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Abstract. This paper addresses the challenges of power control, radar
assignment, and signal timing to improve the detection and tracking
of multiple targets within a mono-static cognitive radar network. A
fusion center is utilized to integrate target velocity data gathered by
radars. The primary objective is to minimize the mean square error in
target velocity estimation while adhering to constraints related to global
detection probability and total radar power consumption for effective
target detection and tracking. The optimization problem is formulated
and a low-complexity method is proposed using the genetic algorithm
(GA). In this approach, the radars and their transmission powers are
represented as chromosomes and the network’s quality of service (QoS)
requirements serve as inputs to the GA. The output of the GA is the
mean error square of the target velocity estimation. Once the problem
is resolved, the power allocation for each radar assigned to a specific
target is determined. Simulation results demonstrate the effectiveness
of the proposed algorithm in enhancing detection performance and
improving tracking accuracy when compared to other benchmark
algorithms.
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1 Introduction

Radar networks have multiple radar nodes which work together for specified aim [8, 14]. In cognitive
radar networks, multiple radars do sensing task. To take the advantages of a cognitive radar network, the
radar information combination instead of consideration them individually should be considered. Radar
emitter maximizes the transmitted power to increase the detection probability. However, this increment
leads to more interception probability. One of the applications of power allocation arises in multi-target
tracking [22]. However, one of the critical problems is the power allocation due to the equipment of
radar with batteries and thus having limited power resources. On the other hand, power allocation can
improve the detection performance while low probability of interception is achieved [6]. In multi-target
network, it is shown than target velocity estimation has an important effect for determining the resource
allocation results [16]. In this case, the multiple targets velocity estimation is considered by resource
allocation.

Bayesian Cramer-Rao Bound (BCRB) is a useful technique for evaluating radar systems’ perfor-
mance. In [4], Cramer-Rao Lower Bound (CRLB) is applied for target localization accuracy and a
sequential parameter convex approximation (SPCA) method is considered to solve the problem of the
resource allocation. In [20], the strategy of power allocation is proposed for target tracking. The problem
solution is proposed based on the two-step semi definite programming method. In [13], a flexible search
algorithm is proposed for target assignment using the local detection probability. The goal of the paper
is maximizing the total target detection probabilities which can be sub optimal due to low-probability-
of-interception (LPI) considerations. In [18], a resource allocation method with transmitters and re-
ceivers is proposed to estimate multiple targets’ velocity in a multiple-input multiple-output (MIMO)
radar network. However, target detection is not addressed in this paper. In [9], LPI is improved by tar-
get assignment and power optimization. Target localization error and detection probability are quality
of service (QoS) metrics; however, the power consumption constraint of the radars is not considered. In
[3], the joint velocity and position of the targets’ estimation and the propagation conditions of the urban
transmission channel are proposed in a cognitive radar network. However, the radar assignment is not
considered. In [22], a power allocation method is proposed for target tracking to maximize the tracking
performance. They use the Bayesian Cram r-Rao lower bound and a spectral projected gradient algo-
rithm to find the problem solution. In [5], the detection and tracking of the moving target is considered
in the cognitive multimodal radar (CMR). In [1], power allocation based on particle swarm optimization
method is proposed in MIMO radar. In [23], a novel method for cognitive radar waveform selection is
proposed for the tracking targets with a probabilistic data association (PDA) algorithm. In [11], power
allocation and in [10], power transmission and signal bandwidth allocation methods are proposed for
target tracking using cooperative game.

Against the main results of the aforementioned works, in this paper, the target detection and target
velocity estimation accuracy are improved by joint setting the signal time, optimal transmission power
of each radar and radar assignment to each target simultaneously. According to these, the main contri-
butions of this paper are:

• An algorithm is presented for setting the signal time duration, optimal transmission power of each
radar and radar assignment to each target in a radar network to improve the target detection and
target velocity estimation accuracy.
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• The problem of resource allocation, power control and setting signal time is stated based on the
target velocity estimationmean square error (MSE)minimizationwith constraints on the detection
performance and total power budget in each time.

• Approximate optimal solution is obtained by applying the GA after relaxations which is used to
simplify the solution process, because the problem is non-convex and NP-hard.

