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Abstract.Gene expression signatures reflect the response of cell tissues
to diseases, genetic disorders, and drug treatments, containing hidden
patterns that can provide valuable insights for biological research and
cancer diagnostics. This studyproposes a hybrid deep learning approach
combining convolutional neural networks (CNNs) and support vector
machines (SVMs) to classify cancer types using unstructured gene
expression data. We applied three hybrid CNN-SVM models to a
dataset of 10,340 samples spanning 33 cancer types from the Cancer
Genome Atlas. The CNN component extracted latent features from
the gene expression data, while the SVM replaced the softmax layer
to enhance classification robustness. Among the proposed models,
the Hybrid-CNN-SVM model achieved superior performance, demon-
strating excellent prediction accuracy and outperforming other models.
This study highlights the potential of hybrid deep learning frameworks
for cancer type prediction and underscores their applicability to high-
dimensional genomic datasets.
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1 Introduction

Cancer remains one of the most significant global health challenges of the 21st century, ranking as the
second leading cause of death worldwide after cardiovascular diseases. According to the world health
organization, over 10 million people are diagnosed with cancer annually, with this number projected
to rise to 15 million in the near future [13]. Despite advancements in medicine, the late detection of
cancer continues to be a critical issue, as more than 70% of patients are diagnosed at advanced stages,
rendering them ineligible for surgical interventions ( for more details refer to [19],[23]). Early detection
and classification of cancer types, therefore, play a pivotal role in improving survival rates and treat-
ment outcomes. Research has shown that identifying cancer at its early stages significantly enhances
prognosis, underscoring the importance of developing accurate and efficient diagnostic tools.

In recent years, the advent of high-throughput sequencing technologies in cancer genomics has gen-
erated vast amounts of complex data, presenting both challenges and opportunities for cancer research.
Deep learning (DL), a subset of machine learning, has emerged as a powerful tool for analyzing large-
scale, high-dimensional datasets. Unlike traditional machine learning methods, such as regression, deep
learning models leverage neural network architectures to automatically learn patterns and structures hid-
den within raw data. This capability allows deep learning models to scale effectively with the increasing
volume and complexity of data, making them particularly well-suited for cancer detection and classi-
fication tasks. By harnessing the potential of deep learning, researchers aim to develop robust models
for early cancer screening and tumor type classification, ultimately contributing to improved patient
outcomes and survival rates (see e.g., [12] and [21]).

2 Literature Reviews

Gene expression analysis and RNA-Seq data evaluation have been extensively studied using various
computational and machine learning approaches. Clustering-based methods, such as hierarchical clus-
tering [12], k-means clustering [20], Pearson similarity clustering [8], term frequency-inverse document
frequency (TF-IDF) clustering [16], and self-organizing maps (SOM) [10], have been widely applied to
analyze gene expression data and identify gene groups. More recently, clustering techniques have been
combined with deep neural networks to enhance the analysis of gene expression patterns [18]. These
methods have provided valuable insights into gene expression data, but their reliance on unsupervised
learning limits their classification accuracy, particularly for cancer type prediction.

Machine learning and deep learning techniques have emerged as powerful tools for gene expression
analysis, particularly in cancer research. Xiao et al. [22] proposed a semi-supervised stacked sparse
autoencoder (SSAE) for cancer prediction using RNA-Seq data, achieving promising results. Jiang et
al. [7] introduced a generative adversarial network (GAN) with a denoising autoencoder (DAE) as the
generator and a multilayer perceptron (MLP) as the discriminator for disease gene prediction. Huang
et al. [6] applied deep learning models, including Cox-nnet, DeepSurv, and AECOX, to predict cancer
survival prognosis from RNA-Seq data. Other studies have focused on feature extraction from high-
dimensional data, such as Arowolo et al. [2], who used PCA and traditional classifiers like KNN and
decision trees, and Barman and Kwon [3], who developed a genetic algorithm-based Boolean network
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inference (GABNI) for time-series gene expression data. Spiking neural networks (SNNs) [17], dy-
namic Bayesian networks [1], and dual attention recurrent neural networks (RNNs) [14] have also been
employed to model and analyze gene expression data, demonstrating the versatility of machine learning
methods in this domain.

