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1 Introduction

This paper explores the intersection of three key research areas: semi-infinite optimization, multi-
objective programming, and nonsmooth analysis. Our focus is on nonsmooth multi-objective semi-
infinite optimization problems characterized by locally Lipschitz functions. For an in-depth understand-
ing of the properties and significance of locally Lipschitz functions in nonsmooth analysis, we refer the
reader to [1, 3, 4, 19].

Multi-objective semi-infinite programming problems, which entail the simultaneous minimiza-
tion or maximization of multiple conflicting objective functions, constitute a vital class of optimiza-
tion problems. Due to their extensive range of applications, these problems have garnered consid-
erable researchers attention from various perspectives. Notable contributions include studies on dif-
ferentiable cases (see [2, 7], linear cases [14], convex cases [5, 15, 21], as well as nonsmooth cases
[6, 10, 11, 12, 13, 20]. It is important to note that the results reported in [6, 10, 11, 12] rely on the Clarke
subdifferential.

In this paper, we specifically investigate nondifferentiable non convex multi-objective semi-infinite
optimization problems with both locally Lipschitz objective and constraint functions. It has been es-
tablished that the Michel-Penot (M-P) subdifferential can be strictly contained within the Clarke sub-
differential for locally Lipschitz functions (as noted in [1]). Consequently, for optimization problems
incorporating locally Lipschitz functions, the necessary optimality conditions articulated through the
M-P subdifferential are sharper than those derived from the Clarke subdifferential. Thus, our objective
is to present a multiplier rule based on the M-P subdifferential, with subsequent implications for larger
subdifferentials.

The structure of paper is as follows. Section 2 introduces the necessary notations, foundational
definitions, and preliminary concepts that will be utilized throughout the paper. In Section 3, we establish
several constraint qualifications and derive Karush-Kuhn-Tucker type necessary optimality conditions
for nonsmooth multi-objective semi-infinite optimization problems. Finally, Section 4 concludes the
paper with a summary of our findings.

2 Notations and Preliminaries

In this paper, we denote the standard inner product of two vectors x and y in Rn will be denoted by
〈x, y〉, and the zero vector in Rn is represented by 0.

For a subsetA ⊆ Rn, we useA to denote the closure ofA and ri(A) to represent the relative interior
ofA. Additionally, we define the convex hull, convex cone, closed convex hull, and closed convex cone
generated by A using the following notations: conv(A), cone(A), conv(A) and cone(A), respectively.
These are formally defined as follows:

conv(A) :=
⋂{

B | B is convex and A ⊆ B
}
, if A 6= ∅, and conv(∅) := ∅,

cone(A) :=
⋃
{r conv(A) | r ≥ 0

}
, if A 6= ∅, and cone(∅) := {0},
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conv(A) := conv(A), and cone(A) := cone(A).

The following theorem, as established by [8, 18], provides important properties regarding the convex
hull and cone associated with a nonempty compact set in Rn:

Theorem 1. Let A be a nonempty compact subset of Rn. Then, we have:

i. conv(A) is a closed set.

ii. If 0 /∈ conv(A), then cone(A) is a closed cone.

The negative polar and the strictly negative polar of a set A ⊆ Rn are defined respectively, as
follows:

A0 :=
{
u ∈ Rn | 〈u, x〉 ≤ 0, ∀x ∈ A

}
, if A 6= ∅ and ∅0 := {0},

A− :=
{
u ∈ Rn | 〈u, x〉 < 0, ∀x ∈ A

}
, if A 6= ∅ and ∅− := ∅.

It is established in [8] that the negative polar A0 is always a closed convex cone in Rn, with the
following relationships holding true:

A0 =
(
A
)0

=
(
conv(A)

)0
=
(
cone(A)

)0
, (1)

and
A− =

(
conv(A)

)−
=
(
cone(A)

)−
. (2)

Furthermore, if A− 6= ∅, then it follows that A0 = A−.
For an arbitrary index set Ω, let Bγ ⊆ Rn be a nonempty convex set for each γ ∈ Ω, and let

B :=
⋃

γ∈ΩBγ . According to findings presented in [8, 18], the convex hull and the cone of B can be
expressed as:

conv(B) =

∑
γ∈Ω∗

αγBγ | αγ ≥ 0,
∑
γ∈Ω∗

αγ = 1, Ω∗ ⊆ Ω, |Ω∗| <∞

 , (3)

cone(B) =

∑
γ∈Ω∗

αγBγ | αγ ≥ 0, Ω∗ ⊆ Ω, |Ω∗| <∞

 . (4)

We also define the tangent cone of a set A ⊆ Rn, at a point x̂ ∈ A as follows:

ΓA(x̂) :=
{
d ∈ Rn | ∃ {(tk, dk)} → (0+, d); x̂+ tkdk ∈ A, ∀k ∈ N

}
.

