− u(t)| for near-optimal control and state in Example 1.

x2(t) = a2nϕ
2n + · · · ,

u(t) = bmϕm + bm−1ϕ
m−1 + · · ·+ b0.
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By balancing the terms x2 and u, we obtain m = 2n. Setting n = 3, and applying the ini-
tial conditions x(0) = 1 and x(1) = 0.5, we derive a system of algebraic equations. The
coefficients ai, bj , λ, and µ are determined as follows:

a0 = −3.132597488, a1 = 0.924572439121708, a2 = 0.975652406611939,

a3 = −35223.40476, b0 = −9.813167025,

b1 = 5.885492927, b2 = 6.489726924, b3 = −2.312948918 ∗ 105,

b4 = −53263.39757, b5 = 68731.59928, b6 = −1.240688244 ∗ 109,

λ = −0.100442453339098, µ = 1.12042577493801.

Consequently , the solutions for the state and control variables derived from the Sub-ODE
method are presented below:

x(t) = −3.174039916− 0.04144242840 tanh(0.05022122660 t)

+ 0.975652406611939(−0.04482334390 tanh(0.05022122660 t)− 0.04482334390)2

− 35223.40476(−0.04482334390 tanh(0.05022122660 t)− 0.04482334390)3,

u(t) = −10.07697450− 0.2638074735 tanh(0.05022122660 t)

+ 6.489726924(−0.04482334390 tanh(0.05022122660 t)− 0.0448233439)2

− 2.312948918 ∗ 105(−0.04482334390 tanh(0.05022122660 t)− 0.04482334390)3

− 53263.39757(−0.04482334390 tanh(0.05022122660 t)− 0.04482334390)4

+ 68731.59928(−0.04482334390 tanh(0.05022122660 t)− 0.04482334390)5

− 1.240688244 ∗ 109(−0.04482334390 tanh(0.05022122660 t)− 0.04482334390)6.

In Figure 5, the outputs for the state variable x(t) and control variable u(t) obtained via the
Sub-ODEmethod, are depicted. Furthermore, the graph illustrating the constraint error |x′(t)−
x2(t)− u(t)| is presented in Figure 6.

For n = 3, the computed cost function is J = 0.178967094743031296. Furthermore,
both the initial and final conditions have been accurately verified. In Table 4, we present a
comparison of the cost function obtained via the Sub-ODE method with those derived from
several other methodologies.

The results presented in Table 4 clearly demonstrate the effectiveness of the Sub-ODE
method in achieving a lower cost function compared to the other methods.

Example 3. Consider the following OCP with a nonlinear constraint:

Minimize J =
∫ π

2
0.1(x(t) + u(t))dt,

s.t. x′(t) =
√

x(t)u(t), t ∈ [0.1, π2 ],

x(0.1) = 0.009967, u(0.1) = 0.009769.
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Figure 5: The Sub-ODE solution for the state variable x(t) and the control variable u(t) in Example 2.

Figure 6: The constraint error graph |x′(t)− x2(t)− u(t)| for near optimal control and state in Example 2.

Table 4: Comparison of the Sub-ODE method with other methods for computing the optimal cost function J

Method Cost function J
Sub-ODE (n = 3) 0.178967094743031296

Solaymani Fard and Borzabadi [17] 0.4447

Rafiei et al. (n = 3) [12] 0.1791666668

An approximate solution to this problem is presented in [18]. Given the assumption that
the control and state functions possess the same sign, the differential equation governing this
problem can be transformed as:

(x′(t))2 = x(t)u(t), t ∈
[
0.1,

π

2

]
.

Using the method outlined in the aforementioned algorithm, we assume that x(t) and u(t) can
be expressed in the form detailed in (5), where ϕ is the solution of equation (4). In this context
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, the expressions x′(t))2 and x(t)u(t) are selected for balancing. We consider the following
extensions:

(x′(t))2 = (nanϕ
n+1)2 + · · · ,

x(t)u(t) = anbmϕm+n + · · ·+ b0.

After balancing, we establish the relationship m = n + 2. Following a single iteration of
Algorithm 1, the state function and the control function can be expressed as:

x(t) = −0.01197853323 tanh(1.695339518 t) + 0.01197853323,

u(t) = 0.03442841373− 0.03442841373 tanh(1.695339518 t)

− 0.03442841370(tanh(1.695339518 t)− 1)2 − 0.008607103426(tanh(1.695339518 t)− 1)3.