In the context of cancer type classification, several studies have explored the application of deep
learning and hybrid models. Li et al. [9] used genetic algorithms and k-nearest neighbors (KNN) to
achieve over 90% prediction accuracy across 31 cancer types using the cancer genome atlas (TCGA)
dataset. Lyu and Haque [11] converted gene expression data into image samples for training convolu-
tional neural networks (CNNs), achieving over 95% accuracy across 33 TCGA cancer types. Mostavi et
al. [15] applied CNN architectures to RNA-Seq data, achieving 95% classification accuracy while con-
sidering tissue origins. Ramirez et al. [19] developed a Graph CNNs (GCNNs) that incorporated prior
knowledge from protein-protein interaction and gene co-expression networks for cancer type prediction.
These studies highlight the potential of deep learning and hybrid models in addressing the challenges of
high-dimensional gene expression data.

Building on these advancements, this study proposes a Hybrid-CNN-SVMmodel to classify cancer
marker genes using RNA-Seq data from 10,340 samples across 33 cancer types. The CNN component
extracts latent features from unstructured gene expression inputs, while the SVM replaces the softmax
layer for robust classification. This hybrid approach aims to leverage the strengths of both CNNs and
SVMs to improve classification accuracy, generalization, and robustness in cancer type prediction. The
proposed method is evaluated using comprehensive experimental setups, including cross-validation, to
ensure reliable and reproducible results.

3 Materials and Method

In this section, we describe the CNN and the SVM. Then, we will introduce the hybrid method of CNN-
SVM and explain its implementation flowchart. In the following, we will introduce both used databases
and finally, we will evaluate the evaluation criteria to compare the performance of the methods presented
in this article.

3.1 Convolution Neural Networks (CNNs)

Convolutional neural networks are a one of the most important deep learning models in which multiple
layers are taught in a powerful way. CNNs are highly efficient in learning hierarchical representations,
making them one most widely used methods in fields like computer vision, natural language processing,
and bioinformatics. In this study, CNNs are employed to extract high-level features from the biological
dataset for subsequent classification. A CNN typically consists of three main layers, each performing a
specific function in the feature extraction process:

• Convolution layer: The convolutional layer is the core building block of CNNs. It applies a set
of filters (kernels) to the input data to create feature maps. These filters are initialized with random
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values and are updated during training to capture meaningful patterns in the data, such as edges
in images or specific biological signatures in gene expression data. The convolution operation
involves multiplying the input data with the filter weights and summing the results, which allows
the network to detect local patterns in the data.

• Pooling layer: The pooling layer is usually placed after the convolution layer and can be used
to reduce the size of feature maps and network parameters. Like convolutional layers, pooling
layers are unchanged from displacement due to the side features in their calculations. The two
most common pooling methods are:

Max Pooling: Selects the maximum value from each pooling window.

Average Pooling:Computes the average value within each pooling window.

• Fully connected (FC) layer: These layers convert the 2D feature maps from the pooling step into
a one-dimensional feature vector. Fully connected layers act like their counterparts in traditional
artificial neural networks and often comprise the majority of the network’s parameters. However,
the high number of parameters in FC layers can lead to significant computational costs, especially
when training on large datasets.

The training of a CNN involves two main stages:

• Feed-Forward Stage: The input data is passed through the network, layer by layer, to produce
an output. Each layer performs operations such as convolution, activation, and pooling to extract
features and transform the data into a form suitable for classification.

• Back-Propagation Stage: The network output is compared with the ground truth using an error
function, and the error rate is calculated. The back-propagation algorithm adjusts the network
parameters by computing the gradient of the error with respect to each parameter using the chain
rule. These gradients are used to update the weights and biases of the network. The feed-forward
and back-propagation steps are repeated iteratively until the network converges to an optimal
solution.

While CNNs are highly effective at processing complex data, they face several challenges:

• Slow Training: Training CNNs can be computationally expensive, particularly due to the large
number of parameters in fully connected layers.

• Sensitivity to Noise: Large datasets often contain noise, which can negatively impact the accu-
racy and increase training and testing time, especially in the FC layers.

To address these limitations, we propose a hybrid approach combining CNNs and SVMs. CNNs
are utilized to extract high-level features from the input data, while SVMs are employed for robust
classification. This integration takes advantage of the strengths of both methods:

• CNNs: Automatically extract complex, hierarchical features from raw data.

• SVMs: Efficiently classify the extracted features, even in the presence of noise, by finding an
optimal decision boundary.