It is noteworthy that ΓA(x̂) is closed cone, which may not necessarily be convex, in Rn.
Consider a locally Lipschitz function f : Rn → R. The Micheal-Penot (M-P) directional derivative

of f at the point x̂ ∈ Rn in the direction of v ∈ Rn, as introduced in [16], is defined by

f⋄(x̂; v) := sup
w∈Rn

lim sup
α↓0

f(x̂+ αv + αw)− f(x̂+ αw)

α
.

The M-P subdifferential of f at the point x̂ is then defined as
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∂⋄f(x̂) :=
{
ξ ∈ Rn | 〈〈ξ, v〉〉 ≤ f⋄(x̂; v), ∀v ∈ Rn

}
.

The M-P subdifferential serves as a natural generalization of the standard derivative. Notably, it is
known (see [16, Proposition 1.3]) that if the function f is differentiable at x̂, then ∂⋄f(x̂) = ∇f(x̂).
Moreover, when g : Rn → R is convex function, the M-P subdifferential coincides with the subdiffer-
ential as defined in convex analysis:

∂⋄g(x̂) = ∂g(x̂) :=
{
ξ ∈ Rn | g(x)− g(x̂) ≥ 〈ξ, x− x̂〉, ∀x ∈ Rn

}
.

The following theorem summarizes essential properties of the M-P directional derivative and the
M-P subdifferential, as delineated in [16, 17]. These properties will serve as a critical foundation for the
analyses that follow.

Theorem 2. Let f and h be locally Lipschitz functions mapping from Rn to R, with a given point
x̂ ∈ Rn. Then, the following assertions are established:

i. The following relationships hold:

f⋄(x̂; v) = max
{
〈ξ, v〉 | ξ ∈ ∂⋄f(x̂)

}
,

∂⋄
(
max{f, g}

)
(x̂) ⊆ conv

(
∂⋄f(x̂) ∪ ∂⋄h(x̂)

)
,

∂⋄(λf + µh)(x̂) ⊆ λ∂⋄f(x̂) + µ∂⋄h(x̂), ∀λ, µ ∈ R.

ii. The mapping v → f⋄(x̂; v) is finite, positively homogeneous, and subadditive on Rn. Moreover,
it holds that

∂
(
f⋄(x̂; ·)

)
(0) = ∂⋄f(x̂).

iii. The set ∂⋄f(x̂) is nonempty, convex , and compact within Rn.

Theorem 3. (Mean Value Theorem) [3]. Let x, y ∈ Rn, and assume that f is a locally Lipschitz
function from Rn to R. Then, there exist a point u located within the open line segment (x, y), such that

f(y)− f(x) ∈
〈
∂⋄f(u), y − x

〉
.

3 Main Results

In the subsequent sections of this paper, we will analyze the following multi-objective semi-infinite
optimization problem:

(P) : inf
(
φ1(x), . . . , φm(x)

)
s.t. ϑj(x) ≤ 0, i ∈ J,

x ∈ Rn,

where the functions φi : Rn → R and ϑj : Rn → R, for i ∈ I := {1, . . . ,m} and j ∈ J , are assumed
to be locally Lipschitz. The index set J 6= ∅ is arbitrary and may not necessarily be finite. We define
the feasible region of problem (P) as follows:

F =
{
x ∈ Rn | ϑj(x) ≤ 0, ∀j ∈ J

}
.
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Let x̂ ∈ F be a specified point. The index set of all active constraints at x̂ is defined as

J(x̂) :=
{
j ∈ J | ϑj(x̂) = 0

}
.

