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Abstract. Cancer is a class of diseases characterized by uncontrolled
cell growth that affects immune cells. There are several treatment
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these, chemotherapy is one of the most widely used and recognized
methods. This paper presents a novel model designed to control cancer
cell growth based on a system of nonlinear fractional differential
equations with delay in chemotherapy. The model focuses on the
competition between tumor and immune cells to minimize the number
of tumor cells and determine the optimal dosage of the administered
drug. It can simulate various scenarios and predict the outcomes of
different chemotherapy regimens. By employing discretization and the
Grunwald-Letnikov method, we aim to gain insights into why some
patients respond well to chemotherapy while others do not. The results
may also help identify potential drug targets and optimize existing
treatments.
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1 Introduction

Fokas et al. and Adimy et al. presented mathematical models for Chronic Myelogenous
Leukemia (CML), a type of blood cancer, in 1991 and 2005, respectively [12] and [1]. Utilizing
these models to analyze cancer responses to drug therapy can assist physicians in determining
appropriate treatment strategies.

The response of a tumor to treatment is influenced by several factors, including tumor sever-
ity, treatment application, the patient’s immune system capability, cancer type and stage, overall
health, and patient preferences. Over the past few decades, mathematical modeling has been
developed to evaluate tumor growth and predict treatment outcomes. These models can aid in
controlling a tumor size and assessing the immune system’s effect on tumor cells, as well as
in specifying optimal drug treatments and timing for surgery. Given the known damaging side
effects of chemotherapy, various models have been applied to cancer growth in conjunction
with chemotherapy, aiming to minimize the total drug dosage used.

Several researchers have explored mathematical modeling of the chemotherapy’s effects
on cancer treatment. They have employed various types of differential equations to represent
these effects. For instance, De Pillis et al. developed a mathematical model based on a system
of ordinary differential equations [7, 8]. Liu and Freedom proposed a mathematical model for
vascular tumor treatment using chemotherapy [14], while Namazi et al. presented a model
forecasting chemotherapy effects on cancer cells [16].

All of these studies rely on the analysis of ordinary differential equations. Recently , there
has been significant interest in fractional calculus, particularly for its applications in various
fields such as physics and engineering [6], as well as in disease treatment. In 2012, Fang devel-
oped fractional calculus to analyze tumor growth in cancer [11]. Two years later, Bozkurt intro-
duced a fractional order into the interaction model between Glioblastoma Multiforme (GBM)
and immune system [5]. Subsequently, in 2016, Rihan et al. examined tumor-immune system
dynamics with fractional order [20]. In 2018, Akman Yildiz et al. presented a cancer obe-
sity model utilizing Caputo time fractional derivatives [2]. In 2019, researchers developed a
novel fractional model to elucidate cancer immune surveillance mechanisms, employing frac-
tional differential equations to explore the intricate relationships between various cancer cell
populations and the immune system, they also proposed an efficient numerical methodology
for solving these equations and an optimal control strategy to investigate chemotherapy effects
[3]. Recently, in 2023, researchers introduced a fractional SIRD model to investigate Nipah
virus transmission dynamics, exploring the implications of improper contact with an infected
corpse as a transmission mode and examining necessary conditions for maintaining disease-
free and endemic states based on the fundamental reproduction number. This study utilized the
Adams-Bashforth-Moulton numerical method with fractional considerations, and provided a
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comparative analysis between fractional and classical outcomes, emphasizing the significance
of dangerous contact with infected corpses in viral transmission [4].

In this context, we extend the ordinary system presented by Moore and Li [15] using frac-
tional differential equations (FDEs). We contend that our FDE model will surpass its ordinary
differential equations (ODEs) counterpart, facilitating a deeper understanding of natural im-
mune interactions within tumors and the potential adverse effects of chemotherapy on patient
immune system.