In this study, the CNN-SVMhybridmethod is applied to classify the dataset, achieving high accuracy
in distinguishing cancer types and normal tissues.
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3.2 Support Vector Machine (SVM)

Support vector machines are supervised machine learning algorithms designed for classification and
regression tasks. SVMs are particularly effective in scenarios where the data is high-dimensional or
not linearly separable. In this study, SVMs are used to classify the features extracted by the CNN. The
primary goal of SVMs is to find the optimal hyperplane that separates data points of different classes
with the maximum margin. The key concepts of SVMs include:

• Hyperplane withMaximumMargin: SVMs construct a hyperplane that maximizes the distance
between the two closest data points from each class (support vectors). This margin maximization
ensures better generalization and reduces the risk of overfitting.

• Kernel Functions: When the data is not linearly separable, SVMs use kernel functions to map
the input data into a higher-dimensional space where it becomes linearly separable.

SVMs construct a hyperplane that maximizes the distance between the two closest data points from
each class (support vectors). This margin maximization ensures better generalization and reduces the
risk of overfitting. The SVM classifier form is as follow equation:

g(x) =

Ls∑
i=1

αidiK(xi, x) + α0, (1)

which K is the kernel function and xi represents the support vector which is obtained from the training
data. Ls represents the number of support vectors and di represents the corresponding class number xi,
and finally αi are fixed numbers that are obtained in the training step. By definition, support vectors
are elements of educational data that are located exactly on or within the boundaries of classification
decision making. In other words, these vectors include samples that are more difficult to classify than
other samples [11]. In Figure 1, the schematic of a SVM is provided.

Since the dataset involves multiple classes (33 cancer types and 23 normal tissues), the SVM is
extended to handle multi-class classification using the One-Against-One (OAO) method. In OAO, the
SVM constructs binary classifiers for each pair of classes, resulting in (n × (n − 1))/2 classifiers for
n classes. The final classification is determined by majority voting across all classifiers. SVMs offer
several advantages, including:

• Robustness to Noise: SVMs are less sensitive to noisy data due to their reliance on support
vectors.

• Efficient Classification: SVMs provide high accuracy in separating classes, even in high-
dimensional feature spaces.

3.3 Hybrid-CNN-SVM Approach for Cancer Classification

The Hybrid-CNN-SVM approach combines the feature extraction capabilities of CNNs with the classi-
fication power of SVMs. In this study, CNNs are used to extract high-level features from the dataset of
33 cancer types and 23 normal tissues and SVMs classify the extracted features into cancerous or normal
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Figure 1: The schematic of a binary SVM.

tissues with high accuracy. This hybrid approach addresses the limitations of CNNs, such as sensitivity
to noise and slow training, while leveraging SVMs’ ability to handle noisy data and efficiently classify
complex patterns. By combining these methods, the study achieves improved accuracy and robustness
in analyzing the dataset.

• 1D-CNN-SVM

In the first model, the input layer of the CNN processes gene expression data represented as a
vector, applying one-dimensional kernels to the input. High-dimensional gene expression data,
comprising 7109 genes, is embedded into a vector format by appending nine zeros, resulting
in a vector of length 7100. The convolutional layer consists of 100 tiles with 32 filters, each
having a kernel length of 71. To identify distinguishing features from the input, the output of
the convolutional layer is passed through a max-pooling layer and subsequently through a fully
connected layer. The extracted features are then fed into the final layer of the CNN, which is
replaced with an SVM classifier. Using these features, the SVM trains on the data to generate its
own model for feature computation. The structure of this model is illustrated in Figure 2.

• Vanilla-CNN-SVM

The second model employs a straightforward CNN architecture combined with a SVM classifier.
The input layer processes data in the form of a 100 × 71 matrix. A convolutional layer with
a 10 × 10 kernel is applied, followed by batch normalization and ReLU activation to enhance
feature extraction and model stability. Max pooling is then utilized to reduce the dimensionality
of the features. Subsequently, a FC layer is introduced, and the softmax layer is replaced with an
SVM classifier. This architecture is illustrated in Figure 3.

• Hybrid-CNN-SVM

The third model, illustrated in Figure 4, employs two parallel convolutional layers on the 2D input
data (comprising 100 × 71 genes). One layer operates vertically, utilizing 32 one-dimensional
kernels of size (1×71), while the other operates horizontally with 32 one-dimensional kernels of
size (100× 1). The outputs of these parallel layers are processed through max-pooling , and the



Mikaeyl Nejad, / COAM, 10 (1), Winter-Spring (2025) 79

Figure 2: 1D-CNN-SVM.