A feasible point x̂ ∈ F is classified as a weakly efficient solution to problem (P ) if there is no
x ∈ F such that

φi(x) < φi(x̂), ∀i ∈ I.

Furthermore, a point x̂ ∈ F is termed an efficient solution to (P ) if there is no x ∈ F that satisfies
φi(x) ≤ φi(x̂) for all i ∈ I with(

φ1(x), . . . , φm(x)
)
6=
(
φ1(x̂), . . . , φm(x̂)

)
.

We denote the set of all weakly efficient solutions as E and the set of all efficient solutions asW . It
is evident that E ⊆ W .

Following the framework established in [5], for each x̂ ∈ F and i0 ∈ I , we define:

Qi0(x̂) :=
{
x ∈ F | φi(x) ≤ φi(x̂), ∀i ∈ I \ {i0}

}
,

Qi0(x̂) := F , ifm = 1.

For simplicity, we will denote Qi(x̂) by Qi throughout this paper. We also introduce the following
notations:

Ωx̂ :=
⋃
i∈I

∂⋄φi(x̂), and Υx̂ :=
⋃

j∈J(x̂)

∂⋄ϑj(x̂).

Now, we will consider following types of Abadie constraint qualifications, which include weak, gener-
alized, and refined Abadie constraint qualifications:

(WACQ): (Ωx̂)− ∩ (Υx̂)0 ⊆ ΓF (x̂),

(GACQ): (Υx̂)0 ⊆ ΓF (x̂),

(RACQ): (Ωx̂)0 ∩ (Γx̂)0 ⊆
⋂

i∈I ΓQi(x̂).

The following theorem elucidates the interrelation among the aforementioned constraint qualifica-
tions.

Theorem 4. The subsequent implications hold true at the feasible point x̂ ∈ F .

GACQ ⋆−→ RACQ
↘ ↙

WACQ
, (5)

where the implication ‘‘ ⋆−→ ” is valid whenm = 1.

Proof. GACQ−→WACQ: This implication follows from the inclusion

(Ωx̂)− ∩ (Υx̂)0 ⊆ (Υx̂)0.

RACQ−→WACQ: This relationship is a direct corollary of the following inclusions:

(Ωx̂)− ∩ (Υx̂)0 ⊆ (Ωx̂)0 ∩ (Υx̂)0 and
⋂
i∈I

ΓQi(x̂) ⊆ ΓF (x̂).
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GACQ ⋆−→RACQ: In the case wherem = 1,

ΓF (x̂) =
⋂
i∈I

ΓQi(x̂) and
(
∂⋄φ1(x̂)

)0 ∩ (Υx̂)0 ⊆ (Υx̂)0,

leading to an immediate result.

The following lemma is significant for the subsequent discussion.

Lemma 1. If x̂ ∈ W , then
(Ωx̂)− ∩ ΓF (x̂) = ∅.

Proof. Assume, for the sake of contradiction, that there exists a vector

d ∈ (Ωx̂)− ∩ ΓF (x̂).

By the definition of the tangent cone, there exist sequences {tk} → 0+ and {dk} → d such that x̂ +

tkdk ∈ F for all k ∈ N. Moreover, since d ∈ (Ωx̂)−, it follows that〈
ξ, d
〉
< 0, ∀ξ ∈ ∂⋄φi(x̂), ∀i ∈ I. (6)

The Mean Value Theorem 3 implies that for each k ∈ N, there exist some uk ∈ (x̂ , x̂+ tkdk) and
ξk ∈ ∂⋄φ1(uk) such that

φ1(x̂+ tkdk)− φ1(x̂) = tk
〈
ξk, dk

〉
. (7)

The upper semicontinuity of the set-valued mapping x 7→ ∂⋄φ1(x) and the convergence

uk → x̂,

indicate that we can extract a subsequence ξkp
of ξk such that ξkp

→ ξ̂ ∈ ∂⋄φ1(x̂). From equations (6)
and (7), we derive that

φ1(x̂+ tkp
dkp

)− φ1(x̂) = tkp

〈
ξkp

, dkp

〉
−→

〈
ξ̂, d
〉
< 0.

Thus, there exists a positive numberM1 > 0 such that

φ1(x̂+ tkp
dkp

) < φ1(x̂), ∀ p > M1.