We are focused on modeling and predicting the impact of chemotherapy on cancer cells
through the use of fractional differential equations. We introduce a fractional differential equa-
tion model to elucidate the interaction between naive T-cells, effector T-cells, and CML cancer
cells during cancer dormancy. Our primary objective is to minimize the cancer cell population
and mitigate the detrimental effects of the two types of drugs on a hypothetical individual. We
discuss the control model by presenting the objective functional, stating the necessary condi-
tions for the optimal control pair, and characterizing the optimal control pair in terms of the
optimal solution of the governed system, determined using the Grunwald-Letnikov method.
We selected the Grunwald-Letnikov method due to its simplicity and computational efficiency
in numerical implementations. Although both Caputo and Riemann-Liouville definitions are
valid approaches for fractional derivatives, the Grunwald-Letnikov method aligns better with
our computational framework and provides sufficient accuracy for our model. A key feature of
this method is its ability to transforms the discussed problem into a set of algebraic equations
that can be easily solved. The purpose of discretization is to convert one or more differential
equations into a set of algebraic equations; solving this set yields values equivalent to the so-
lutions of the differential equations at specific temporal and spatial positions. Our approach
differs from previous models by incorporating fractional calculus, allowing for a more nuanced
representation of cellular interactions and dynamics. The utilization of fractional equations en-
ables us to capture long-range interactions between cells, providing a more realistic model of
cancer progression. Additionally, our solution method using Grunwald-Letnikov discretization
offers computational advantages over traditional methods, facilitating faster and more accurate
simulations. These innovations in modeling and simulation techniques have the potential to
significantly impact cancer research and treatment strategies.

Another novelty of this paper is the use of fractional differential equations (FDEs) instead of
ordinary differential equations (ODEs) to demonstrate the involved control system. FDEs offer
significant advantages over ODEs in cancermodeling, as they allow formore accuratemodeling
of this complex biological process with memory effects, crucial for capturing delayed cellular
interactions in cancer. Furthermore , FDEs naturally represent anomalous diffusion patterns,
offering valuable insights into metastasis processes. Also, the fractional dimension of FDEs
enables modeling of systems with hereditary characteristics, facilitating the study of long-term
cancer processes and drug efficacy over extended periods.
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2 The CML Fractional Dynamic Model

Ordinary and partial differential equations, including heat diffusion and statistical equations,
are among the mathematical tools used to derive biological models. In this paper, we extend
the ODE system presented by Moore and Li [15] by incorporating FDEs. The concept applying
this new model allows us to explore the optimal control strategy for Chemo-immunotherapy.

We assert that FDE model provides superior insights compared to its conventional counter-
parts, enhancing our understanding of the natural immune interactions in a tumor and helping
potential adverse effects of chemotherapy on a patient’s immune system. We will outline sev-
eral advantages of our FDE model over previous approaches.

Firstly, as explained in [9], certain cells in various organs, such as breast cells, feature a
rugged surface that ordinary calculus cannot adequately represent due to these surface charac-
teristics. In contrast, studying these cells through fractional calculus may be more effective.
Specifically, there are irregular points on the surface of these cells that classical derivatives
struggle to describe. In such cases, fractional differentiation is advantageous because it does
not require the necessary smoothness property as classical derivatives [10]. Secondly, while
the definition of the classical derivative relies only on two points in the neighborhood of a
given point, fractional derivatives take into account all the points in that neighborhood [13, 17].
This comprehensive approach leads to more accurate subsequent applications by utilizing all
available information. The FDEs can effectively describe the dynamics of various complex
and nonlocal systems that involve memory effects. The term “non-local property” reflects this
concept, making FDEs increasingly popular in the study of dynamical systems [18].