Figure 3: Vanilla-CNN-SVM.

resulting outputs are subsequently flattened and concatenated. Similar to the previous models,
the CNN classification layer is replaced by an SVM classifier.
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Figure 4: Hybrid-CNN-SVM.

3.4 Dataset

In the initial step of this study, RNA-Seq data were obtained from The Cancer Genome Atlas (TCGA)
as referenced in [4, 5]. The dataset included 10,340 samples spanning 33 distinct cancer types, along
with 731 matched normal tissue samples from 23 tissue types. Gene expression levels in the dataset
were transformed using the log2(FPKM +1) formula, where FPKM (Fragments Per Kilobase per Million
mapped reads) represents the unit of gene expressionmeasurement. Following the preprocessing strategy
outlined in [4], genes with a mean expression level of < 0.5 and a standard deviation of < 0.8 across
all samples, irrespective of cancer type, were excluded. This preprocessing step was implemented to
minimize noise and remove genes with limited discriminative value in the dataset.

4 Results

4.1 Model Construction, Hyperparameters and Training

All three models were implemented using Keras 2.3 with TensorFlow 2.0 as the backend. The code was
executed on Google Colab utilizing GPU acceleration. As previously mentioned, CNNs serve as the
primary algorithm in this study. The optimal architecture parameters, including the number and size of
kernels, kernel stride, and the number of nodes in the FC layer, are summarized in Table 1.

Table 1: Key Hyperparameters

Dense Layer Size Filter Kernel
128 (1,71) 32
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The 1D-CNN-SVMmodel processes a one-dimensional vector of gene expressions arranged alpha-
betically by gene symbols. In contrast, the Vanilla-CNN-SVM and Hybrid-CNN-SVM models utilize
a two-dimensional input matrix of dimensions 100 × 71, representing reshaped gene expression data.
These architectural differences allow for a comparative analysis of performance across varying input
formats.

The 1D-CNN-SVMmodel replaces the conventional softmax activation and cross-entropy loss func-
tion with a SVM-based hinge loss function, which directly optimizes the margin between classes. Sim-
ilarly, the Vanilla-CNN-SVM and Hybrid-CNN-SVM models incorporate the SVM hinge loss function
for classification. The hybrid models combine the strengths of CNN feature extraction with SVM clas-
sification for enhanced performance.

The network parameters for all models were optimized using the Adam optimizer. Hyperparameter
tuningwas performed using a grid searchmethod to optimize key parameters, such as the number and size
of kernels, kernel stride, and the number of the FC layer nodes. The training process employed a batch
size of 47 for the 1D-CNN-SVM model and 128 for the Vanilla-CNN-SVM and Hybrid-CNN-SVM
models, with a fixed number of 50 epochs. Early stopping with a patience of 4 epochs was implemented
for the latter models to prevent overfitting. The activation function (AF) used in all layers was ReLU,
while the final layer used softmax for prediction in the Vanilla-CNN-SVM and Hybrid-CNN-SVMmod-
els.

For training and evaluation, 80% of the dataset was allocated for training and 20% for validation. A
total of 10,340 tumor samples were used for training all three models. To ensure robustness and mitigate
stochastic dependencies inherent in neural networks, a 5-fold cross-validation procedure was repeated
six times. The mean and standard deviation of classification accuracy were reported for all models.

The 1D-CNN-SVMmodel achieved an average classification accuracy of 95.11±0.45%, surpassing
the 94.66 ± 0.43% accuracy of the standard 1D-CNN model. The Hybrid-CNN-SVM model demon-
strated the highest accuracy among the tested architectures, achieving 96.00% average accuracy, com-
pared to 95.00% for the standardHybrid-CNNmodel. Similarly, the Vanilla-CNN-SVMmodel exhibited
improved performance compared to its non-SVM counterpart.

4.2 Comparative Analysis

In this study, we evaluated the proposed Hybrid-CNN-SVM model against the standard CNN and stan-
dard SVM in terms of multiple performance metrics, including Accuracy, Generalization, Robustness
to Noise, Interpretability, and Use Case Suitability. The results indicate that the hybrid model offers
distinct advantages over the standalone CNN and SVM approaches, particularly in balancing accuracy
and generalization while addressing limitations in computational efficiency and robustness.