This demonstrates that there exists a subsequence
{
x̂+ t

(1)
k d

(1)
k

}
of
{
x̂+ tkdk

}
satisfying

φ1(x̂+ t
(1)
k d

(1)
k ) < φ1(x̂).

Applying the same reasoning to
{
x̂ + t

(1)
k d

(1)
k

}
and φ2, we deduce from (7) that there exist a sub-

sequence
{
x̂+ t

(2)
k d

(2)
k

}
of
{
x̂+ t

(1)
k d

(1)
k

}
such that for sufficiently large indices, we have

φ1(x̂+ t
(2)
k d

(2)
k ) < φ1(x̂) and φ2(x̂+ t

(2)
k d

(2)
k ) < φ2(x̂).

By repeating this argument, we can construct a subsequence
{
x̂ + t

(m)
k d

(m)
k

}
of
{
x̂ + tkdk

}
such

that
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φ1(x̂+ t
(m)
k d

(m)
k ) < φ1(x̂),

φ2(x̂+ t
(m)
k d

(m)
k ) < φ2(x̂),

...

φm(x̂+ t
(m)
k d

(m)
k ) < φm(x̂).

The derived inequalities along with the fact that
{
x̂ + t

(m)
k d

(m)
k

}
⊂ F , contradict the assumption

that x̂ ∈ W . This contradiction supports the validity of the lemma.

Theorem 5. If the WACQ holds at x̂ ∈ W , then the following relationship holds:

0 ∈ conv
(
Ωx̂
)
+ cone

(
Υx̂
)
. (8)

Proof. By virtue of the WACQ and Lemma 1, we can conclude that(
Ωx̂
)− ∩ (Υx̂

)0
= ∅. (9)

Utilizing Equations (1) and (2), we determine the equalities(
conv

(
Ωx̂
))−

=
(
Ωx̂
)−
, and

(
cone

(
Υx̂
))0

=
(
Υx̂
)0
,

which, in conjunction with equation (9), leads us to derive:(
conv

(
Ωx̂
))−
∩
(
cone

(
Υx̂
))0

= ∅. (10)

We further assert that: (
conv

(
Ωx̂
))
∩
(
− cone

(
Υx̂
))
6= ∅. (11)

Assuming the contrary, if relation (11) does not hold, we would have:(
conv

(
Ωx̂
))
∩
(
− cone

(
Υx̂
))

= ∅.

Given that conv
(
Ωx̂
)
is a non-empty compact convex set, while cone

(
Υx̂
)
represents a closed con-

vex cone, the Strong Separation Theorem (refer to e.g., [8]) and the last equality imply that there exists
a vector q ∈ Rn satisfying: 

〈
q, y
〉
< 0, ∀y ∈ conv

(
Ωx̂
)

〈
q, y
〉
≤ 0, ∀y ∈ cone

Consequently, we have:

q ∈
(
conv

(
Ωx̂
))−
∩
(
cone

(
Υx̂
))0

,

which contradicts (10). This contradiction confirms the validity of (11). Since (11) implies (8), the proof
is complete.
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As demonstrated, the Abadie-type constraint qualifications introduced herein are effective for deriv-
ing optimality conditions for the problem (P ). The primary challenge lies in verifying the establishment
of these qualification conditions, which often proves difficult due to their dependence on the compu-
tation of tangent cones. Therefore, developing an algebraic condition to verify these qualifications,
independent of the tangent cone calculations, holds considerable practical significance. This discussion
will be elaborated upon in the remainder of the paper, beginning with the introduction of an appropriate
definition.

Definition 1. The problem (P ) is considered to be perfect at x̂ ∈ F if the following conditions are
satisfied:

A1. The set J is a compact set within a certain metric space, and the set-valued function j → ϑj(x̂) is
upper-semicontinuous on J .

A2. The condition (Υx̂)− 6= ∅ holds.

It is important to note that the condition (A1) is frequently assumed in many references (see e.g.,
[5, 7, 12]). Additionally, condition (A2) is referred to as the Cottle constraint qualification in some
literature, while in others, it is known as the Mangasarian-Fromovitz constraint qualification (see, e.g.,
[7] and [5], respectively).