Let t present time measured in days; each of the three cell populations is a function of
time, t. The model we consider here is a three-cell population model describing the interaction
between the cancer cell population (C), the naive T-cell population (Tn), and the effector T-cell
population (Te) [9, 15]. We assume that the effector T-cells are specific to CML, activated by
the presence of CML antigen. If we suppose these three cells evolve with independent variable
time, then we can present our model in the form of FDE as follows:

Dα
t Tn = sn − u2(t)dnTn − knTn

(
C

C + η

)
, (1)

Dα
t Te = αnknTn

(
C

C + η

)
+ αeTe

(
C

C + η

)
− u2(t)deTe − γeCTe, (2)

Dα
t C = (1− u1(t))rcCln

(
Cmax

C

)
− u2(t)dcC − γcCTe. (3)

The constants used in the system of differential equations (1)-(3) are summarized in Table 1,
which includes a brief description of each constant, the initial estimates, and the ranges used for
sampling later in the paper. The parameter values in our model were determined based on the
described approach in reference [15]. According to this source, parameter values are derived
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from empirical data and theoretical approximations, with subsequent analysis focusing on the
responsiveness of system to parameter fluctuations.

For the three populations, at the initial time t = 0, we use the following values: Tn(0) =

1510 , Te(0) = 10, and C(0) = 10000. Lowercase coefficients, or parameters (e.g., sn, αn,
and rc) are all assumed to be constants.

Table 1: Features of patient A in the first row and patient B in the second row

sn dn de dc kn η αn αe Cmax rc λe λc

0.29 0.35 0.40 0.012 0.066 140 0.39 0.65 160000 0.011 0.079 0.058
0.071 0.05 0.12 0.68 0.063 43 0.56 0.53 190000 0.23 0.077 0.047

We assume that changes in populations due to diffusion are negligible; that is, the numbers
of pre-existing cells in each population that diffuse into and out of the blood are approximately
equal. Therefore, there are no terms in the equations representing the diffusion of already-
existing, mature cells into or out of the bloodstream. The first term on the right-hand side
of Equation (1) is a source term for new T cells entering the blood system. We approximate
this as a constant, sn, which is a reasonable approximation except during the later stages of
CML, when crowding in the bone marrow may reduce the production of naive T cells. The
second term accounts for the natural attrition of Tn cells in the absence of CML. The factor
dn represents death rate constant of naive T cells, which can be understood as the reciprocal
of the average lifespan of a Tn cell; it roughly approximates the fraction of the Tn population
expected to die naturally in one day. The third term is a Michaelis–Menten term that captures
the change in the Tn population due to encounters with CML antigen in the lymphatic system.
We incorporate this term to account for the saturation effects of CML cells.

In this system, Tn(0), Te(0), andC(0) are known as initial values, while the time-dependent
drug efficacies are represented by u1(t) and u2(t). Setting u1 ≡ 0 and u2 ≡ 1 in the equa-
tions yields the same model that describes the dynamics of the disease without treatment. The
variable u1 represents a targeted therapy, such as imatinib, while u2 corresponds to a broad cy-
totoxic chemotherapy, such as cytarabine or hydroxyurea, or a combination of these drugs. All
of the parameter values in the equations are assumed to be positive. Furthermore, the structure
of the equations ensures non-negative solutions for the variables Tn(t), Te(t), and C(t). The
negative terms in the equations represent losses from the cell populations, whereas the positive
terms act as source terms for the cell populations.
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3 Discretization Method

Among the several discretization methods available for the fractional derivatives for Dα
t , we

use the one generated by Grunwald-Letnikov [9]. In this method, Dαx(t) is approximated by

Dαx(t) = lim
l→∞

l−α

[ t
l
]∑

j=0

(−1)j
(
α

j

)
x(t− jl),

where l is the step size and [t] is the integer part of t. Using this method for system (1)-(3),

Dαx(t) is replaced by
[ tnl ]∑
j=0

Cα
j x(tn−j), where tn = nl and Cα

j is Grunwald-Letnikov coeffi-

cients defined by

Cα
0 = l−α, Cα

j = (1− 1 + α

j
)cαj−1, j = 1, 2, 3, . . . .