The Hybrid-CNN-SVMmodel demonstrated a modest improvement in classification accuracy com-
pared to the standard CNN,with a 1% increase. While the improvementmay seem incremental, it reflects
the complementary strengths of the two models. The CNN component excels in extracting hierarchi-
cal features from input data, while the SVM provides a robust decision boundary for classification. In
contrast, the standard CNN relies on the softmax classifier, which is prone to overfitting, and the stan-
dard SVM struggles with high-dimensional feature spaces when used alone. Thus, the hybrid approach
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achieves a balance between feature extraction and robust classification, outperforming both standalone
models in terms of accuracy.

Generalization, or the ability of a model to perform well on unseen data, is a critical metric in ma-
chine learning. The Hybrid-CNN-SVM model exhibited superior generalization compared to the stan-
dard CNN due to the optimization criteria used by its SVM component. The CNN employs empirical risk
minimization (ERM), which focuses on minimizing training error, often at the expense of generalization.
This can lead to overfitting, especially when the training data is noisy or limited. Conversely, the SVM in
the hybrid model adopts structural risk minimization (SRM), which explicitly balances training error and
model complexity, reducing overfitting and improving generalization. The standard SVM, while also
employing SRM, lacks the powerful feature extraction capabilities of CNN, limiting its generalization
ability in complex, high-dimensional tasks. Robustness to noise is another area where the Hybrid-CNN-
SVM model outperforms the standard CNN. The SVM component’s optimization strategy ensures that
the decision boundary is less sensitive to noisy or outlier data points, which can significantly degrade the
performance of the softmax classifier used in the standard CNN. The standard SVM also exhibits strong
robustness to noise due to its margin-maximization principle. However, the lack of feature extraction
capabilities in the standard SVM limits its applicability to complex datasets. By combining CNN’s abil-
ity to extract meaningful features with SVM’s robustness to noise, the hybrid model achieves a higher
level of resilience to noisy data compared to either standalone approach.

The suitability of each model for specific use cases depends on the nature of the task, the dataset,
and the performance requirements. The Hybrid-CNN-SVM model is particularly well-suited for appli-
cations where both high accuracy and robust generalization are critical, such as medical image analysis,
fault detection, or biometric recognition. Its ability to handle high-dimensional data with noise makes it
a versatile choice for complex classification tasks. The standard CNN is more appropriate for applica-
tions where computational efficiency and scalability are paramount, such as real-time image processing
or embedded systems. The standard SVM, while effective for smaller datasets or low-dimensional prob-
lems, struggles with scalability and feature extraction, limiting its use in high-dimensional or large-scale
tasks. The summary of the comparative analysis is presented in Table 2.

Table 2: Summary of comparative analysis

Metric Hybrid-CNN-SVM Standard CNN Standard SVM
Accuracy High Moderate Moderate

Generalization High Moderate High
Robustness to Noise High Moderate High
Use Case Suitability Versatile High Limited

The Hybrid-CNN-SVM model effectively combines the strengths of CNN and SVM, achieving a
balance between accuracy, generalization and robustness. The hybrid approach is particularlywell-suited
for complex classification tasks requiring high reliability, making it a valuable alternative to standalone
CNN or SVM models. Future research could explore further optimization of the hybrid architecture to
enhance computational efficiency and broadening its applicability to a wider range of use cases.
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4.3 Classification Report

Classification report used to measure the quality of predictions from a classification algorithm. This
report includes Precision, Recall, F1-score and Support.The Precision is the fraction of True Positive
elements divided by the total number of positively predicted units for each class. In particular, True
Positive are the elements that have been labelled as positive by the model and they are actually positive,
while False Positive are the elements that have been labelled as positive by the model, but they are
actually negative.

Precisionk =
TPk

TPk + FPk
.

Recall is the ability of a classifier to find all positive instances. For each class it is defined as the
ratio of true positives to the sum of true positives and false negatives.

Recallk =
TPk

TPk + FNk
.

F1-score is a weighted harmonic mean of Precision and Recall normalized between 0 and 1. F-score
of 1 indicates a perfect balance as Precision and the Recall are inversely related. A high F1-score is
useful where both high Recall and Precision is important. In order to obtain Macro F1-score, Macro-
Precision and Macro-Recall should be computed before. They are respectively calculated by taking the
average Precision for each predicted class and the average Recall for each actual class.