Lemma 2. If the problem (P ) is perfect at x̂ ∈ F , then both conv
(
Υx̂
)
and cone

(
Υx̂
)
are closed convex

sets.

Proof. By condition A1 and compactness of ∂⋄ϑj(x̂) as j ∈ J(x̂), it is evident thatΥx̂ is a compact set
(refer to, e.g., [9, 20]). Consequently, conv

(
Υx̂
)
is closed by Theorem 1(i). Moreover, given condition

A2 and (2), we can assert that: (
conv

(
Υx̂
))−

=
(
Υx̂
)− 6= ∅,

which leads us to conclude that 0 /∈ conv
(
Υx̂
)
. Therefore, cone

(
Υx̂
)
is also a closed set by Theorem

1(ii).

Assuming that condition (A1) is hold, we define:

Ψ(x) := max
j∈J

ϑj(x), ∀x ∈ F .

It follows straightforwardly thatΨ(·) is locally Lipschitz, since each ϑj possesses this property. The
proof of the estimate:

Ψ⋄(x̂; d) ≤ max
j∈J(x̂)

ϑ⋄j (x̂; d), ∀d ∈ Rn, (12)

is completely analogous to the proof of step 1 in [3, Theorem 2.8.2]. It is noteworthy that the function
j → ϑ⋄j (x̂; d) is upper-semicontinuous and J(x̂) is compact, thus, the use of the notation “max” is
justified in (12).

Lemma 3. If the problem (P ) is perfect at x̂ ∈ F , then the following inclusion holds:

∂⋄Ψ(x̂) ⊆ conv
(
Υx̂
)
.
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Proof. Let ξ ∈ ∂⋄Ψ(x̂) be an arbitrary element. From inequality (12), we can derive that:

max
j∈J(x̂)

ϑ̂j(d) ≥
〈
ξ, d
〉
, ∀d ∈ Rn,

where ϑ̂j(d) := ϑ⋄j (x̂; d). Given that the functions ϑ̂j(·) are convex and satisfy ϑ̂j(0) = 0 for each
j ∈ J , the above inequality implies that:

Ψ̂(d)− Ψ̂(0) ≥
〈
ξ, d− 0

〉
, ∀d ∈ Rn,

where Ψ̂ is defined as Ψ̂(d) := maxj∈J(x̂) ϑ̂j(d). Consequently, we find that:

ξ ∈ ∂⋄Ψ̂(0).

Furthermore, the function ϑ̂j is continuous at d̂ := 0 for all j ∈ J , and the mapping j → ϑ̂j(d) is
upper-semicontinuous for every d ∈ Rn . Thus, the well-known Pshenichnyi-Levin-Valadire Theorem
([8], pp. 267) can be utilized, yielding:

∂Ψ̂(0) = conv
( ⋃
j∈Ĵ(0)

∂ϑ̂j(0)
)
,

where Ĵ(0) :=
{
j ∈ J(x̂) | ϑ̂j(0) = Ψ̂(0) = 0

}
. This confirms the desired result, since conv

(
Υx̂
)
is

closed by Lemma 2. Furthermore, the following equalities hold trivially:

Ĵ(0) = J(x̂), and ∂ϑ̂j(0) = ∂⋄ϑj(x̂).

We can now present a significant result that provides a sufficient condition for establishing of
WACQ.

Theorem 6. If the problem (P ) is perfect at x̂ ∈ F , then the WACQ holds at x̂.

Proof. Let d ∈
(
Υx̂
)− be an arbitrarily vector. From the equality

(
Υx̂
)−

=
(
conv

(
Υx̂
))−

,

holds by (2), it follows that

d ∈
(
conv

(
Υx̂
))−

⊆
(
∂⋄Ψ(x̂)

)−
,

by Lemma 3. Therefore, we have 〈ξ, d〉 < 0 for all ξ ∈ ∂⋄Ψ(x̂), which implies

Ψ⋄(x̂; d) = max{〈ξ, d〉 | ξ ∈ ∂⋄Ψ(x̂)} < 0.

Consequently, there exists a scalar δ > 0 such that

Ψ(x̂+ βd) < Ψ(x̂) ≤ 0, ∀ β ∈ (0, δ].