Now, the system (1)-(3) can be discretized as follows:

(Tn)n =

sn −
n∑

j=1
cαj (Tn)n−j

c0 + dnu2(t) + kn(
cn

cn+η )
,

(Te)n =

ankn(Tn)n(
cn

cn+η )−
n∑

j=1
cαj (Te)n−j

c0 + deu2(t) + γeCn − ae(
cn

cn+η )
,

(C)n =

−
n∑

j=1
cαj (C)n−j

C0 − (1− u1(t)rc ln( cmaxcn
) + dcu2(t) + γc(Te)n

.

3.1 Numerical Solution in Fractional Model

The numerical results obtained using MATLAB software for two sets of parameters are pre-
sented in Table 1 (Patient A and B) with initial values of Tn(0) = 1510, Te(0) = 10, and
C(0) = 10000. These results are illustrated in figures for both patients, labeled A and B, for
different values of derivative order α. We argue that the results from fractional order deriva-
tives behave more naturally than those from classical order derivatives (α = 1). As shown in
Figures 1 and 2, the number of tumor cells is lower when α < 1 compared to the case when
α = 1 (ODE case). This difference arises from the application of fractional differential instead
of ordinary derivatives.

Overall, the results indicate that using fractional derivatives yieldsmore favorable outcomes
with increased efficiency. This is attributed to the non-local nature of fractional derivatives. In
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Figure 1: Numerical results for the cancer cell population (C) (patient A).

Figure 2: Numerical results for the cancer cell population (C) (patient B).

other words, when employing FDEs, we integrate information from all neighboring points,
whereas ODEs rely on information from only two neighboring points. Consequently, the pop-
ulation of cancer cells is smaller, while the population of normal and immune cells are larger
when using the fractional system compared to the ordinary one. This demonstrates the ef-
fectiveness of fractional calculus in modeling complex biological systems like cancer. The
application of fractional equations allows for a more nuanced representation of cellular inter-
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actions and dynamics, potentially leading to more accurate predictions and improved treatment
strategies.

4 Optimal Treatment by Control Theory

In this section, we characterize the optimal control pair (u∗1, u∗2) that provides the optimal drug
dosage for a given performance criterion. The existence of an optimal control pair is guaranteed
by the compactness of the control and state spaces, as well as the convexity of the problem.

We consider the following general Bolza objective functional:

Min J(u1, u2) =

∫ tf

0

(
C(t) +

B1

2
u21(t) +

B2

2
u22(t)

)
dt+B3C(tf )−B4Tn(tf ),

where

u = {u1(t), u2(t)|mi ≤ ui(t) ≤ Mi, ui Lebesgue measurable, i = 1, 2} t ∈ [0, tf ].

This objective functional aims to minimize the total cancer cell population over the treat-
ment time interval [0, tf ] through the first term in the integrand, as well as at the final time
using a salvage term B3C(tf ). We also aim to minimize the systemic costs associated with the
two drugs u1 and u2. It is anticipated that the effects of the drugs are non-linear; therefore, we
select quadratic cost terms u21(t) and u22(t) to reflect these effects. The coefficients B1 and B2

serve as weight constants for the controls and account for the toxicity of the drugs to the body.
A higher weight indicates greater toxicity.

The salvage termB3C(tf ) is included to account for potential increases in cancer cell count
if the controls taper off earlier. Conversely, the term −B4Tn(tf ) penalizes low values of Tn,
as this impacts the patient’s ability to combat other diseases. The coefficientsB3 and B4 allow
for different weighting of the salvage terms compared to the integral terms (all coefficientsB1,
B2, B3 and B4 are positive).

The lower bounds for u1 and u2 correspond to no therapy. For u1, this lower bound is
m1 = 0, while for u2, it is m2 = 1. We assume M1 < 1, as M1 = 1 would imply no new
cancer cells. The upper boundM2 is greater than 1 and is determined by the parameters dc, de,
and dn such thatM2 = min

{
1
dc
, 1
dn
, 1
de

}
.