• Simulation results demonstrate the proposed algorithm effectiveness in detection performance
protection and tracking accuracy improvement in comparison with other bench mark algorithms.

The paper is organized as follows. In Section 2, the network model of a radar network is stated.
The problem formulation is presented in Section 3. In Section 4, the GA is introduced and our proposed
algorithm is stated in this section. In Section 5, numerical results are demonstrated while analysis results
are determined in Section 6. Conclusions are presented in Section 7.

2 Network Model

2.1 Target Detection in Radar Network

Consider a radar system architecture with M mono static search radars and N moving targets. It is
assumed that a fusion center (FC) is responsible for information fusion and resource allocation (Figure 1).
In this network, proper radars are assigned to each target cooperatively. On the other hand, the assigned
radars receive and process the echo signals which are reflected from the targets. Then, transmitted signal
from themth radar and reflected by the nth target, is received by themth radar. In this case, the received
signal can be stated as

ym,n(t) = sm,n(t)hm,n + wn(t), (1)



60 Resource Allocation Optimization for Multi-Target Detection .../ COAM, 10 (1), Winter-Spring (2025)

Figure 1: Block diagram showing the radar transmission for detection and target tracking.

where sm,n(t) is the transmitted signal by radar m assigned to nth target and hm,n is the channel
gain betweenmh radar and nth target. wn(t) is the zero-mean and complex white Gaussian noise with
variance σ2

W . The received signal model from the nth target at themth radar is also expressed as follows

ym,n(t) =
√
αnmPtm,n

ξm,nxm,n(t− τm,n)e
−jwm,nt + wn(t), (2)

where αnm denotes the path loss coefficient while ξm,n is the target reflection coefficient. Ptm,n is
the transmission power of the mth radar which is assigned to the nth target. τm,n denotes the signal
propagation time on the corresponding path. wm,n is the doppler frequency shift due to target movement
while it is obtained as follows [18]

wm,n =
−2π

λ
[(2 cosϕnm)vnx + (2 sinϕnm)vny ], (3)

λ is the signal wavelength while ϕnm is the observation angle from the mth radar to the nth target.
(vnx , v

n
y ) is the velocity vector of the nth target. The radars which receive their own echoes from the

target, send their estimates about the target existence to the FC to make a final decision using a fusion
rule. Therefore, our goal is the radar assignment to each target and manage their transmission power to
detect and track the targets with high accuracy. The received power of themth radar from the nth target
is stated as [15]

Prm,n
=
Ptm,n

GtmGrmσm,nλ
2

(4π)3R4
m,nLm

, (4)

where Gtm is the transmission antenna gain and Grm is the receiving antenna gain. σm,n is the radar
cross-section (RCS) of the nth target and Lm is the system loss. Rm,n is the distance betweenmth radar
and nth target. According to [15] and using the Swerling model, the local probabilities of false alarm
and detection of target n using radarm are obtained, as follows [17].

pfm,n = exp(− (V T )2

2ψ0
, (5)

and
pdm,n = (pfm,n)

1
1+γm,n (6)

where V T is the detection threshold while ψ0 is the variance of the received noise. γm,n is the average
signal to noise ratio of the received signal of the mth radar from the nth target. In fact, the detection
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probability shows the probability of existence of the target when it really exists while the false alarm
probability states the probability of existence of the target when it does not really exist. The results of
the radars are transmitted to the FC to make a final decision about the target presence using a fusion rule.
We use OR rule due to its simplicity. In this rule, if at least one radar determines the target presence, the
final decision is that the target exists. Therefore, the global probabilities of false alarm and detection are
obtained, respectively as follows [21].

PF
n = 1−

M∏
m=1

(1− um,np
f
m,n), (7)

and

PD
n = 1−

M∏
m=1

(1− um,np
d
m,n), (8)

where um,n is the radar assignment index. um,n = 1 presents thatmth radar has been assigned to detect
the target n while um,n = 0 means that themth radar has not been assigned.