Thus, for all j ∈ J , we conclude that

ϑj(x̂+ βd) ≤ Ψ(x̂+ βd) < 0, ∀β ∈ (0, δ].
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As a result, for all β ∈ (0, δ] we have x̂+ βd ∈ F , leading to the conclusion

d ∈ ΓF (x̂).

Since d was chosen arbitrary from
(
Υx̂
)−, we have thus proved(
Υx̂
)− ⊆ ΓF (x̂).

Given that
(
Υx̂
)− 6= ∅ by condition A2, the closedness of ΓF (x̂) entails that

big(Υx̂
)0

=
(
Υx̂
)− ⊆ ΓF (x̂) = ΓF (x̂),

Thus, the proof is complete.

We can now present the Karush-Kuhn-Tucker optimality condition for the problem (P ) at
x̂ ∈ W .

Theorem 7. Suppose that x̂ ∈ W and that at least one of the following assertions holds:

i. WACQ is satisfied at x̂ and cone
(
Υx̂
)
is closed.

ii. GACQ is satisfied at x̂ and cone
(
Υx̂
)
is closed.

iii. RACQ is satisfied at x̂ and cone
(
Υx̂
)
is closed.

iv. The problem (P ) is perfect at x̂.

Then, there exist non-negative scalars αi ≥ 0, i ∈ I such that
∑m

i=1 αi = 1, and non-negative scalars
βj ≥ 0, j ∈ J(x̂) with βj 6= 0 for only finitely many indices, satisfying the relation

0 ∈
m∑
i=1

αi∂
⋄φi(x̂) +

∑
j∈J(x̂)

βj∂
⋄ϑj(x̂). (13)

Proof. The result follows immediately from the application of (5), along with Lemma 2, and Theorems
5 and 6.

It is important to note that assumption of closedness for cone
(
Υx̂
)
is specified in first three condi-

tions of the theorem above. The subsequent example illustrates that this assumption cannot be omitted,
even in the convex case.

Example 1. Consider the following optimization problem:

inf
(
φ1(x1, x2), φ2(x1, x2)

)
:= (x1, x1)

s.t. ϑj(x1, x2) ≤ 0 j ∈ J := N \ {1},
(x1, x2) ∈ R2,

where ϑj denotes the support function of the set

Dj := conv
{
(− j
√
α,−α) | 0 ≤ α ≤ 1

}
,

given by
ϑj(x1, x2) := sup

(a1,a2)∈Dj

{〈
(a1, a2), (x1, x2)

〉}
, ∀j ∈ J.

A brief analysis yields the following results:
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• The feasible set is given by F =
{
(x1, x2) ∈ R2 | x1 ≥ 0, x1 + x2 ≥ 0

}
,

• The candidate optimal solution is x̂ := (0, 0) ∈ W ,

• The directional derivatives are ∂⋄φ1(x̂) = ∂⋄φ2(x̂) = {(1, 0)},

• The index set is J(x̂) = J ,

• The directional derivatives of the support function are ∂⋄ϑj(x̂) = Dj , ∀j ∈ J .

It is straightforward to verify that the WACQ holds at x̂. Moreover, we can characterize the set of
sums of weighted directional derivatives as follows:{∑

i∈I

βj∂
⋄ϑj(x̂) | βj ≥ 0, and βj 6= 0 for finitely many j ∈ J(x̂)

}
=
{
(x1, x2) ∈ R2 | x2 ≥ x1, x1 < 0, x2 < 0

}
∪
{
(0, 0)

}
.

Therefore, there exists no sequence of scalars as in Theorem 7 satisfying (13). Importantly, the
conclusions of Theorem 5 apply at the point x̂; however, it can be noted that the optimization problem
is not perfect at x̂, and the cone generated by cone

(
Υx̂
)
is not closed in this problem.

In nearly all examples considered, we have been unable to obtain positive multipliers αis associated
with the vector-valued objective function, specifically, some of the αis values may equal to zero. This
indicates that certain components of the vector-valued objective function do not influence the necessary
conditions for weakly efficiency. To address the situation wherein some multipliers αis associated with
the objective function become zero in finite vector optimization problems, various approaches have de-
veloped in recent years, leading to the establishment of strongKarush-Kuhn-Tucker necessary optimality
conditions. We define the strong Karush-Kuhn-Tucker condition for problem (P ), as the requirement
that all multipliers αi remain positive for each component of the objective function.