Macro Average Precision =

∑K
k=1 Precisionk

K
,

Macro Average Recall =
∑K

k=1 Recallk
K

.

Eventually, Macro F1-Score is the harmonic mean of Macro-Precision and Macro-Recall:

Macro F1-Score = 2 · Macro Average Precision ·Macro Average Recall
Macro Average Precision−1 +Macro Average Recall−1 .

Support is the number of actual occurrences of the class in the test data set. Imbalanced support in
the training data may indicate the need for stratified sampling or rebalancing.

To evaluate the performance of the proposed method, all three CNN-SVMmodels were trained with
all 10340 tumor samples in two different approaches. In the first approach, a simple convolution network
CNN is used. In the second approach, the proposed hybrid approach CNN-SVM is used. Table 3 and
Table 4 represent the classification reports of methods for databases, respectively.

The classification results demonstrate that the proposed CNN-SVM models effectively enhance the
performance of cancer type prediction compared to standalone CNN models. The 1D-CNN-SVM and
Hybrid-CNN-SVM models achieved superior or comparable accuracy, Precision, Recall, and F1-scores
across most cancer types, as evidenced by the macro and weighted averages. For instance, the Hybrid-
CNN-SVMmodel outperformed the Hybrid-CNNmodel, achieving a higher weighted average F1-score
of 0.96 compared to 0.93. Similarly, the 1D-CNN-SVMmodel achieved a weighted average F1-score of
0.94, slightly outperforming the 1D-CNN model. These improvements highlight the effectiveness of in-
tegrating SVM as a classifier, leveraging the feature extraction capability of CNN while enhancing clas-
sification accuracy. However, the Vanilla-CNN-SVM model did not exhibit significant improvements
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over the Vanilla-CNN model, indicating the potential influence of architectural design on performance.
Overall, the proposed CNN-SVM approach demonstrates robust classification capabilities, particularly
in complex datasets with high-dimensional gene expression data.

Table 3: Comparison of classification report

Cancer type
Classifications report of ID-CNN-model Classifications report of ID-CNN-SVM-model
Precision Recall F1-score support Precision Recall F1-score support

ACC 0.83 1.00 0.91 15 1.00 0.94 0.97 16
BLCA 0.96 0.92 0.94 83 0.94 0.87 0.90 83
BRCA 1.00 0.99 1.00 222 0.94 1.00 0.96 221
CESC 0.76 0.97 0.85 61 0.83 0.90 0.87 61
CHOL 0.80 0.57 0.67 7 0.88 0.88 0.88 8
COAD 0.77 0.96 0.86 96 0.90 0.75 0.82 95
DLBC 1.00 1.00 1.00 9 1.00 1.00 1.00 10
ESCA 0.96 0.70 0.81 33 0.89 0.78 0.83 32
GBM 0.63 1.00 0.78 33 0.94 1.00 0.97 34
HNSC 0.90 0.94 0.92 101 0.99 0.91 0.95 100
KICH 1.00 0.85 0.92 13 0.91 0.77 0.83 13
KIRC 0.97 0.92 0.94 108 1.00 0.94 0.97 108
KIRP 0.82 0.96 0.89 57 0.86 0.98 0.92 58
LAML 1.00 1.00 1.00 31 0.94 1.00 0.97 30
LGG 1.00 0.79 0.88 106 1.00 0.99 1.00 105
LIHC 0.99 0.97 0.98 75 0.99 0.97 0.98 75
LUAD 0.93 0.93 0.93 107 0.97 0.91 0.94 107
LUSC 0.98 0.84 0.90 100 0.87 0.93 0.90 101
MESO 1.00 0.82 0.90 17 0.94 1.00 0.97 17
OV 1.00 0.97 0.99 76 0.99 1.00 0.99 76