2.2 Target Parameter Measurement in Radar Network

In this section, BCRB can be applied for parameter estimation error lower bound for target tracking [19].
We define the target state vector xnk = [xnk , y

n
k , v

n
x,k, v

n
y,k] for the nth target at state k, where (xnk , ynk )

and (vnx,k, vny,k) are the location and velocity of the nth target, respectively. Therefore, the target motion
model is considered as follows [18]

xnk+1 = Fxnk + V n
k . (9)

The matrix F is the matrix of state transition and V n
k is the white Gaussian noise which is zero mean

and with the variance matrix Qk. F and Qk are defined as follows

F =

[
1 △t
0 1

]⊗
I2, (10)

and

Qk = q0I2
⊗[

1
3△t

3 1
2△t

2

1
2△t

2 △t

]
, (11)

where
⊗

is the Kroneker product symbol while△t is the interval of sample. q0 states the process noise
density. I2 is a 2 × 2 unit matrix. By definition of znk as the observation vector which is related to the
doppler frequency shift and time of signal propagation, we have

znk = [(τnk )
T (ωn

k )
T ]T . (12)

In this case, the velocity estimation BCRB for the nth target is required for better target state prediction.
Therefore, we have [8]

V n =
gn + hn

η( 2πλ )2[gnhn − (zn)2]2
, (13)

where gn, hn and zn are defined as follows [18]
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gn =

M∑
m=1

2|
√
αnmξm,n|2(2 cosϕnm)2Ptm,n

t2mum,n, (14)

and

hn =

M∑
m=1

2|
√
αnmξm,n|2(2 sinϕnm)2Ptm,n

t2mum,n, (15)

and

zn =

M∑
m=1

2|
√
αnmξm,n|24 sinϕnm cosϕnmPtm,n

t2mum,n, (16)

where η = 8π2

σ2
w
and tm is the signal time duration for themth radar.

3 Problem Formulation

In this paper, due to the radar assignment index and their transmission power in target detection and also
setting the signal time duration in target tracking according to (7), (8) and (13), our purpose is minimizing
the maximum velocity estimationMSE by assigning the proper radars, adjusting their transmission pow-
ers to detect and track the targets and setting the signal time duration for each radar while the detection
performance and power consumption constraints are maintained. We note that more transmission power
of the radars increases the probability of detection of the targets while increases the power consumption
of the radars. Therefore, we define our optimization problem as follows

Min Maxum,n,Ptm,n ,tm V n (17)

s.t. (18)

PD
n ≥ β, n ∈ N, (19)

PF
n ≤ α, n ∈ N, (20)

Pn
total ≤ Pth, n ∈ N, (21)

Pmin ≤ Ptm,n
≤ Pmax, (22)

0 ≤ tm ≤ tmax, (23)

where Pn
total is the total power consumption for detection and tracking of the nth target. The constraints

(19) and (20) present the constraints on detection performance. It means that more global probability
of detection and less global probability of false alarm improve the detection performance of the radar
network. The inequality (21) shows the total power consumption constraint due to the radar equipped
with batteries. Relations (22) and (23) state the constraints on the transmission power of each radar and
signal time durations respectively. It is clear that problem (17) can be stated as the following problem

Min Maxum,n,Ptm,n ,tm MSE (24)

s.t. (25)

PD
n ≥ β, n ∈ N, (26)

PF
n ≤ α, n ∈ N, (27)
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Pn
total ≤ Pth, n ∈ N, (28)

Pmin ≤ Ptm,n
≤ Pmax, (29)

0 ≤ tm ≤ tmax, (30)

V n ≤MSE. (31)

However, we note that PF
n is independent from the radars. In this case, according to (17) and (27),

the maximum number of radars for detection and tracking of each target is obtained as follows

γn ≤ ⌊ ln(1− α)

ln(1− pfm,n)
⌋, (32)

where, γn is the number of radars for detecting and tracking the nth target. Although, the problem is not
a standard convex problem, however, convex optimization framework can be utilized to obtain the sub
optimal solution. Therefore, Lagrangian function is obtained as follows [2]