In this instance , the value of the cost function is given by j1 = 0.01035959611. In Table 5,
the cost function obtained through the proposed method is compared with those derived from
other methods, thus demonstrating the efficiency of this approach. Moreover, Figures 7 and 8
illustrate the state function, control function and the constraint error, respectively.

Figure 7: Sub-ODE solutions for the state variable x(t) and the control variable u(t) for Example 3.

Table 5: Comparison of the Sub-ODE method with other methods for computing the optimal cost function J .

Method Cost function J
Sub-ODE (n = 1) 0.01035959611

Tohidi and Saberi Nik [18] (n = 10) 0.0290273

Rafiei et al. (n = 3) [12] 0.01116960233
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Figure 8: Graph of the constraint error |(x′(t))2 − 4x(t)u(t)| for near-optimal control and state in Example 3.

Example 4. Consider the following nonlinear OCP:

Minimize J =
∫ 0.5
0 (x2 + u2)dt,

s.t. x′(t) = −x(t)− 2x2(t)− 0.5x3(t) + u(t),

x(0) = 0.5.

Using the proposed algorithm and expansions as outlined in (5) for both the objective and the
control functions, we select the expressions (5) for the objective and control functions, x3(t)
and u(t) for balancing. The expansions will be given as follows:

x3(t) = (an)
3ϕ3n(t) + · · · ,

u(t) = bmϕm + · · ·+ b0.

During the balancing step of Algorithm 1, the relationship 3n = m will be established.
By setting n = 3 and applying the algorithm 1, the resulting state and the control functions,
along with the constraint error, are depicted in Figures 9, and 10, respectively. In this case, the
calculated value of the cost function is 0.0552406197610726332.

Additionally, Table 6 presents the cost function values obtained from the proposed method
for n = 1, 2, 3 is given. Furthermore, Table 7 compares the objective function derived from
the proposed method against other approaches, indicating the efficiency of our method.

Table 6: Approximate values of the cost function for different values of n

n Cost function Jn |jn − jn−1|
1 0.0575187620885544079
2 0.0562647268666681410 0.00125403522
3 0.0552406197610726332 0.00102410711
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Figure 9: Sub-ODE solutions for the state variable x(t) and the control variable u(t) for Example 4.

Figure 10: Graph of the constraint error |x′(t) + x(t) + 2x2(t) + 0.5x3(t)− u(t)| for near-optimal control and
state in Example 4.

Table 7: Comparison of the Sub-ODE method with other methods for computing the optimal cost function J

Method Cost function J
Sub-ODE (n = 3) 0.0552406197610726332

Gholami Baladezaei et al. (n = 3) [6] 0.0552880257005159623

Rafiei et al. (n = 3) [12] 0.0899784856743520989

6 Conclusion

In this paper, we have presented an effective direct scheme for detecting approximate solu-
tions for a specific class of optimal control problems (OCPs). The accuracy of this method was
assessed through comparisons with other existing techniques using four numerical examples.
Many direct methods based on parameterization require two stages of approximation: one stem-
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ming from the solution of the differential equation governing the problem and the other resulting
from the optimization problem of the parameterized forms of the state and control variables.
In contrast, the approach introduced in this paper, utilizing the sub-ODE method, successfully
reduces this process to a single approximation step, arising solely from the resolution of a non-
linear optimization problem. While it is crucial to solve the nonlinear optimization problem,
associated with the parameterized forms, this study highlights the efficiency of the proposed
method by employing the optimization methods available within the Maple software library for
all comparative examples. It is important to acknowledge that implementation and algorithmic
nature of this method may not be entirely compatible with the methods used for comparison.
Therefore, the results presented should not be regarded as definitive evidence of the inadequa-
cies of alternative techniques. Rather, they illustrate the capabilities of the proposed method.
The numerical examples demonstrate that the solutions derived using the presented approach
are satisfactory. However, it is essential to note that the application of this method may be
limited due to the potential need for balancing after the parameterized forms have been incor-
porated into the governing equations of the system. Addressing this limitation could serve as a
compelling area for future research.
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