PAAD 0.97 0.94 0.96 36 0.97 1.00 0.99 35
PCPG 0.92 0.97 0.95 36 0.93 1.00 0.96 37
PRAD 1.00 0.99 0.99 100 1.00 1.00 1.00 100
READ 0.70 0.21 0.33 33 0.48 0.70 0.57 33
SARC 0.88 0.94 0.91 53 0.96 0.90 0.93 52
SKCM 0.99 0.96 0.97 94 1.00 0.97 0.98 95
STAD 0.88 0.99 0.93 75 0.91 0.95 0.93 74
TGCT 1.00 0.93 0.96 28 0.93 0.97 0.95 29
THCA 1.00 1.00 1.00 102 0.99 1.00 1.00 101
THYM 1.00 1.00 1.00 24 1.00 0.92 0.96 24
UCEC 0.93 0.99 0.96 110 0.95 0.95 0.95 111
UCS 0.88 0.64 0.74 11 0.86 0.55 0.67 11
UVM 0.94 1.00 0.97 16 1.00 1.00 1.00 16

Accuracy 0.93 2068 0.94 2068
Marco avg. 0.92 0.90 0.90 2068 0.93 0.92 0.92 2068

Weighted avg. 0.94 0.93 0.93 2068 0.94 0.94 0.94 2068
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Table 4: Comparison of classification report

Cancer type
Classifications report of Hybrid-CNN-model Classifications report of Hybrid-CNN-SVM-model
Precision Recall F1-score support Precision Recall F1-score support

ACC 1.00 1.00 1.00 16 0.94 1.00 0.97 16
BLCA 0.96 0.93 0.94 83 0.96 0.98 0.97 83
BRCA 0.99 0.99 0.99 222 1.00 0.99 0.99 222
CESC 0.98 0.97 0.98 61 1.00 0.93 0.97 61
CHOL 0.67 0.29 0.40 7 1.00 0.43 0.60 7
COAD 0.89 0.82 0.85 96 0.86 0.91 0.88 95
DLBC 0.90 1.00 0.95 9 0.90 1.00 0.95 9
ESCA 0.78 0.88 0.83 33 0.91 0.94 0.93 33
GBM 1.00 0.94 0.97 33 1.00 0.97 0.98 33
HNSC 0.97 0.94 0.95 101 0.97 0.98 0.98 101
KICH 0.92 0.85 0.88 13 0.92 0.92 0.92 13
KIRC 0.95 0.96 0.96 107 0.99 0.95 0.97 107
KIRP 0.95 0.91 0.93 58 0.92 0.95 0.93 58
LAML 1.00 1.00 1.00 30 1.00 1.00 1.00 30
LGG 1.00 1.00 1.00 106 1.00 1.00 1.00 106
LIHC 0.97 0.97 0.97 75 0.96 0.99 0.97 75
LUAD 0.95 0.95 0.95 107 0.95 0.93 0.94 107
LUSC 0.90 0.91 0.91 100 0.91 0.93 0.92 100
MESO 1.00 0.94 0.97 17 1.00 1.00 1.00 17
OV 1.00 1.00 1.00 76 0.99 1.00 0.99 76

PAAD 0.97 0.94 0.96 36 0.92 1.00 0.96 36
PCPG 1.00 0.97 0.99 36 1.00 1.00 1.00 36
PRAD 1.00 1.00 1.00 100 1.00 1.00 1.00 100
READ 0.54 0.67 0.59 33 0.64 0.55 0.59 33
SARC 0.80 0.92 0.86 53 0.91 0.98 0.95 53
SKCM 0.99 0.97 0.98 94 1.00 0.99 0.99 94
STAD 0.95 0.53 0.68 75 0.96 0.95 0.95 75
TGCT 0.36 0.96 0.52 28 0.96 0.93 0.95 28
THCA 0.99 0.95 0.97 102 0.99 1.00 1.00 102
THYM 1.00 1.00 1.00 24 1.00 1.00 1.00 24
UCEC 0.99 0.97 0.98 110 0.96 0.99 0.98 110
UCS 1.00 0.73 0.84 11 1.00 0.73 0.84 11
UVM 1.00 1.00 1.00 16 0.94 1.00 0.97 16

Accuracy 0.93 2068 0.96 2068
Marco avg. 0.92 0.91 0.90 2068 0.95 0.94 0.94 2068

Weighted avg. 0.95 0.93 0.93 2068 0.96 0.96 0.96 2068

5 Discussion

This study introduced three CNN-SVM hybrid models for classifying and predicting cancer types us-
ing high-dimensional gene expression data. The integration of CNNs and SVMs aimed to combine the
feature extraction capabilities of CNNs with the robust classification properties of SVMs, offering an
effective solution to the challenges of high-dimensional data analysis. The results demonstrated that
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the hybrid approach significantly improved classification accuracy and generalization compared to stan-
dalone CNN models.