L =MSE − λn(P
D
n − β) + ζn(P

F
n − α) + ηn(P

n
total − Pth) + εn(V

n −MSE), (33)

where λn, ζn, ηn and εn show the Largiangian multipliers. Using the Karush-Kuhn-Tucker (KKT)
conditions, the optimal conditions imply that [2]

λn(P
D
n − β) = 0

→

λn = 0 PD
n > β (34− 1)

λn ̸= 0 PD
n = β (34− 2)

ζn(P
F
n − α) = 0

→

ζn = 0 PF
n < α (34− 3)

ζn ̸= 0 PF
n = α (34− 4)

ηn(P
n
total − Pth) = 0

→

ηn = 0 Pn
total < Pth (34− 5)

ζn ̸= 0 Pn
total = Pth (34− 6)

εn(V
n −MSE) = 0

→

εn = 0 V n < MSE (34− 7)

εn ̸= 0 V n =MSE (34− 8)

(34)

It should be noted that the radars are selected for detecting and tracking the targets so that the prob-
lem constraints are maintained. In other words, by selection of more radars for each target, the global
probability of detection and velocity estimation error are improved; however, the power consumption
and global probability of false alarm are increased. Therefore, (34-2), (34-4), (34-6) and (34-8) are the
true conditions. In order to find the optimal radars, an algorithm is proposed to set their transmission
power and optimal signal time duration of each radar for detection and tracking the targets, so that the
minimum velocity estimation error is obtained while the detection performance and total power con-
sumption constraints are satisfied. We utilize the GA which is an optimization method inspired from
nature [7, 12]. The details of this algorithm is described in the next section.
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4 Overview of the Genetic Algorithm

Genetic algorithm (GA) is based on the concepts of natural selection and genetics. The GA is a subset
of a branch of computation known as evolutionary computation [7].

• Initialization: The first step defines the population where its size is the solution numbers. Each
solution is called individual which have a chromosome with binary strings.

• Fitness Function: Each individual has a fitness value which is considered to select the best
individuals. The higher fitness value represents the higher quality of the solution.

• Selection: The best chromosomes are selected to generate the off-springs. These chromosomes
are called parents. By selection of high-quality individuals, a better quality offspring than its par-
ents is selected. Roulette wheel method is used generally for selection of the best chromosomes.

• Crossover: In fact, by using crossover, new generations are generated the same as natural muta-
tion. In this case, the new generation carries genes from both parents. The percent of the carried
genes from the parents can be different.

• Mutation: Next variation operator is mutation. For each offspring, some genes are selected and
their values are changed. In fact, by applying mutation, the solution may change entirely from
the previous solution. Hence, mutation can help to come a better solution.

• Finally, this algorithm will be terminated when the best solution is obtained. Hence, by applying
genetic algorithm to the specified problem in the previous section, it can be evaluated the fitness
function as follows

fitness(m,n) =MSE−λn(PD
n −β)+ζn(PF

n −α)+ηk(1TPk−Ptotal)+εn(V
n−MSE). (35)

Algorithm 2 shows the pseudo code for the proposed method which is called Target Detection
and Tracking Algorithm (TDTA).

Algorithm 2 Pseudo code for the proposed method
-1
Step 1: Initialize the parameters.
Step 2: Calculate the probabilities of false alarm and detection for each radar when it detects
each target according to (5) and (6), respectively.
Step 3: Employ the Genetic Algorithm and the fitness function in (35) to assign the appropriate
radars for detecting and tracking each target, as well as to set their transmission power and
signal time duration.
Step 4: Calculate the velocity estimation error, power consumption for detection and tracking
of each target, and the global probabilities of false alarm and detection for each target.
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5 Simulation Results

In this section, the performance evaluation of the proposed algorithm is compared with the random selec-
tion method as the bench mark algorithm. MATLAB software is used for simulation of the experiments.
The region is considered as a square with the length of 180 m. We consider a network which consists
of M = 12 radars and N = 4 targets. The average RCS of all targets is considered to be 1m2. Tar-
gets move from their initial positions to their destinations. Threshold of the total power transmitted is
Pth = 2Mw while the upper bound of the power is Pmax = 1.3Mw. The corresponding time constraint
is tmax = 0.4s. Simulation results are obtained for α = 0.1 and β = 0.9 . Figure 2 shows the cost
function convergence for different values of iterations. In fact, according to this figure, the cost function
in (35) is converged to the optimal value. According to the figure, in the 80th iteration, the cost function
becomes fixed and the best value is obtained. Number of the radars is set to 40. Figure 3 shows the
success percent of finding the solution for the proposed algorithm versus different number of radars.
This metric shows TDTA algorithm ability in satisfying the problem constraints (26)-(31).