Lemma 4. If x̂ ∈ E , then the following holds:(
∂⋄φℓ(x̂)

)− ∩ ΓQℓ(x̂) = ∅, ℓ ∈ I.

Proof. Assume for the sake of contradiction that there exists a vector d such that for some ℓ ∈ I ,

d ∈
(
∂⋄φℓ(x̂)

)− ∩ ΓQℓ(x̂). (14)

By the definition of the tangent cone, there exists a sequence (tk, dk)→ (0+, d) such that x̂+tkdk ∈
Qℓ for each k ∈ N. Consequently, the definition of Qℓ implies that

φi(x̂+ tkdk) ≤ φi(x̂), i ∈ I \ {ℓ}, k ∈ N,

x̂+ tkdk ∈ F , k ∈ N.

(15)

Moreover, the condition represented by (14) leads to
〈
ξ, d
〉
< 0 for all ξ ∈ ∂⋄φℓ(x̂). Following the

argument in the proof of Lemma 1, we can conclude that for some positive constantM ,

φl(x̂+ tkdk)− φl(x̂) < 0, k ≥M. (16)

However, the statements in (15) combined with (16) contradicts the condition that x̂ ∈ E . Therefore,
the initial assumption is false, and the proof is complete.



184 Abadie Type Constraint Qualifications and Optimality .../ COAM, 9 (2), Summer-Autumn (2024)

We now present the strong Karush-Kuhn-Tucker optimality condition for the problem (P ) at x̂ ∈ E .

Theorem 8. Let x̂ ∈ E and assume that the RACQ holds at x̂. If

(
Ωx̂
)0 \ {0} ⊆ m⋃

i=i

(
∂⋄φi(x̂)

)−
,

then there exist scalars αi > 0 (for i ∈ I) and βj ≥ 0 (for j ∈ J(x̂)), with βj 6= 0 for only finitely many
indices, such that

0 ∈
m∑
i=1

αi∂
⋄φi(x̂) +

∑
j∈J(x̂)

βj∂
⋄ϑj(x̂).

Proof. From [18, Theorem 6.9], we have that

ri
(
conv

(
Ωx̂
))
⊆
{ m∑

i=1

αiξi | ξi ∈ ∂⋄φi(x̂), αi > 0,

m∑
i=1

αi = 1
}
.

Thus, it suffices to demonstrate that

0 ∈ ri
(
conv

(
Ωx̂
))

+ cone
(
Υx̂
)
. (17)

Assuming for the sake of contradiction that the relation (17) does not hold, we then have

ri
(
conv

(
Ωx̂
))
∩
(
− cone

(
Υx̂
))

= ∅.

Applying the strong convex separation theorem ([18, Theorem 11.3]), there exists a hyperplane
H :=

{
x |
〈
x, d
〉
= 0 for some d ∈ Rn \ {0}

}
that properly separates conv

(
Ωx̂
)
and

(
− cone

(
Υx̂
))
.

Consequently, there exists a vector d ∈ Rn such that

0 6= d ∈
(
conv

(
Ωx̂
))0
∩
(
cone

(
Υx̂
))0

=
(
Ωx̂
)0 ∩ (Υx̂

)0
.

Given the RACQ condition and the theorem assumption, we conclude that

d ∈
( m⋃

i=1

(
∂⋄φi(x̂)

)−) ∩ ( m⋂
i=1

ΓQi(x̂)
)
.

Thus, for all ℓ ∈ I , we find (
∂⋄φℓ(x̂)

)− ∩ ΓQℓ(x̂) = ∅,

which contradicts the result established in Lemma 4. This contradiction verifies the theorem.

4 Conclusion

This paper presents several extensions of Abadie constraint qualification tailored for nonsmooth multi-
objective semi-infinite optimization problems. Utilizing these constraint qualifications, we establish
various necessary optimality conditions in Karush-Kuhn-Tucker type for both weakly efficient and ef-
ficient solutions. The results are expressed in term of the Micheal-Penot subdifferential, which offers
greater accuracy and nuanced framework compared to the Clarke subdifferential, albeit with increased
complexity in application.
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