The 1D-CNN-SVM model processed gene expression data as a one-dimensional vector, leveraging
SVM’s hinge loss function to optimize classification margins. In contrast, the Vanilla-CNN-SVM and
Hybrid-CNN-SVM models utilized two-dimensional input matrices, allowing for a more complex rep-
resentation of gene expression data. These architectural differences facilitated a comparative analysis of
the models’ performance across varying input formats. The Hybrid-CNN-SVMmodel consistently out-
performed its counterparts, achieving the highest classification accuracy of 96.00%, compared to 95.00%
for the standard Hybrid-CNN model. This improvement underscores the complementary strengths of
CNNs and SVMs, where CNNs extract hierarchical features, and SVMs provide robust decision bound-
aries.

The performance of the models was further enhanced through rigorous optimization of network
parameters, including kernel size, stride, and the number of the FC layer nodes. The use of the Adam
optimizer, along with grid search-based hyperparameter tuning, ensured efficient training. Additionally,
early stopping was employed to mitigate overfitting, particularly for the Vanilla-CNN-SVM and Hybrid-
CNN-SVMmodels. The robustness of the results was validated through 5-fold cross-validation, repeated
six times, ensuring reliable performance metrics.

A key strength of the hybrid approach lies in its ability to generalize well to unseen data. The
SVM component’s use of Structural Risk Minimization (SRM) helped balance training error and model
complexity, reducing overfitting—a common limitation of CNNs trained with Empirical RiskMinimiza-
tion (ERM). Furthermore, the hybrid models demonstrated superior robustness to noise, as the SVM’s
margin-maximization principle ensured that the decision boundary was less sensitive to outliers. This ro-
bustness is particularly critical in gene expression datasets, which are often noisy and high-dimensional.
Despite these advantages, the Vanilla-CNN-SVM model did not outperform its standalone CNN coun-
terpart. This suggests that the simplicity of the Vanilla-CNN architecture may not have extracted suffi-
ciently robust features for the SVMclassifier to utilize effectively. This finding highlights the importance
of feature extraction in hybrid models and suggests that more complex CNN architectures, such as those
in the Hybrid-CNN-SVM model, are better suited for integration with SVMs.

The comparative analysis also revealed that the Hybrid-CNN-SVMmodel strikes an optimal balance
between accuracy, generalization, and robustness, making it particularly suitable for complex classifica-
tion tasks, such as cancer type prediction. However, the computational cost of training hybrid models,
especially on large datasets, remains a limitation that warrants further exploration. Future research could
focus on optimizing the computational efficiency of these models and extending their applicability to
other high-dimensional datasets in genomics and bioinformatics.

6 Conclusion

This study highlights the potential of CNN-SVM hybrid models for classifying cancer types using high-
dimensional gene expression data. By combining the feature extraction capabilities of convolutional
neural networks (CNNs) alongside the robust classification power of support vector machines (SVMs),
our proposedmodels outperformed both standalone CNN and SVMapproaches. The 1D-CNN-SVMand



Mikaeyl Nejad, / COAM, 10 (1), Winter-Spring (2025) 87

Hybrid-CNN-SVM models demonstrated significant improvements in accuracy, generalization, and ro-
bustness, with the Hybrid-CNN-SVM model achieving the highest classification accuracy of 96.00%.
These results emphasize the effectiveness of integrating deep learning and traditional machine learning
techniques to address the challenges associated with high-dimensional data analysis. Furthermore, the
findings also highlight the critical role of feature extraction in hybrid architectures, as evidenced by the
suboptimal performance of the Vanilla-CNN-SVM model. This indicates that careful design and opti-
mization of CNN structures are essential for maximizing the benefits of the CNN-SVM integration. The
robustness of the hybrid models to noise and their strong generalization to unseen data make them par-
ticularly suitable for complex classification tasks in genomics and related fields. Overall, the proposed
CNN-SVM hybrid models represent a promising approach to cancer type prediction and other high-
dimensional classification problems. Future research could explore further optimization of the hybrid
architecture, including joint optimization of CNN and SVM components, and integrating biologically
informed features to enhance both interpretability and performance. By addressing these challenges, the
CNN-SVM framework could be further refined to advance Precision medicine and improve the accuracy
of cancer diagnostics.
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