There are several methods for solving optimal control problems, including Euler-Lagrange
method, Pontryagin’s minimum principle, numerical methods based on finite differences, finite
element methods, and semi-linearization techniques. In this section, we apply fractional Pon-
tryagin’s minimum principle to solve the optimal control problem [19]. The Hamiltonian H is
calculated as follows:

H = C(t) +
B1

2
u21(t) +

B2

2
u22(t) + φ1(t)

[
sn − u2(t)dnTn − knTn

(
C

C + η

)]
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+ φ2(t)

[
αnknTn

(
C

C + η

)
+ αeTe

(
C

C + η

)
− u2(t)deTe − γeCTe)

]
+ φ3(t)

[
(1− u1(t))rcCln

(
Cmax

C

)
− u2(t)dcC − γcCTe

]
. (4)

We aim to utilize the Grunwald-Letnikov discretization method to solve the problem. A
fundamental issue challenge with this method is that we require initial values for the system,
while only the final moment values, denoted as φ, are available. To address this issue, we have
developed a method that employs variable transformation. In this case, we change the variable
by setting φi(t) = λi(tf − t); thus , we obtain φi(tf ) = λi(0).

By applying the fractional form, we can derive the following optimality conditions:

Dα
t λ1(tf − t) = − ∂H

∂Tn
= λ1(tf − t)

(
u2dn + kn(

C

C + η
)

)
− λ2(tf − t)αnkn(

C

C + η
),

Dα
t λ2(tf − t) = −∂H

∂Te
= λ2(tf − t)

(
−αe(

C

C + η
) + u2de + γeC

)
+ λ3(tf − t)γcC,

Dα
t λ3(tf − t) = −∂H

∂C
= λ1(tf − t)knTn

η

(C + η)2

− (λ2(tf − t)
η

(C + η)2
)(αeTe + αnknTn) + λ2(tf − t)γeTe − λ3(tf − t)

((1− u1)rc

(
ln

Cmax

C
− 1)− u2dc − Teγc

)
− 1,

Dα
t Tn(t) = − ∂H

∂λ1(tf − t)
= sn − u2(t)dnTn − knTn

(
C

C + η

)
,

Dα
t Te(t) = − ∂H

∂λ2(tf − t)
= αnknTn

(
C

C + η

)
+ αeTe

(
C

C + η

)
− u2(t)deTe − γeCTe,

Dα
t C(t) = − ∂H

∂λ3(tf − t)
= (1− u1(t))rcC ln

(
Cmax

C

)
− u2(t)dcC − γcCTe,

λ1(tf − t) = −B4, λ2(tf − t) = 0, λ3(tf − t) = B3.

By using the change of variableφi(t) = λi(tf−t), we obtain the following results: λ1(0) =

−B4, λ2(0) = 0, and λ3(0) = B3. Additionally, we have the optimality condition stated below:

∂H

∂u1
= B1u1 − λ3(tf − t)rcC ln

(
Cmax

C

)
= 0, (5)

∂H

∂u2
= B2u2 − λ1(tf − t)dnTn − λ2(tf − t)deTe − λ3(tf − t)dcC = 0. (6)

By solving systems (5) and (6), we can obtain the optimal values for u1 and u2. Therefore,
given the constraintsm1 < u1(t) < M1 andm2 < u2(t) < M2, we have:

u1
∗ =

λ3rcC ln(Cmax
C )

B1
, u2

∗ =
λ1dnTn + λ2deTe + λ3dcC

B2
.
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We can now apply theGrunwald-Letnikovmethod to discretize the optimal control problem,
and the numerical results will be generated using MATLAB software.