We consider the proposed algorithm with different values of β. According to (8) and (26), more
radars increase the global probability of detection while by decreasing the value of β, less radars are
required to maintain the detection performance constraint. We also compare the proposed algorithm
with random algorithm in which the radars are selected randomly for detecting and tracking the targets.
According to Figure 3, the proper selection of radars in detection and tracking the targets leads to have
more success percent of finding the solution in comparison with the random selection of radars.

It should be noted, sometimes the problem do not have any solution. In this case, by selection of
all radars for each target, the problem constraints are not satisfied. Figure 4 presents the total power
consumption for detection and target tracking versus different number of radars. It is shown that random
algorithm consumes more power due to the random selection of radars for detecting and tracking the
target. On the other hand, proper radar selection for each target leads to have less power consumption.
It is important that in all algorithms the constraints of the problem are maintained. Figure 5 shows the
signal time duration versus different number of radars. According to (13)-(16), it is shown that signal
time duration has a significant effect on the estimation performance. In the proposed algorithm, the
signal time duration of the radars is set using the genetic algorithm for detection and tracking each target
while in random algorithm the signal time duration is selected randomly.

Figures 6 and 7 present MSE for different number of radars. According to this experiment, it is
shown that the random algorithm has more MSE than the other algorithms due to the random selection
of radars for detecting and tracking the target. On the other hand, our proposed algorithm has more
velocity estimation accuracy due to setting the signal time duration setting, the proper selection of radars
for detection and tracking each target and also control their transmission powers. It should be noted that
Figure 5 shows MSE of the proposed algorithm when different probability of detection threshold (β) is
considered. The results are evaluated for the first target.



66 Resource Allocation Optimization for Multi-Target Detection .../ COAM, 10 (1), Winter-Spring (2025)

Figure 2: Cost function convergence versus different iterations.

Figure 3: Success percent of finding the solution versus different number of radars.
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Figure 4: Total power consumption for detection and tracking each object versus different radars.

Figure 5: Signal time duration versus different number of radars.

6 Analysis of Results

As discussed in the previous section, we propose the TDTA algorithm, which selects appropriate radars
and their transmission powers to enhance the velocity estimation of each target. Additionally, the signal
duration for each radar is optimized to improve estimation performance while adhering to constraints on
power consumption and detection performance.

Figure 2 illustrates the convergence of the cost function using the genetic algorithm. We also employ
a random algorithm as a benchmark to demonstrate the effectiveness of our proposed algorithm in en-
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Figure 6: Mean square error for different number of radars.

Figure 7: Mean square error for different number of radars.

hancing detection performance and tracking accuracy. Figure 3 highlights the algorithm’s capability in
finding solutions, clearly showing that our approach is more successful in this regard. According to Fig-
ure 5, our proposed algorithm consumes less power compared to the random algorithm. Furthermore,
Figures 5, 6, and 7 indicate that optimizing the signal duration for each radar significantly improves
estimation performance.
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7 Conclusions

This study presents a joint power allocation, target assignment for each radar, and the setting of signal
duration for velocity estimation in a radar network designed for trackingmultiple targets. The constraints
of the problem include detection performance and power consumption. After formulating the optimiza-
tion problem, a suboptimal solution is derived using genetic algorithm. Simulation results demonstrate
that the proposed algorithm effectively maintains the quality of service (QoS) constraints while improv-
ing overall network performance. Additionally, the algorithm is compared to a random algorithm as a
benchmark algorithm to highlight the effectiveness of power control and target assignment in improv-
ing estimation performance. This paper investigates resource allocation methods for velocity estimation,
with futurework focusing on simultaneously improving the location and velocity estimation of the radars.
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