(λ1)n =

−
n∑

j=1
cαj (λ1)n−j − (λ2)nαnkn(

Cn
Cn+η )

c0 − u∗2dn − kn(
Cn

Cn+η )
, (7)

(λ2)n =

−
n∑

j=1
cαj (λ2)n−j + (λ3)nγeCn

c0 + αe(
Cn

Cn+η )− u∗2(t)de − γeCn

, (8)

(λ3)n =

−
n∑

j=1
cαj (λ3)n−j +

η
Cn+η [(λ1)nkn(Tn)n − (λ2)n(αnkn(Tn)n − αe)]− 1

c0 + (1− u∗1(t))rc(ln
Cmax
Cn

− 1) + u∗2(t)dc + (Te)nγc
, (9)

(Tn)n =
sn −

∑n
j=1 c

α
j (Tn)n−j

c0 + dnu∗2(t) + kn
Cn

Cn+η

, (10)

(Te)n =

αnkn(Tn)n
Cn

Cn+η −
n∑

j=1
cαj (Te)n−j

c0 + deu∗2(t) + γeCn − αe
Cn

Cn+η

, (11)

(C)n =

n∑
j=1

cαj Cn−j

c0 − (1− u∗1(t))rc ln
Cmax
Cn

+ γc(Te)n + dcu∗2(t)
. (12)

To determine the solution to the optimal control problem, we need to solve the above set
of algebraic equations while considering the initial conditions Tn(0) = 1510, Te(0) = 10, and
C(0) = 10000. The numerical values of the control parameters are provided in Table 2:

Table 2: The numerical values of the control parameters

Parameters B1 B2 B3 B4

Patient A 1000 500 1 10000

Patient B 100 50 0.1 10000

For the control system, the treatment duration is set to 250 days, and the step size is taken as
L = 1 (one day). From the sequential representation of the resulting points over time, we can
derive the optimal graphs for each function. Figures 3 and 4 illustrate the population of cancer
cells in relation to the partial derivatives and the reduction in this population under controlled
drug levels.
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Figure 3: Numerical results for the cancer cell population (C) with u∗ (patient A).

Figure 4: Numerical results for the cancer cell population (C) with u∗ (patient B).

5 Conclusion

In this study , we have developed a mathematical model utilizing fractional order derivatives
to depict a dynamic interactions between body immunology and drug variables. We intro-
duced a three-cell population framework that captures the interaction between chronic myeloid
leukemia (CML) and naive T cells, and effector T cell populations, initially operating in the
absence of treatment, represented via fractional differential equations (FDE). The Local stabil-
ity analyses of fixed points for this FDE system were validated against its ordinary differential
equation (ODE) counterpart and and supported by numerical simulations from discretized FDE
systems employing the Grunwald-Letnikov method. Our findings indicate that tumor cell pop-
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ulations tend to rise to their maximum values when initiated with positive initial conditions .
In light of this, we extended the model to include chemotherapy treatment to enhance its relia-
bility. An optimal control study was conducted to determine the optimal drug dosage reducing
tumor cell, naive T cell, and effector T cells. The resulting optimal drug doses were derived
from combinations of targeted therapies and broad cytotoxic treatments. We adapted the exis-
tence and characteristic optimal control theorems originally formulated for ODE systems, to our
FDE system. Given the non-local characteristics of FDEs, we assert that this model provides
enhanced accuracy compared to traditional ODE models; however, this assertion necessitates
further validation through clinical treatment data. Our approach presents several advantages
over traditional modeling techniques , offering a nuanced representation of cellular interactions
and dynamics, particularly in capturing long-range effects between cells. The comprehensive
nature of the model accounts for competitive interactions among tumor cells, normal cells,
and immune cells, thereby providing a holistic perspective on cancer progression. Nonethe-
less, there are potential limitations to address, including challenges in implementation for some
researchers and the necessity for precise parameter estimation, notably regarding immune re-
sponse parameters. Additionally, biological processes have been simplified, underscoring the
need for extensive experimental validation to corroborate our predictions. This model holds
significant promise for advancing cancer research and treatment strategies, paving the way for
innovative modeling paradigms and computational approaches.
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